A Limit Theorem for a Nested Infinite Occupancy Scheme in Random Environment
DOI:
https://doi.org/10.17713/ajs.v52iSI.1749Abstract
We investigate an infinite balls-in-boxes scheme, in which boxes are arranged in nested hierarchy and random probabilities of boxes are defined in terms of iterated fragmentation of a unit mass. Gnedin and Iksanov (2020) obtained a multivariate functional central limit theorem with centering for the cumulative occupancy counts as the number of balls becomes large. We prove a counterpart of their result, in which centering is not needed and the limit processes are not Gaussian. An application is given to the scheme generated by a residual allocation model.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 Oksana Braganets, Alexander Iksanov
This work is licensed under a Creative Commons Attribution 3.0 Unported License.
The Austrian Journal of Statistics publish open access articles under the terms of the Creative Commons Attribution (CC BY) License.
The Creative Commons Attribution License (CC-BY) allows users to copy, distribute and transmit an article, adapt the article and make commercial use of the article. The CC BY license permits commercial and non-commercial re-use of an open access article, as long as the author is properly attributed.
Copyright on any research article published by the Austrian Journal of Statistics is retained by the author(s). Authors grant the Austrian Journal of Statistics a license to publish the article and identify itself as the original publisher. Authors also grant any third party the right to use the article freely as long as its original authors, citation details and publisher are identified.
Manuscripts should be unpublished and not be under consideration for publication elsewhere. By submitting an article, the author(s) certify that the article is their original work, that they have the right to submit the article for publication, and that they can grant the above license.