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Abstract

The paper presents bounds for the distributions of suprema for particular classes of
ϕ-sub-Gaussian random fields. Results stated depend on representations of bounds for
increments of the fields in different metrics. Several examples of applications are pro-
vided to illustrate the results, in particular, to random fields related to stochastic partial
differential equations and partial differential equations with random initial conditions.
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1. Introduction

In this paper, we study sample paths properties of random fields belonging to the spaces
of ϕ-sub-Gaussian random variables, which generalize Gaussian and sub-Gaussian ones and
represent, on the other side, subclass of exponential type Orlicz spaces of random variables.
Our aim is to investigate tail distributions of suprema of ϕ-sub-Gaussian random fields under
different conditions imposed on their increments.

Recall that a random variable ξ is sub-Gaussian if its moment generating function is majorized
by that of a Gaussian centered random variable η ∼ N(0, σ2), that is,

E exp(λξ) ≤ E exp(λη) = exp(σ2λ2/2).

The generalization of this notion to the classes of ϕ-sub-Gaussian random variables is intro-
duced as follows (see, Buldygin and Kozachenko (2000) (Ch.2), Giuliano, Kozachenko, and
Nikitina (2003), Kozachenko and Ostrovskij (1986), Vasylyk, Kozachenko, and Yamnenko
(2008)).

Definition 1.1. Giuliano et al. (2003); Kozachenko and Ostrovskij (1986) A continuous even

convex function ϕ is called an Orlicz N-function if ϕ(0) = 0, ϕ(x) > 0 as x 6= 0 and lim
x→0

ϕ(x)
x =

0, lim
x→∞

ϕ(x)
x = ∞. We say that an N -function satisfies Condition Q if lim inf

x→0

ϕ(x)
x2

= c > 0,

where the case c =∞ is possible.
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Definition 1.2. Giuliano et al. (2003); Kozachenko and Ostrovskij (1986) Let ϕ be an N -
function satisfying condition Q and {Ω, L,P} be a standard probability space. The random
variable ζ is ϕ-sub-Gaussian, or belongs to the space Subϕ(Ω), if Eζ = 0, E exp{λζ} exists for
all λ ∈ R and there exists a constant a > 0 such that the following inequality holds for all
λ ∈ R

E exp{λζ} ≤ exp{ϕ(λa)}.

The stochastic process (or random field) X(t), t ∈ T , is called ϕ-sub-Gaussian if the random
variables {X(t), t ∈ T} are ϕ-sub-Gaussian.

The space Subϕ(Ω) is a Banach space with respect to the norm (see Giuliano et al. (2003);
Kozachenko and Ostrovskij (1986)):

τϕ(ζ) = inf{a > 0 : E exp{λζ} ≤ exp{ϕ(aλ)}.

Definition 1.3. Giuliano et al. (2003); Kozachenko and Ostrovskij (1986) The function ϕ∗

defined by ϕ∗(x) = supy∈R(xy − ϕ(y)) is called the Young-Fenchel transform (or convex
conjugate) of the function ϕ.

The function ϕ∗ is known also as the Legendre or Legendre-Fenchel transform. For ϕ-sub-
Gaussian random variable ζ one can write the estimate for its tail probability in the form

P{|ζ| > u} ≤ 2 exp

{
−ϕ∗

(
u

τϕ(ζ)

)}
, u > 0. (1.1)

Moreover, a random variable ζ is a ϕ-sub-Gaussian if and only if Eζ = 0 and there exist
constants C > 0, D > 0 such that

P{|ζ| > u} ≤ C exp
{
−ϕ∗

( u
D

)}
(1.2)

(see Buldygin and Kozachenko (2000), Corollary 4.1, p. 68).

Therefore, the property of ϕ-sub-Gaussianity can be characterized in a double way: by intro-
ducing a bound on the exponential moment of a random variable (Definition 1.2), or by the
tail behavior (1.1) or (1.2), which is even more important from the practical point of view.

The class of ϕ-sub-Gaussian random variables includes centered compactly supported distri-
butions, reflected Weibull distributions, centered bounded distributions, Gaussian, Poisson
distributions. In the case of ϕ = x2

2 , the notion of ϕ-sub-Gaussianity reduces to the classi-
cal sub-Gaussianity. The main theory for the spaces of ϕ-sub-Gaussian random variables and
stochastic processes was presented in Buldygin and Kozachenko (2000); Giuliano et al. (2003);
Kozachenko and Ostrovskij (1986) followed by numerous further studies. Various classes of
ϕ-sub-Gaussian processes and fields were studied, in particular, in Beghin, Kozachenko, Ors-
ingher, and Sakhno (2007); Hopkalo and Sakhno (2021); Kozachenko and Olenko (2016);
Kozachenko, Orsingher, Sakhno, and Vasylyk (2018, 2020).

Estimates for distribution of supremum P{supt∈T |X(t)| ≥ u} of ϕ-sub-Gaussian stochastic
process X were derived in various forms in the monograph Buldygin and Kozachenko (2000)
basing on entropy methods.

Recall that the entropy approach in studing sample paths of a stochastic process X(t), t ∈ T ,
requires to evaluate entropy characteristics of the set T with respect to a particular metrics
generated by the process X. The origins of this approach are due to Dudley, who stated con-
ditions for boundedness of Gaussian processes in the form of convergence of metric entropy
integrals (which we call now Dudley entropy integrals). We address for corresponding refer-
ences, e.g., to Adler and Taylor (2007) and Buldygin and Kozachenko (2000), where in the
latter one the entropy approach was extended to different classes of processes, more general
than Gaussian ones.

We will base our study on the following theorem proved in Kozachenko and Olenko (2016)
(see also Buldygin and Kozachenko (2000)).
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Theorem 1.1 (Buldygin and Kozachenko (2000); Kozachenko and Olenko (2016)). Let X(t),
t ∈ T, be a ϕ-sub-Gaussian process and ρX be the pseudometrics generated by X, that is,
ρX(t, s) = τϕ(X(t)−X(s)), t, s ∈ T. Assume that

(i) the pseudometric space (T, ρX) is separable, the process X is separable on (T, ρX);

(ii) ε0 := sup
t∈T

τϕ(X(t)) <∞;

(iii) for a non-negative, monotone increasing function r(x), x ≥ 1 such that r(ex), x ≥ 0, is
convex, it holds for 0 < ε ≤ ε0

Ir(ε) :=

ε∫
0

r(N(v)) dv <∞, (1.3)

where N(v), v > 0, is the massiveness of the pseudometric space (T, ρX), that is, N(v)
denotes the smallest number of elements in a v-covering of T by closed balls of a radius
at most v.

Then for all λ > 0, 0 < θ < 1 and u > 0 it holds

E exp

{
λ sup
t∈T
|X(t)|

}
≤ 2 exp

{
ϕ

(
λε0

1− θ

)}
A(θε0) (1.4)

and

P{sup
t∈T
|X(t)| ≥ u} ≤ 2 exp

{
− ϕ∗

(u(1− θ)
ε0

)}
A(θε0), (1.5)

where

A(θε0) = r(−1)

(
Ir(θε0)

θε0

)
. (1.6)

In the above theorem and in what follows we denote by f (−1) the inverse function for a
function f .

The integrals of the form (1.3) with r(x), x ≥ 1, being some non-negative nondecreasing
function are called entropy integrals. Entropy characteristics of the parameter set T with
respect to the pseudometrics ρX generated by the process X and the rate of growth of the
metric massiveness N(v) = NρX (v), v > 0, or metric entropy H(v) := ln(N(v) play an
important role in treating sample paths properties of the underlying process X (see Buldygin
and Kozachenko (2000) for details).

Consider now a metric space (T, d), with an arbitrary metrics d and suppose that this metric
space is separable. Suppose further that we have evaluated the metric massiveness Nd of T
with respect to the metrics d and have a bound for the function ρX(t, s) = τϕ(X(t)−X(s))
which is given in terms of d(t, s). Then Theorem 1.1 implies the following result, which is
more convenient for practical use.

Theorem 1.2. Let X(t), t ∈ T , be a ϕ-sub-Gaussian process and T be supplied with a metrics
d. Assume that

(i) the metric space (T, d) is separable, the process X is separable on (T, d);

(ii) ε0 := sup
t∈T

τϕ(X(t)) <∞;

(iii) there exists a a monotonically increasing continuous function σ(h), 0 < h ≤ supt,s∈T d(s, t),
such that σ(h)→ 0 as h→ 0 and

sup
d(t,s)≤h,
t,s∈T

τϕ(X(t)−X(s)) ≤ σ(h), (1.7)
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(iv) for a non-negative, monotone increasing function r(x), x ≥ 1 such that r(ex), x ≥ 0, is
convex, it holds for 0 < ε ≤ γ0

Ĩr(ε) :=

ε∫
0

r(Nd(σ
(−1)(v)) dv <∞, (1.8)

where Nd(v), v > 0, is the massiveness of the metric space (T, d), γ0 = σ(supt,s∈T d(s, t)).

Then statements (1.4) and (1.5) of Theorem 1.1 hold for 0 < θ < 1 such that θε0 < γ0 with
A(θε0) changed for the appropriate Ã(θε0):

E exp

{
λ sup
t∈T
|X(t)|

}
≤ 2 exp

{
ϕ

(
λε0

1− θ

)}
Ã(θε0) (1.9)

and

P{sup
t∈T
|X(t)| ≥ u} ≤ 2 exp

{
− ϕ∗

(u(1− θ)
ε0

)}
Ã(θε0), (1.10)

where

Ã(θε0) = r(−1)

(
Ĩr(θε0)

θε0

)
. (1.11)

Proof. Theorem 1.2 follows immediately from Theorem 1.1. Indeed, once we have from (1.7)
that sup

d(t,s)≤h,
t,s∈T

ρX(t, s) ≤ σ(h), the smallest number of elements in an ε-covering of (T, ρX) can

be bounded by the smallest number of elements in a σ(−1)(ε)-covering of (T, d): NρX (ε) ≤
Nd(σ

(−1)(ε)), which implies the estimate Ir(ε) ≤ Ĩr(ε), as ε ≤ γ0, and the statement of the
theorem follows.

Theorem 1.2 with a particular metric space (T, d) has been applied in Hopkalo and Sakhno
(2021); Kozachenko et al. (2020); Sakhno (2023b) for studying solutions to partial differen-
tial equations with random initial condition, in Sakhno (2023a) for evaluation of suprema of
spherical random fields, in Kozachenko and Olenko (2016) for developing uniform approxi-
mation schemes for ϕ-sub-Gaussian processes. This theorem allows to calculate the bounds
for the distribution of suprema in the closed form.

Now we have stated all prerequisites necessary for our study in this paper, Theorem 1.2 will
serve as the main tool.

The plan of the paper is as follows.

In Section 2 we consider the parameter set T of the form T = [a1, b1] × [a2, b2] with various
metrics, in particular, we consider d(t, s) = maxi=1,2 |ti − si| and the so-called anisotropic
metrics d(t, s) =

∑
i=1,2 |ti − si|Hi , Hi ∈ (0, 1], i = 1, 2, and corresponding bounds for the

function ρX(t, s) = τϕ(X(t)−X(s)). We will specify Theorem 1.2 for these different cases.

In Section 3 we state the results on the rate of growth of ϕ-sub-Gaussian random fields over
unbounded domains.

Section 4 presents examples of applications of the results obtained. In particular, we consider
processes related to partial differential equations with random initial conditions and stochastic
partial differential equations. These applications actually served as a motivation for our study.

2. Estimates for the distribution of suprema

We will study ϕ-sub-Gaussian random fields X(t), t ∈ T , defined over the parameter set
T = {(t1, t2), ai ≤ ti ≤ bi, i = 1, 2}. Consider the following metrics on T :
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d1(t, s) = max
i=1,2

|ti − si|; (2.1)

d2(t, s) =
∑
i=1,2

|ti − si|
ai

, ai > 0, i = 1, 2; (2.2)

d3(t, s) =
∑
i=1,2

|ti − si|Hi , Hi ∈ (0, 1], i = 1, 2; (2.3)

d4(t, s) =
∑
i=1,2

|ti − si|Hi
ai

, ai > 0, Hi ∈ (0, 1], i = 1, 2. (2.4)

Note that for the metrics (2.3) and (2.4) we suppose Hi ∈ (0, 1], i = 1, 2, but excluding the
case H1 = H2 = 1. Consider the function ρX(t, s) = τϕ(X(t)−X(s)), t, s ∈ T . We state the
bounds for the distribution of supremum of the field X under the condition that the function
ρX(t, s) can be bouded as follows:

ρX(t, s) ≤ σ(di(t, s)),

or

sup
t,s∈T, di(t,s)≤h

ρX(t, s) ≤ σ(h),

where di(t, s) is one of the metrics (2.1)-(2.4), σ is a monotonically increasing function. More
precisely, we consider the case σ(h) = chβ, c > 0, β ∈ (0, 1].

Theorem 2.1. Let X(t), t ∈ T, be a ϕ-sub-Gaussian random field and T be supplied with
one of the metrics di from the list (2.1)-(2.4). Assume that

(i) the field X is separable on (T, di);

(ii) ε0 := supt∈T τϕ(X(t)) <∞;

(iii) sup
t,s∈T, di(t,s)≤h

τϕ(X(t)−X(s)) ≤ chβ.

Then for all θ ∈ (0, 1) such that θ < θi and u > 0

P{sup
t∈T
|X(t)| ≥ u} ≤ 2 exp

{
− ϕ∗

(u(1− θ)
ε0

)}
Ai(θε0),

where expressions for Ai(θε0) and θi correspond to different choices of metrics di in conditions
of theorem and are given as follows:

i = 1 : A1(θε0) = κ1(ce)2/β(θε0)−2/β,

κ1 = 1
2 min(T1, T2)(T1 + T2), θ1 = c

ε0

(
1
2 min(T1, T2)

)β
;

i = 2 : A2(θε0) = κ2(ce)2/β(θε0)−2/β,

κ2 = min(T1a1 ,
T2
a2

)(T1a1 + T2
a2

), θ2 = 3c
ε0

(
min

(
T1
a1
, T2a2

))β
;

i = 3 : A3(θε0) = T1T2(2βce)q(θε0)−q,

q = 1
βH1

+ 1
βH2

, θ3 = 2βc
ε0

mini=1,2

((
Ti
2

)Hiβ)
;

i = 4 : A4(θε0) = T1T2a
−1/H1

1 a
−1/H2

2 (2βce)q(θε0)−q,

q = 1
βH1

+ 1
βH2

, θ4 = 2βc
ε0

mini=1,2

((
Ti
2

)Hiβ
a−βi

)
.
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Proof. To state the estimates for supremum for different metrics di, we apply Theorem 1.2.
First we need to estimate the metric massiveness Ndi , i = 1, . . . , 4. We can write the following
estimates

Nd1(ε) ≤
(T1

2ε
+ 1
)(T2

2ε
+ 1
)

;

Nd2(ε) ≤ 2
( T1

2a1ε
+

3

2

)( T2

2a2ε
+

3

2

)
.

The estimates for Nd1 and Nd2 can be found, for example, in Buldygin and Kozachenko (2000)
and Kozachenko and Makogin (2014) correspondingly.

For the case of metrics d3, we note that a rectangle [−( ε2)
1
H1 , ( ε2)

1
H1 ] × [−( ε2)

1
H2 , ( ε2)

1
H2 ] is

contained in the ball in metrics d3 with center (0, 0) and radius ε which is given as B(ε) =
{(x1, x2) : |x1|H1 + |x2|H2 ≤ ε}. Therefore,

Nd3(ε) ≤
∏
i=1,2

( Ti

2( ε2)
1
Hi

+ 1
)

=
∏
i=1,2

(2
1
Hi Ti

2ε
1
Hi

+ 1
)
.

Analogously,

Nd4(ε) ≤
∏
i=1,2

( Ti

2( εai2 )
1
Hi

+ 1
)

=
∏
i=1,2

( 2
1
Hi Ti

2(εai)
1
Hi

+ 1
)
.

We present the proof for the cases of metrics d2 and d3, other cases are treated similarly. Note
that the bound for the case of d1 was stated in Sakhno (2023b).

Apply Theorem 1.2 with σ(h) = chβ, σ(−1)(u) = (uc )1/β and choose r(v) = vα − 1, then

r(−1)(v) = (v + 1)1/α.

Consider case d = d2:

Ir(δ) =

∫ δ

0

(
2α
∏
i=1,2

( c 1
β Ti

2aiu
1
β

+
3

2

)α
− 1
)
du,

consider δ ∈ (0, θε0) and choose θ ∈
(

0, 3c
ε0

(
mini=1,2(Tiai )

)β)
.

Then we can write

Ir(δ) ≤
∫ δ

0

(
2α
(

min
(T1

a1
,
T2

a2

) c 1
β

u
1
β

)α(1

2

(T1

a1
+
T2

a2

) c 1
β

u
1
β

)α
− 1
)
du = κα2 c

2α
β (1− 2α

β
)δ

1− 2α
β − δ,

where κ2 = min(T1a1 ,
T2
a2

)(T1a1 + T2
a2

), and

r(−1)
(Ir(θε0)

θε0

)
≤ κ2c

2
β (1− 2α

β
)−

1
α (θε0)

− 2
β . (2.5)

Let α→ 0, then (1−2α
β )−

1
α → e

2
β and we obtain in the right hand side of (2.5) κ2(ce)

2
β (θε0)

− 2
β .

Consider now d = d3:

Ir(δ) =

∫ δ

0

( ∏
i=1,2

(Ti2 1
Hi c

1
βHi

2u
1

βHi

+ 1
)α
− 1
)
du =

∫ δ

0

( ∏
i=1,2

(Ti(2βc) 1
βHi

2u
1

βHi

+ 1
)α
− 1
)
du.

Denote c̃ = 2βc, H̃i = βHi. Choose θ such that min
(
Ti
2

)H̃i c̃
θε0

> 1, then Ti
2

c̃

1
H̃i

(θε0)

1
H̃i

> 1, i =

1, 2, and we can write the estimate

Ir(δ) ≤
∫ δ

0

( ∏
i=1,2

(Tic̃ 1

H̃i

u
1

H̃i

)α
− 1
)
du = (T1T2)αc̃αq(1− αq)−1δ1−αq − δ;
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where q = 1

H̃1
+ 1

H̃2
= 1

βH1
+ 1

βH2
, and, analogously to the previous case, we come to the

bound

r(−1)
(Ir(θε0)

θε0

)
≤ T1T2(c̃e)q(θε0)−q = T1T2(2βce)q(θε0)−q.

Remark 2.1. Note that the most studied in the literature is the case of metrics d1, see, for
example, Kozachenko et al. (2020), Hopkalo and Sakhno (2021), where under this metrics dif-
ferent bounds for the function ρX(t, s) = τϕ(X(t)−X(s)) where considered and corresponding
bounds for the distributions of suprema were stated. In Theorem 2.1 (following Theorem 5.4
in Sakhno (2023b)) the improved bound is presented in comparison with the analogous results
stated in Kozachenko et al. (2020) (Corollary 3.1) and Hopkalo and Sakhno (2021) (Corollary
2). The bounds for the distribution of suprema for self-similar Gaussian random fields were
stated in Kozachenko and Makogin (2014) using the entropy approach and bounds on the
increments in terms of the metrics d3. Note that they used the estimate for Nd3(ε), which
coincides for H1 = H2 = 1 and a1 = a2 = 1 with the estimate for Nd2(ε), and its form is
very convenient to treat the case of self-similar random fields but is rather complicated for
derivations for the general case. Our result for the case of metric d3 appears in the form which
is simpler but different from the corresponding bound in Kozachenko and Makogin (2014),
first due to different estimate for Nd3 , but also since it is derived from Theorem 1.2, and
derivations in Kozachenko and Makogin (2014) are based on another result. We postpone for
further research the comparison of these bounds, in particular, by simulation studies.

3. Estimates for the rate of growth over unbounded domain

In this section we consider a ϕ-sub-Gaussian field X(t, x), (t, x) ∈ V , defined over unbounded
domain V = [0,+∞)× [−A,A].

Let f(t) > 0, t ≥ 0, be a continuous strictly increasing function and f(t)→∞ as t→∞.

Introduce the sequence b0 = 0, bk+1 > bk, bk →∞, k →∞.

We will use the following notations:

lk = bk+1 − bk, Vk = [bk, bk+1]× [−A,A], k = 0, 1, . . . , fk = f(bk),

εk = sup(t,x)∈Vk τϕ(X(t, x)), and suppose that 0 < εk <∞;

γk = σk(lk), where σk are introduced in the next theorem, θ̃ = infk
γk
εk

.

Theorem 3.1 below is an extension of the result stated in Sakhno and Vasylyk (2021)(Theorem
1), see also Hopkalo and Sakhno (2021)(Theorem 4). The proof presented in Sakhno and
Vasylyk (2021)(Theorem 1) for the case of metrics d = d1 works for a general metrics d as
well.

Theorem 3.1. Let X(t, x), (t, x) ∈ V , V = [0,+∞)× [−A,A], be a ϕ-sub-Gaussian separable
random field. Suppose futher that:

(i) there exist the increasing continuous functions σk(h), h > 0, such that σk(h) → 0 as
h→ 0,

sup
(ti,xi)∈Vk,i=1,2

d((t1,x1),(t2,x2))≤h

τϕ(X(t1, x1)−X(t2, x2)) ≤ σk(h)

and for k = 0, 1, . . .

Ir,k(γk) =

∫ γk

0
r(NVk(σ

(−1)
k (u)))du <∞;

(ii) C =
∑∞

k=0
εk
fk
<∞;
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(iii) for any θ ∈ (0, 1)

S(θ, r) =
∞∑
k=0

εk
fk

log
(
r(−1)

(Ir,k(θεk)
θεk

))
<∞. (3.1)

Then

(i) for any θ ∈ (0,min(1, θ̃)) and any λ > 0

E exp
{
λ sup

(t,x)∈V

|X(t, x)|
f(t)

}
≤ 2 exp

{
ϕ
( λC

1− θ

)}
exp

{S(θ, r)

C

}
; (3.2)

(ii) for any θ ∈ (0,min(1, θ̃)) and any u > 0

P
{

sup
(t,x)∈V

|X(t, x)|
f(t)

> u
}
≤ 2 exp

{
− ϕ∗

(u(1− θ)
C

)}
exp

{S(θ, r)

C

}
. (3.3)

We consider the specification of Theorem 3.1 for the cases of metrics d1 and d3. Case d1 was
studied in Sakhno and Vasylyk (2021) and the following result was stated.

Theorem 3.2 (Sakhno and Vasylyk (2021)). Let conditions of Theorem 3.1 hold with σk(h) =
ckh

β, ck > 0, 0 < β ≤ 1, d = d1, lk ≥ 2A, and with condition (iii) replaced by the following
one

(iv) There exists 0 < γ ≤ 1 such that

S1 =

∞∑
k=0

ε
1− 2γ

β

k l2γk c
2γ
β

k

fk
<∞.

Then

(i) for any θ ∈ (0,min(1, θ̃)) and any λ > 0

E exp
{
λ sup

(t,x)∈V

|X(t, x)|
f(t)

}
≤ 2

4
β exp

{
ϕ
( λC

1− θ

)}
Ã1(θ);

(ii) for any θ ∈ (0,min(1, θ̃)) and any u > 0

P
{

sup
(t,x)∈V

|X(t, x))|
f(t)

> u
}
≤ 2

4
β exp

{
− ϕ∗

(u(1− θ)
C

)}
Ã1(θ),

where

Ã1(θ) = exp
{ S1

γC

(2
4
β
−2

θ
2
β

)γ}
.

Note that the proof is based on Theorem 1.2 and the following estimate for the integral

Ir(δ) :=

∫ δ

0
r
( ∏
i=1,2

( Ti

2σ(−1)(v)
+ 1
))

dv,

where σ(u) = cuβ, σ(−1)(u) = (u/c)1/β and r(v) = vα − 1:

Ir(δ) =

δ∫
0

[ ∏
i=1,2

(Tic1/β

2u1/β
+ 1
)α
− 1
]
du

≤
δ∫

0

(κc1/β

2u1/β

)2α
du =

(κ
2

)α
c2α/β

(
1− 2α

β

)−1
δ1−2α/β,
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κ = max(T1, T2), α < 1/2. Correspondingly, we can write the estimate

r(−1)
(Ir(δ)

δ

)
≤ 2

4
β
−1
(κ2c

2
β 2

2( 2
β
−1)

δ
2
β

+ 1
)
,

which is more convenient for estimation of the expression (3.1) (needed to apply Theorem
3.1) than the estimate from Theorem 2.1. We refer for more details to Hopkalo and Sakhno
(2021), Sakhno and Vasylyk (2021).

We now state the analogous result for the case of metrics d3.

Theorem 3.3. Let conditions of Theorem 3.1 hold with σk(h) = ckh
β, ck > 0, 0 < β ≤ 1,

d = d3, and with condition (iii) replaced by the following one

(v) There exists 0 < γ ≤ 1 such that

S3 =
∞∑
k=0

ε
1− 2γ

βH

k

(
lH1
k + (2A)H2

) 2γ
H
c

2γ
βH

k

fk
<∞,

where H = min(H1, H2).

Then

(i) for any θ ∈ (0,min(1, θ̃)) and any λ > 0

E exp
{
λ sup

(t,x)∈V

|X(t, x)|
f(t)

}
≤ 2

4
βH exp

{
ϕ
( λC

1− θ

)}
Ã3(θ);

(ii) for any θ ∈ (0,min(1, θ̃)) and any u > 0

P
{

sup
(t,x)∈V

|X(t, x))|
f(t)

> u
}
≤ 2

4
βH exp

{
− ϕ∗

(u(1− θ)
C

)}
Ã3(θ),

where

Ã3(θ) = exp
{ S3

γC

( 2
4
βH

+ 2
H
−2

θ
2
βH

)γ}
.

Proof. The proof follows the same lines as that of Corollary 1 in Sakhno and Vasylyk (2021).
First, we need to derive another bound for the integral

Ir(δ) =

∫ δ

0

( ∏
i=1,2

(Ti2 1
Hi c

1
βHi

2u
1

βHi

+ 1
)α
− 1
)
du, (3.4)

which will be used to evaluate the expression (3.1).

Consider δ < θε0. Therefore, u < θε0 < γ0, where γ0 = σ(max d3(t, s)) = c(TH1
1 + TH2

2 )β.

It follows that u < c(TH1
1 + TH2

2 )β and u

c(T
H1
1 +T

H2
2 )β

< 1.

We can also write the estimate Ti ≤ (TH1
1 + TH2

2 )
1
Hi , i = 1, 2.

Suppose H1 < H2. We can evaluate (3.4) as follows:
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Ir(δ) =

∫ δ

0

( ∏
i=1,2

( Ti2
1
Hi c

1
βHi

2c
1

βHi (TH1
1 + TH2

2 )
1
Hi (uc−1(TH1

1 + TH2
2 )−β)

1
βHi

+ 1
)α
− 1
)
du

≤
∫ δ

0

(( T12
1
H1 c

1
βHi

2u
1

βH1

+ 1
)α( T22

1
H2 c

1
βH2

2(TH1
1 + TH2

2 )
1
H2
− 1
H1 u

1
βH1

+ 1
)α
− 1
)
du

≤
∫ δ

0

(( (TH1
1 + TH2

2 )
1
H1 2

1
H1 c

1
βH1

2u
1

βH1

+ 1
)2α
− 1
)
du

≤
∫ δ

0

( (TH1
1 + TH2

2 )
1
H1 2

1
H1 c

1
βH1

2u
1

βH1

)2α
du

= (TH1
1 + TH2

2 )
2α
H1 c

2α
βH1 2

2α( 1
H1
−1)
(

1− 2α

βH1

)−1
δ1−2α/(βH1).

This implies the estimate

r(−1)
(Ir(δ)

δ

)
≤
(
τ2α
(

1− 2α

βH1

)−1
δ−2α/(βH1) + 1

) 1
α ≤

(
τ2αδ

− 2α
βH1

(
1− 2α

βH1

)−1
+ 1
) 1
α

≤ 2
1
α
−1
(
τ2δ
− 2
βH1

(
1− 2α

βH1

)− 1
α

+ 1
)
,

where τ = (TH1
1 + TH2

2 )
1
H1 c

1
βH1 2

1
H1
−1

. Let α = βH1

4 , then we obtain

r(−1)
(Ir(δ)

δ

)
≤ 2

4
βH1
−1
(
τ22

4
βH1 δ

− 2
βH1 + 1

)
. (3.5)

Therefore, under the conditions of theorem we can write the corresponding estimate for
Ir,k(θεk) and then we obtain

r(−1)
(Ir,k(θεk)

θεk

)
≤ 2

4
βH1
−1
((lH1

k + (2A)H2)
2
H1 c

2
βH1
k 2

4
βH1

+ 2
H1
−2

(θεk)
2

βH1

+ 1
)
.

Applying the inequality log(1 + x) ≤ xγ

γ , for 0 < γ ≤ 1 and x ≥ 0, we can write the estimate:

S(θ, r) ≤ C log(2
4

βH1
−1

) +
1

γ

∞∑
k=0

ε
1− 2γ

βH1
k

fk
(lH1
k + (2A)H2)

2γ
H1 c

2γ
βH1
k

2
γ( 4
βH1

+ 2
H1
−2)

θ
2γ
βH1

,

from which we obtain the expression for Ã3(θ).

Remark 3.1. Note that in Kozachenko and Makogin (2014) several results were obtained for
the rate of growth for self-similar Gaussian random fields using the bounds on the increments
in terms of metrics d3. We state a more general result suitable for wider class of fields. To
compare the results futher investigation will be needed.

4. Applications

In this section we present several examples of random fields for which the results of previous
sections can be applied. We will concentrate on the results on the distributions of suprema
implied by Theorem 2.1, the rate of growth of trajectorries for these models can be evaluated
analogously, using theorems presented in Section 3.
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Example 4.1. Consider Funaki’s model Funaki (1983); Mueller and Tribe (2002) for random
string in Rn specified by the following stochastic heat equation:

∂u

∂t
=
∂2u

∂x2
+ Ẇ , (4.1)

where Ẇ = Ẇ (x, t) is a Rn-valued space-time white noise (with independent components)
and u(t, x), t ≥ 0, x ∈ R is a continuous Rn-valued process.

Let initial condition be given by u0(x), x ∈ R, which is two-sided Rn-valued Brownian motion
satisfying u0(0) = 0 and E[(u0(x)− u0(y))2] = |x− y|, and which is independent of the white
noise Ẇ . Such initial process can be created as

u0(x) =

∫ ∞
0

∫
R

(G(r, x− z)−G(r, z))W̃ (dz, dr),

where a space-time white noise is independent of Ẇ , G(t, x) = 1√
2πt

exp{−x2

4t } is the funda-

mental solution of the heat equation.

Then the solution to (4.1) is given by

u(t, x) =

∫ ∞
0

∫
R

(G(t+ r, x− z)−G(t+ r, z))W̃ (dz, dr) +

∫ t

0

∫
R
G(r, x− z)W̃ (dz, dr).

We refer for rigorous details to Mueller and Tribe (2002). In Mueller and Tribe (2002) a
continuous version of this process is called the stationary pinned string and the following
result was obtained

Proposition 4.1. (Mueller and Tribe (2002), Proposition 1) The components u(i)(t, x), t ≥
0, x ∈ R, of the stationary pinned string are zero mean Gaussian fields satisfying

E[u(i)(t, x)− u(i)(s, y)]2 ≤ 2(|x− y|+ |t− s|1/2).

Therefore, we have

ρu(i)(t, x) =
(
E[u(i)(t, x)− u(i)(s, y)]2

)1/2
≤
√

2(|x− y|+ |t− s|1/2)1/2 =
√

2d((t, x), (s, y))1/2,

and we can apply Theorem 2.1 with the metrics d((t, x), (s, y)) = |x− y|+ |t− s|1/2.

Consider u(i)(t, x), (t, x) ∈ T = [a1, b1]× [a2, b2]. We obtain:

P{ sup
t,x∈T

|u(i)(t, x)| ≥ v} ≤ 2 exp
{
− v2(1− θ2)

2ε2
0

}
T1T2(2e)3(θε0)−3,

where ε0 = supt,x∈T

(
E(u(i)(t, x))2

)1/2
.

For the next examples we will need an additional definition.

Definition 4.1. Kozachenko and Koval’chuk (1998) A family ∆ of ϕ-sub-Gaussian random
variables is called strictly ϕ-sub-Gaussian if there exists a constant C∆ such that for all
countable sets I of random variables ζi ∈ ∆, i ∈ I, the inequality holds: τϕ

(∑
i∈I λiζi

)
≤

C∆

(
E
(∑

i∈I λiζi
)2 )1/2

. The constant C∆ is called the determining constant of the family ∆.
Random process ζ(t), t ∈ T , is called strictly ϕ-sub-Gaussian if the family of random variables
{ζ(t), t ∈ T} is strictly ϕ-sub-Gaussian.

Let K be a deterministic kernel and X(t) =
∫
T K(t, s) dξ(s), where ξ(t), t ∈ T , is a strictly ϕ-

sub-Gaussian process and the integral is defined in the mean-square sense. Then X(t), t ∈ T ,
is strictly ϕ-sub-Gaussian process with the same determining constant (see Kozachenko and
Koval’chuk (1998)).
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Example 4.2. Heat equation with random initial condition. Consider the Cauchy problem
for the heat equation

∂u

∂t
= µ∆u, t > 0, x ∈ R, µ > 0, (4.2)

subject to the random initial condition

u(0, x) = η(x), x ∈ R, (4.3)

where η(x), x ∈ R satisfies the following assumption: η(x) is a real, measurable, mean-
square continuous stationary stochastic process, which is a strictly ϕ-sub-Gaussian with the
determining constant cη.

Let B(x), x ∈ R, be a covariance function of the process η(x), x ∈ R, with the representation

B(x) =

∫
R

cos(λx)dF (λ), (4.4)

where F (λ) is a spectral measure, and for the process itself we can write the spectral repre-
sentation

η(x) =

∫
R
eiλxZ(dλ), (4.5)

The stochastic integral is considered as L2(Ω) integral. Orthogonal random measure Z is such
that E|Z(dλ)|2 = F (dλ).

The mean-square solution to the problem (4.2)-(4.3) can be writen in the form

u(t, x) =

∫
R

exp
{
iλx− µtλ2

}
Z(dλ) (4.6)

(see, Hopkalo and Sakhno (2021) and references therein) and the covariance function

Cov
(
u(t, x), u(s, y)

)
=

∫
R

exp
{
iλ(x− y)− µλ2(t+ s)

}
F (dλ).

Proposition 4.2. Under the condition c2 :=
∫
R λ

2εF (dλ) < ∞ for some ε ∈ (0, 1], the field
(4.6) satisfies:

τϕ

(
u(t, x)− u(s, y)

)
≤ cηc

(
41−ε|x− y|2ε + µε|t− s|ε

)1/2
. (4.7)

Proof. We have

E
(
u(t, x)− u(s, y)

)2
=

∫
R
|b(λ)|2F (dλ),

where
b(λ) = exp{iλx} exp{−µλ2t} − exp{iλy} exp{−µλ2s}.

|b(λ)|2 ≤
(

1− exp
{
− µλ2|t− s|

})2
+ 4 sin2(

1

2
λ(x− y)) = b1(λ) + b2(λ)∫

R
|b(λ)|2F (dλ) ≤

∫
R
b1(λ)F (dλ) +

∫
R
b2(λ)F (dλ)

b2(λ) = 4 sin2(
1

2
λ(x− y)) ≤ 4 min(

1

2
|λ||x− y|, 1)2

∫
R
b2(λ)F (dλ) ≤

∫
R

min(4, λ2|x− y|2)F (dλ)

=

∫
{ 1
4
λ2|x−y|2≥1}

4F (dλ) + 4

∫
{ 1
4
λ2|x−y|2<1}

λ2|x− y|2

4
F (dλ)

≤
∫

4
(λ2|x− y|2

4

)ε
F (dλ) + 4

∫ (λ2|x− y|2

4

)ε
F (dλ)

= 41−ε|x− y|2ε
∫
R
λ2εF (dλ),
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where ε ∈ (0, 1]. Let us suppose
∫
R λ

2εF (dλ) <∞.

b1(λ) =
(

1− exp
{
− µλ2|t− s|

})2
≤
(

min(µλ2|t− s|, 1)
)2

∫
R
|b1(λ)|F (dλ) ≤

∫
R

min(µ2λ4|t− s|2, 1)F (dλ)

=

∫
{µ2λ4|t−s|2≥1}

F (dλ) +

∫
{µ2λ4|t−s|2<1}

µ2λ4|t− s|2F (dλ)

≤
∫ (

µ2λ4|t− s|2
)ε̃
F (dλ) +

∫ (
µ2λ4|t− s|2

)ε̃
F (dλ)

= µ2ε̃|t− s|2ε̃
∫
R
λ4ε̃F (dλ),

where ε̃ ∈ (0, 1). Let us choose ε̃ = ε
2 , then we can write the bound for ε ∈ (0, 1](

E
(
u(t, x)− u(s, y)

)2)1/2
=
(∫

R
λ2εF (dλ)

)1/2(
41−ε|x− y|2ε + µε|t− s|ε

)1/2
,

under the condition that
∫
R λ

2εF (dλ) <∞.

Since the initial condition process η is assumed to be strictly ϕ-sub-Gaussian, we have

τϕ

(
u(t, x)− u(s, y)

)
≤ cη

(
E
(
u(t, x)− u(s, y)

)2)1/2
, and therefore, bound (4.7) follows.

Consider u(t, x), (t, x) ∈ T = [a1, b1]× [a2, b2]. Denote Ti = bi − ai, i = 1, 2.

Under the conditions of Proposition 4.2 we can apply Theorem 2.1 to obtain the bound

P{ sup
t,x∈T

|u(t, x)| ≥ v} ≤ 2 exp
{
− ϕ∗

(u(1− θ)
ε0

)}
T1T225/(2ε)−1µ(cηce)

3/ε(θε0)−3/ε,

where c =
( ∫

R λ
2εF (dλ)

)1/2
.

Example 4.3. Consider the Airy equation

∂u

∂t
= −∂

3u

∂x3
, t > 0, x ∈ R,

subject to the random initial condition

u(0, x) = η(x), x ∈ R,

where η(x) is the stationary ϕ-sub-Gaussian stochastic process as in the previous example.

The mean-square solution can be written in the following form (see, Sakhno (2023b) and
references therein):

u(t, x) =

∫
R

exp
{
iλx− iλ3t

}
Z(dλ) (4.8)

and the covariance function is given as

Cov
(
u(t, x), u(s, y)

)
=

∫
R

exp
{
iλ(x− y) + iλ3(t− s)

}
F (dλ).

Proposition 4.3. Under the condition
∫
R |λ|

3F (dλ) <∞, the field (4.8) satisfies:

τϕ

(
u(t, x)− u(s, y)

)
≤ cη
√

2
(
c1|x− y|+ c2|t− s|

)1/2
, (4.9)

where c1 =
∫
R |λ|F (dλ), c2 =

∫
R |λ|

3F (dλ).
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Proof. Consider

E
(
u(t, x)− u(s, y)

)2
=

∫
R
|b̃(λ)|2F (dλ),

where

|b̃(λ)|2 = 4 sin2
(λ(x− y) + λ3(t− s)

2

)
≤

≤ 4 min
(

1,
1

2
(|λ||x− y|+ |λ|3|t− s|)

)2
≤ 4
(1

2
(|λ||x− y|+ |λ|3|t− s|)

)2ε

for ∀ε ∈ (0, 1]. Choose ε = 1
2 , then we have |b̃(λ)|2 ≤ 2

(
|λ||x− y|+ |λ|3|t− s|

)
, and

τϕ

(
u(t, x)− u(s, y)

)
≤ cη

(∫
R
|b̃(λ)|2F (dλ)

)1/2

≤
√

2cη

(
|x− y|

∫
R
|λ|F (dλ) + |t− s|

∫
R
|λ|3F (dλ)

)1/2
=

=
√

2cη

(
c1|x− y|+ c2|t− s|)

)1/2
,

where c1 and c2 as in the statement of proposition.

Consider u(t, x), (t, x) ∈ T = [a1, b1]× [a2, b2]. Denote Ti = bi − ai, i = 1, 2.

In view of Proposition 4.3, under condition
∫
R |λ|

3F (dλ) < ∞ we can apply Theorem 2.1
for the case of the metrics d2((t, x), (s, y)) = c1|x − y| + c2|t − s|, c1 =

∫
R |λ|F (dλ), c2 =∫

R |λ|
3F (dλ), to obtain the bound:

P{ sup
t,x∈T

|u(t, x)| ≥ u} ≤ 2 exp
{
−ϕ∗

(u(1− θ)
ε0

)}
min(T1c1, T2c2)(T1c1+T2c2)(

√
2cηe)

4(θε0)−4.

In particular, in the case of Gaussian initial condition we have the estimate:

P{ sup
t,x∈T

|u(t, x)| ≥ u} ≤ 2 exp
{
− u2(1− θ)2

2ε2
0

}
min(T1c1, T2c2)(T1c1 + T2c2)(

√
2e)4(θε0)−4,

where ε0 = (Bη(0))1/2.

Example 4.4. Let X(t), t ∈ R2
+ be a centered Gaussian self-similar random field with index

(H1, H2) ∈ (0, 1)2 and with stationary rectangular increments.

Recall that a random field X is self-similar if

X(a1t1, a2t2)
d
= aH1

1 aH2
2 X(t1, t2), (t1, t2) ∈ R2

+,

for all a1 > 0, a2 > 0.

The field X has stationary rectangular increments if for any (u1, u2) ∈ R2
+

∆uX(u+ h) = ∆0X(h), h = (h1, h2) ∈ R2
+

where ∆uX(v) = X(v1, v2)−X(u1, v2)−X(v1, u2) +X(u1, u2). Assume that EX2(1) = 1.

It can be shown by using the Minkowski inequality that(
E
(
X(t1, t2)−X(s1, s2)

)2)1/2
≤ |t1 − s1|H1tH2

2 + |t2 − s2|H2sH1
1

(see, for example Kozachenko and Makogin (2014), Lemma 2.4). Consider the field X(t1, t2)
over the rectangle T = [0, T1]× [0, T2]. Then for (t1, t2), (s1, s2) ∈ T we can write the estimate(

E
(
X(t1, t2)−X(s1, s2)

)2)1/2
≤ TH2

2 |t1 − s1|H1 + |t2 − s2|H2TH1
1 = d((t1, t2), (s1, s2)).
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Therefore, we can apply Theorem 2.1, case i = 4, with ε0 = supt∈T (EX2(t))1/2 = TH1
1 TH2

2 to
obtain

P{ sup
(t1,t2)∈[0,T1]×[0,T2]

|X(t1, t2)| ≥ u} ≤ 2 exp
{
− u2(1− θ)2

2T 2H1
1 T 2H2

2

}
(2e)

1
H1

+ 1
H2 θ

−( 1
H1

+ 1
H2

)
.

Note that the calculations for the above result can also be done by using the selfsimilarity of
X and the following equality

P{ sup
(t1,t2)∈[0,T1]×[0,T2]

|X(t1, t2)| ≥ u} = P{ sup
(t1,t2)∈[0,1]2

|X(t1, t2)| ≥ u/(TH1
1 TH2

2 )}.

Example 4.5. One particular way to construct a ϕ-sub-Gaussian stochastic process was
presented in Kozachenko and Koval’chuk (1998) (see also Vasylyk et al. (2008)). Let {ξk, k =
1,∞} be a family of independent ϕ-sub-Gaussian random variables and ϕ be a such function
that ϕ(

√
x), x > 0, is convex. If there exists C > 0 such that τϕ(ξk) ≤ C(Eξ2

k)1/2 for any

k ≥ 1, and for a sequence of nonrandom functions fk(t), t ∈ T , k ≥ 1, the series
∞∑
k=1

Eξ2
kf

2
k (t)

converges for all t ∈ T , then X(t) =
∞∑
k=1

ξkfk(t), t ∈ T, is a strictly ϕ-sub-Gaussian stochastic

process with determining constant C and τ2
ϕ(X(t)−X(s)) ≤ C2E(X(t)−X(s))2, t, s ∈ T .

Let (T, d) be as in Theorem 1.2, suppose additionally that functions fk are such that for some
ck > 0, k ≥ 1, and strictly increasing continuous function σ(h), h ≥ 0, σ(0) = 0, we have

sup
d(t,s)<h

|fk(t) − fk(s)| ≤ ckσ(h) and
∞∑
k=1

Eξ2
kc

2
k < ∞. Then condition (1.7) holds. Therefore,

Theorem 1.2 and its specification for different metrics in Theorem 2.1 are applicable and
the bound for the distribution of supremum of the process X will depend on the bounds for
increments of functions fk.
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