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Abstract

A few years ago a paper appeared in this Journal that proposed a closed-form ap-
proximation of the p-value for Pearson’s chi-squared statistic. Extensive empirical and
simulation studies were performed and it was shown that the approximation provides
very accurate p-values when compared with what we considered to be the “true” p-value
(obtained using a base R function). It is important to note, however, that Pearson’s
chi-squared statistic is a special case of the Cressie-Read family of divergence statistics
as is, for example, the log-likelihood ratio statistic, the Freeman-Tukey statistic and the
Cressie-Read statistic. Therefore, this paper adapts the previously published closed form
approximation of the p-value by demonstrating its applicability to any member of the
Cressie-Read family of divergence statistics. We also give two further closed form ap-
proximations and assess their accuracy by analysing three contingency tables of varying
sample size, degrees of freedom and statistical significance of the association.

Keywords: Pearson’s chi-squared statistic, Freeman-Tukey statistic, likelihood ratio statistic,
Cressie-Read divergence statistic, Hoaglin’s approximation, p-value approximation.

1. Introduction

Historically, calculating the quantile of any random variable has been a computationally
labourious task. In particular, doing so for a chi-squared random variable was the focus of
many during the first half of the 20th century and much of the effort went into producing tables
for specific values of a chosen level of significance, . One may consider, for example, Pearson
(1922), Fisher (1928), Thompson (1941), Merrington (1941), Aroian (1943), Goldberg and
Levine (1946) and Hald and Sinkbaek (1950) for discussions of such excellent contributions.
In addition to tabulating quantiles, attention was also given to deriving simple formulae for
producing such values; see, for example, Wilson and Hilferty (1931), Heyworth (1976) and
Hoaglin (1977). Additional contributions focused on approximating the p-value for a chi-
squared random variable are, to various degrees, computationally intensive, including those
of Elderton (1902), Russell and Lal (1969), Khamis and Rudert (1965), Terrell (1984) and
Lin (1988); many of these require knowing the quantile of the chi-squared or standard normal
distribution.
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2 On the P-value for Members of the Cressie-Read Family of Divergence Statistics

With the ever increasing use of computer technology over the decades, researchers have had
at their finger-tips various packages, such as those in the R programming environment, that
will calculate quantiles and p-values without the need to understand exactly how these cal-
culations are performed. As such, with the exception of the contributions mentioned above,
very little attention has been given to the matter of providing simple solutions that provide
excellent quantile approximations. Much less attention has been given to developing closed-
form solutions designed to precisely approximate the p-value of a chi-squared random variable.
However, recently Beh (2018) derived a simple closed-form solution that yields very accurate
approximations when compared to the p-value calculated using the pchisq() function in R
which makes use of the algorithm of Ding (1992). The approximation given by Beh (2018) is
derived from Hoaglin (1977) who studied the relationship between x?2, the degrees of freedom,
v, of the test statistic (X?) and the level of significance, a.

The approximation to the p-value described by Beh (2018) was for a Pearson chi-squared
statistic, X2, given its degrees of freedom, v. However, Pearson’s statistic is only one of many
that follow a chi-squared random variable. For example, four additional common measures of
association include the log-likelihood ratio statistic (Wilks 1938), the Freeman-Tukey statistic
(Freeman and Tukey 1950), the modified chi-squared statistic (Neyman 1940, 1949) and the
modified log-likelihood ratio statistic (Kullback 1959). These, and other, statistics are all
special cases of the Cressie-Read family of divergence statistics (Cressie and Read 1984)
which we denote as C'R (d); changes in the value of § lead to the various special cases and
we shall be confining § to lie within the interval [—2, 1]. Therefore, rather than considering
only Pearson’s chi-squared statistic to approximate its p-value, one can instead consider any
member of the family of chi-squared statistics that belong to this family. Hence, this paper
will outline how the p-value approximation of Beh (2018) can be applied, and extended, to
any member of the Cressie-Read family of divergence statistics. To do so, this paper consists
of three further sections. In Section 2 we revisit the closed form approximation of the p-value
for a Pearson chi-squared statistic described by Beh (2018) (Section 2.1). We then provide an
overview of the Cressie-Read family of divergence statistics including five of the most common
special cases that come from it (Section 2.2). The p-value approximation of Beh (2018) is
then shown to be applicable to any member of this family and two further approximations
are described (Section 2.3).

A demonstration of the precision of the three approximations described in Section 2.3 is
made in Section 3 for § = —2, —1, —0.5, 0 and 1. Rather than repeating the simulation study
undertaken by Beh (2018), we instead take a more empirical approach by studying their
application to three contingency tables. The first table is of size 2 x 2 and is a revisitation
of the hydronephrosis data of Chu, Jacobs, Schwen, and Schneck (2013) where the sample
size is quite small (n = 51). The second table is an artificial 5 x 4 contingency table of
moderate sample size (n = 193) used by Greenacre (1984) to demonstrate the features and
application of correspondence analysis. For this contingency table, the p-value of Pearson’s
chi-squared statistic and other members of the Cressie-Read family of divergence statistics,
is larger than the nominal 0.05 commonly used to assess the statistical significance of the
association between the variables. The third table we consider comes from Maxwell (1961)
and is a 5 x 4 contingency table of moderate size (n = 222) but where the p-value is rather
small (< 0.001 for most values of §). Some final comments will be left for Section 4.

2. The Cressie-Read divergence statistic

2.1. An overview of approximating the p-value

Consider an I x J two-way contingency table, N, where the (7, j)th cell entry has a frequency
of ngj for i = 1,2,..., I and j = 1,2,...,J. Let the grand total of N be n and let
the matrix of relative frequencies be P so that its (¢, j)th cell entry is p;; = n;;/n where
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Zi[:1 Zj']:1 pij = 1. Define the ith row marginal proportion by p;e = ijl pij- Similarly,

define the jth column marginal proportion as pe; = ZI 1Dij-

To determine whether there exists a statistically significant association between the row and
column variables of N, one may calculate any number of measures. The most popular measure
is Pearson’s chi-squared statistic. When there are v degrees of freedom the statistic is defined
as

I J
pz — DieDej )

—nyoy b W

i=1j=1 PiePej

while its p-value can be calculated by
1 o
2 2\ _ —u/2, (v/2)—1

Py (Xa,v > X ) = T2 /X2 e du (2)

where T' (o) on the denominator is the gamma function. Computing (2) is computation-
ally difficult because of the intractable nature of the integral. To overcome this issue, Beh
(2018) provided a closed-form approximation of (2) that is based on the following relation-
ship. Hoaglin (1977, eqs (4.3) & (4.4)) showed that for a given level of significance, «, the
upper-tail quantile of the chi-squared distribution, Xz,v can be approximated by his “Fit E”

sz ~ {a + bV/v + (c+ dv/v) \/—logyg a}2 . (3)

where a, b, ¢ and d are the constants

a=—1.37266, b=1.06807, c=2.13161 and d = —0.04589. (4)

Hoaglin (1977) notes that (4) is suitable when v < 30 which makes it ideal for studying
contingency tables since most studies involve data whose degrees of freedom do not exceed
this value. He also demonstrates that (3) — (4) has a relative fit that does not exceed about
0.025%.

Based on (3) — (4), Beh (2018) showed that the p-value of a Pearson’s chi-squared statistic,
X2, can be well approximated by

<F (a+bf)>
A=) =0 ()0 TS Xz ey o)
1 . X2 < (a4 byo)?

where a, b, ¢ and d are defined by (4). When compared with the p-value obtained from the
pchisq() function in R — which we refer to in this paper as the “true” p-value — P; does not
always achieve the same level of accuracy as Hoaglin (1977) reported for (3) - (4). However,
Beh (2018) did show that when v = 5,10 and 20, for example, the error in approximating the
p-value using P; is no more than 2% for X? € [10, 30]; our three examples in Section 3 have
a Pearson chi-squared within this interval or lie just outside of its limits. For X2 > 30, the
p-values are all small and any error in (5) has no impact on the conclusions reached.

There are a range of alternatives to (1) that one may consider for assessing the statistical
significance of the association between categorical variables. Some of the more popular options
are special cases of the Cressie-Read family of divergence statistics (Cressie and Read 1984).
We therefore now turn our attention to defining this family and give a few of the popular
special cases that may be derived from it.
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2.2. The family of divergence statistics

For some value of § € (—oo, o0), Cressie and Read (1984) proposed the following

CRO) = g L {( iy )6—1} ()

1= ]_‘7 1 npi.p.j

which, like Pearson’s statistic, is a chi-squared random variable with (I — 1) (J — 1) degrees of
freedom that remain fixed for all §; see, for example Cressie and Read (1984, p. 443), Drost,
Kallenberg, Moore, and Oosterhoff (1989) and Agresti (2013, p. 34). The measure CR (0)
given by (6) is referred to as the Cressie-Read family of divergence statistics. The choice of &
determines the measure of association used to examine the nature of the association between
two cross-classified categorical variables. These include Pearson’s statistic, X2 = CR (§ = 1),
and the following

G2 — CR — _2n22p1]1n< Pij )7

i=1j=1 DiePej
I J
T2 = C’R<5: )—47122 VPij — 1/pl.p.])
=1 j5=1
I J . ')2
N2 — CR(5=—2)=HZZ ng DieDej 7
i=1j=1 Pij
I J
M? = CR(6 = —QnZZpl.p.J (I%o]%]) ]
i=1j=1 Dij

These four measures are, respectively, the log-likelihood ratio statistic (Wilks 1938), the
Freeman-Tukey statistic (Freeman and Tukey 1950), the modified chi-squared statistic (Ney-
man 1940, 1949) and the modified log-likelihood ratio statistic (Kullback 1959) for a two-way
contingency table. Another commonly used measure of association that is a special case of
(6) is when 0 = 2/3 yielding the Cressie-Read statistic.

Thus, while the approximation to the p-value given by (5) was confined to Pearson’s chi-
squared statistic, it can be easily applied to G2, T2, N2, M? and any other measure of
association that is derived from (6). We now turn our attention to demonstrating how this
can be done.

2.3. Three approximations of the p-value

Since X2, G?, T?, N? and M?, for example, are all chi-squared random variables then the
p-value of any member derived from the Cressie-Read family of divergence statistics, (6), can
be approximated by amending (5) so that

(LTt 2
A (>R 10)={ ()" & CR®)> @+ bB ()
1 . CR(8) < (a+byv)

for a given value of § and where a, b, ¢ and d are defined by (4).

While the approximation to the upper-tail quantile of the chi-squared distribution proposed
by Hoaglin (1977) provides excellent approximations of the p-value, he also proposed his “Fit
A7’7
2
~ {1.00991y/v + 1.95188 (~ log;p @) /* — 1.14485 | . (8)

See his equations (4.1) and (4.2) or, equivalently, his (5.1). Hoaglin (1977, eq (5.3)) considered
a further simplification of the quantile approximation by defining his “Fit S” so that

~ {\/qj+2(—1ogm a)l/? —7/6}2. 9)
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Equations (8) and (9) lead to two further approximations of the p-value for any member of
(6). Based on (8), one may obtain

(\/CR(6)7(1A00991\/571&4485))2

. 2

Py (x* > CR(9) |0) = () 1OmIEs . X2 > (1.00991,/v — 1.14485)
1 . X2 < (1.00991,/v — 1.14485)*

(10)

while, from (9), a more simplified approximate may be obtained from

(W—(ﬁ—m))?
Py (x* > CR(9) |9) = (1) : ;X2 (Vo-T/6° | (11)
1 . X2 < (Vu—17/6)°

While Beh (2018) provided an extensive simulation study of the accuracy of (5), we shall
refrain from repeating the study for (7), (10) and (11). This is because the Cressie-Read family
of divergence statistics, (6), can produce any chi-squared statistic, including those ranging
from 0 to 100, which Beh (2018) considered in his study of (5). Instead, the next section
shall take a more empirical approach and consider the accuracy of the three approximations
to the p-value — (7), (10) and (11) — by studying three two-way contingency tables that differ
in sample size (n), degrees of freedom (v), and in the statistical significance of the association
between their variables. All testing is performed at the 0.05 level of significance.

3. Three examples

3.1. Kidney data

The data set

The first example is a re-examination of the the kidney function data of Chu et al. (2013)
that Beh (2018) considered in his study of (5). The data comes from a study that looks
at the swelling of the kidneys due to urine build up (called hydronephrosis) after 51 kidney
transplants were performed at the Children’s Hospital of Pittsburgh between May 1998 and
May 2008. Table 1 gives the 2 x 2 contingency table that is formed from the cross-classification
of the patient’s Gender and whether they experienced Hydronephrosis.

Table 1: 2 x 2 table of gender and hydronephrosis status

Hyrdonephrosis
Gender Yes No Total
Male 22 13 35
Female 3 13 16
Total 25 26 51

The true p-value

A chi-squared test of independence of Table 1 is performed with 1 degree of freedom and
yields a Pearson statistic of 8.5480; it was calculated without incorporating Yates’ continuinty
correction, although one could, as Beh (2018) did. Using the R function pchisq() the true
p-value for this statistic is, to 9 decimal places (9dp),

> 1 - pchisq(8.5480, 1)
[1] 0.003459021
>
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so that
Py (x* > 8.5480) = Py (x* > CR(1)) = 0.003459021.
Three approzximation of the p-value

2
Since X? for Table 1 is greater than (—1.37266 + 1.06807\/I) = 0.09277507 we can approx-
imate its p-value using (7) for 6 = 1 so that

V/8.5480— (—1.37266+1.06807v/1) \ 2
1 ) (2-13161—0.04589v/1)

— = 0.00402
10

Pr(x* > 85480(5 = 1) = (

and is within 17% of the true p-value. This may appear to be rather imprecise however given
the small magnitude of the true p-value, the approximate value is certainly acceptable for
inferential purposes.

The p-value can also be approximated using (10). Since Pearson’s statistic of the table exceeds
2
(~1.14485 + 1.00991v/T)” = 0.0182088 then

V/8.5480— (—1.14485+1.00991v/1) ) 2

Py (x* > 854800 =1) = ( ! )( e = 0.00350

10
and is within 1.27% of the true value. Using (11), the p-value is approximated to be

) (\/W—Z(\/T—UG))Q

— = 0.00410
10

Py(x*> 854805 =1) = (
and, for practical purposes, provides just as good as approximation as P;, being within 18.4%
of the true value.

Assessing the three approximations

We can repeat the calculations given above by approximating the p-value for the log-likelihood
ratio statistic, Freeman-Tukey statistic, modified chi-squared statistic and the modified log-
likelihood ratio statistic of Table 1; we note that all calculations are rounded to six decimal
places. These statistics are G2 = 9.0591, T2 = 9.5472, N? = 12.4935 and M? = 10.2401
respectively. Using the pchisq() function in R, the true p-value of these statistics is 0.00261,
0.00225, 0.00041 and 0.00150, respectively and, like the p-value for Pearson’s statistic, all
show that a statistically significant association exists between the variables of Table 1. These
p-values are summarised to 5dp in Table 2; see the column labelled F.

The approximation of these p-values using (7), (10) and (11) are also summarised in Table 2;
see the columns labelled P, P> and Ps, respectively. The precision of these approximations,
when compared with their true p-value (Fy), is also given but to 3dp and is calculated by

P

Precision = 100 |1 — =2
recision ‘ Po

for n = 1,2 and 3. These results show that (7) is within 0.17% of the true p-value for
the modified chi-squared statistic, N2 (when 6 = —2), but the approximation worsens as
0 — 1. Although, irrespective of the choice of d, (7) provides acceptable approximations of
the p-value since their magnitude remains small enough so that the conclusion reached on the
statistical significancy of the association between the variables does not change. A similar
behaviour can also be observed for the accuracy of (11); that is, Ps. Contrary to P; and Ps,
the approximation given by (10) improves from 28.47% for N? to within 1.3% of the true
p-value when § = 1.
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Table 2: Comparison of p-value and its approximations for the five special cases of the family
of divergence statistics for Table 1

§  Measure | Statistic P, | P % | P % | P %
-2 N2 12.49352 0.00041 | 0.00041 0.17 | 0.00029 28.47 | 0.00038 7.94
-1 M? 10.24012 0.00137 | 0.00150 9.29 | 0.00120 12.36 | 0.00147 6.74
-1/2 T2 9.54172 0.00200 | 0.00225 12.14 | 0.00186 6.93 0.00223 11.48
0 G? 9.05911  0.00261 | 0.00298 14.15 | 0.00254 2.97 | 0.00300 14.86
1 X2 8.54796  0.00346 | 0.00402 16.24 | 0.00350 1.27 | 0.00410 18.43

A visual inspection of the precision of (7), (10) and (11) when compared with Py can be seen
by observing Figures 1 and 2 where the findings of Table 2 described above are reflected in
these figures. Figure 1 also shows that P} and P; have quite similar levels of accuracy to
Py, especially for § € [—1,1] while P; gives the best of the three approximations for ¢ lying
between about -0.25 to 1.

- :
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2o s L 05 10

Figure 1: Precision of P;, P, and Ps for the divergence statistic for Table 1; § € [—2, 1]

3.2. Smoking data

The data set

Our second example is an artificial contingency table of size 5 x 4 first used by Greenacre
(1984, Table 3.1) to describe the key algebraic and visual features of correspondence analysis;
see Table 3. It is a classification of 193 fictitious staff according to how often they smoke
cigarettes (Smoking) and their position (Position) within the fictitious company. For the
Smoking variable, those who do not smoke are classified by “None”, “Light” smokers are
those who smoke between 1 and 10 cigarettes a day, “Medium” smokers are those who smoke
between 11 and 20 cigarettes a day while a “Heavy” smoker is classed as one who smokes more
than 20 cigarettes a day; see Greenacre (1984, p. 56). The Position variable consists of the
categories “Senior Manager”, “Junior Manager”, “Senior Employee”, “Junior Employee” and
“Secretaries”.
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0.004

P-value
0.002
I

0.000
|

Figure 2: Comparison of Py, P;, P» and Ps for the divergence statistic for Table 1; 6 € [-2, 1]

Table 3: Ficticious contingency table of 193 workers according to their smoking status and
position within the company

Smoking Status

Position None Light Medium Heavy Total
Senior Managers 4 2 3 2 35
Junior Managers 4 3 7 4 18
Senior Employees 25 10 12 4 51
Junior Employees 18 24 33 13 88

Secretaries 10 6 7 2 25
Total 61 45 62 25 193

The true p-value

A chi-squared test of independence of Table 3 gives a Pearson statistic of 16.4416. With 12
degrees of freedom, this statistic has a p-value of 0.17184 (to 5dp);

> 1 - pchisq(16.4416, 12)
[1] 0.1718366
>

so that one may conclude that there is no evidence of a statistically significant association
between Smoking and Position.

Three approximations of the p-value

The true p-value of Table 3 can be approximated using (7) since Pearson’s statistic for the con-
2
tingency table is greater than (—1.37266 + 1.06807\/12) = 5.41606. Therefore, calculating

this approximation gives

V16.4416—(—1.37266+1.06807v12
1 ) (2.13161—0.04589/12)

10

) 2
P (x2 > 16.4416| 6 = 1) ~ ( ) = 0.17184

and, to 5dp is identical to Py and within 0.5% of the true p-value beyond 5dp. The value of
2
P, may also be approximated using (10) since (—1.14485 + 1.00991\/12) = 5.539343. Thus
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V16,4416 (—1.14485+1.00991v/12) \ 2
9 1 ( 1.95188 )
Py (x* > 1644160 = 1) = = 0.17391

10

and is within about 1.2% of the true value. Using (11), the p-value is approximated to be

1 <\/16A4416—(\/ﬁ—7/6)
2

2
Py (x* > 1644166 = 1) = ( ) = 0.16900

10
and is within 1.7% of the true value. For these three approximations of the true p-value, the
levels of accuracy are excellent given that the true p-value is quite large. Note that, none of
the approximations contradict the nature of the association that the true p-value gives.

Assessing the three approximations

Suppose we supplement our findings of the p-value of X? and now turn our attention to
the four additional special cases of the Cressie-Read family of divergence statistics that we
described above. For Table 3, the log-likelihood ratio statistic, Freeman-Tukey statistic,
modified chi-squared statistic and modified log-likelihood ratio statistic and are N? = 17.4930,
M? = 16.6921, T? = 16.4647 and G? = 16.3476, respectively. The true p-value of each of
these statistics exceeds 0.13 thus, like the p-value of X2, confirms that there is no evidence
of a statistically significant association between the two categorical variables of Table 3. The
true p-value for each of these statistics is summarised in the fourth column of Table 4 labelled
P.

Table 4: Comparison of Py, P, P» and Ps for the five special cases of the family of divergence
statistics for Table 3

) Measure ‘ Statistic Py ‘ P, % ‘ Py % ‘ Ps %
-2 N2 17.49299 0.13198 | 0.13047 1.14 | 0.13245 0.36 | 0.12932 2.01
-1 M? 16.69207 0.16155 | 0.16050 0.65 | 0.16316 0.99 | 0.15872 1.76
-1/2 T2 16.46471 0.17087 | 0.17002 0.50 | 0.17289 1.19 | 0.16803 1.66
0 G? 16.34759 0.17583 | 0.17511 0.41 | 0.17810 1.29 | 0.17301 1.61
1 X2 16.44164 0.17184 | 0.17101 0.48 | 0.17391 1.21 | 0.16900 1.65
o]
(] s P1
........ PZ
=4 P,
3 e
5 o | T
© e o R .
o |
= T T T T T T T
2.0 1.5 -1.0 -0.5 0.0 0.5 1.0

Figure 3: Precision of P;, P, and Ps for the divergence statistic for Table 3; 6 € [—2, 1]
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Figure 4: Comparison of Py, P, P» and Ps for the divergence statistic for Table 3; 6 € [—2, 1]

Table 4 shows that (7), (10) and (11) all provide excellent approximations of the true p-value
with the greatest error of approximation being 2.01%; for P3 of the modified chi-squared
statistic (when 6 = —2). Figure 3 and Figure 4 provide a visual description of the three
approximations when compared with Py for § € [—2, 1] and confirm the high precision of P,
P, and P5 for all § that lie within this interval. In fact, Figure 3 shows that, irrespective of
the choice of ¢ € [—2, 1], P lies within 1.5% of the true p-value while P; lies within about
1.0%. Figure 4 shows that any error in the approximation of Py, using (7), (10) and (11), is
practically negligible and that all approximations, like Py, exceed the 0.05 level of significance.

3.3. Dream data

The data set

The last contingency table that we shall consider is of size 5 x4 and comes from Maxwell (1961,
pp. 70 - 72). A random sample of 222 boys was asked to rate how disturbed they were by their
dreams on a four point scale from 1 (least disturbing) to 4 (most disturbing). The age of the
boys, in years, was recorded and the contingency table formed from the cross-classification of
the Age of the boys and the Rating of their dreams giving Table 5.

The true p-value

A chi-squared test of independence for Table 5 gives a Pearson statistic of 32.1255. With
(5—1)(4—1) =12 degrees of freedom, the true p-value is, to 5dp, 0.00132;

> 1 - pchisq(32.1255, 12)
[1] 0.001323393
>

Therefore, there is enough evidence to conclude that there is a statistically significant associ-
ation between Age and Rating.
Three approzimations of the p-value

Using (7) for 6 = 1, we can directly approximate the p-value for our test statistic of 32.1255.
2
Since the test statistic is nearly six times greater than (—1.37266 + 1.06807+/ 12) = 5.41606,
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Table 5: Contingency table of 222 boys according to their age (in years) and dream rating

Rating
Age 4 3 2 1 Total

5-7 7T 3 4 7 21
8§-9 13 11 15 10 49
10-11 7 11 9 23 50
12-13 10 12 8 28 o8
14-15 3 4 5 32 44

Total 40 41 41 100 222

we approximate its p-value to be

V/32.1255—(—1.37266+1.06807/12)

2
1 13161-0.
P (XQ > 32.1255 | 0 = 1) = (1())( (2.13161-0.04589/12) ) — 0.001355

and is within 2.4% of the true p-value. By using (10) we get

\/321255—(—1A14485+1A00991\/12

2
9 1 ( 1.05188 ))
Py (x* > 321255 |0 = 1) = (10> = 0.00131

which is a valid approximation since 32.1255 > (—1.14485 + 1.00991\/@)2 = 5.539343. This
approximation of the p-value is accurate to the fifth decimal place and lies within 1.15% of
the true p-value, showing that P; is a better approximation than P;. However, P3 proves to
be a relatively bad approximation of the p-value of X2. Using (10)

1 <\/32A1255—(\/ﬁ—7/6)>2
2

— =0.0014
10 0.00145

Py (x* > 3212556 = 1) = (

which is only accurate to the third decimal place and incurs a level of inaccuracy of about

9%.

Table 6: Comparison of p-value and its approximations for the five special cases of the family
of divergence statistics for Table 5

) Measure ‘ Statistic Py P % P % ‘ Py %
-2 N?2 42.24191  0.00003 | 0.00003 10.92 | 0.00003 1.59 | 0.00004 27.10
-1 M? 36.03000 0.00032 | 0.00034 5.46 | 0.00032 0.12 | 0.00037 15.45
-1/2 T2 34.17281 0.00063 | 0.00066 3.96 | 0.00063 0.63 | 0.00071 12.36
0 G? 32.95764 0.00098 | 0.00101 3.02 | 0.00097 0.94 | 0.00109 10.46
1 X2 32.12549 0.00132 | 0.00136  2.41 0.00131 1.15 | 0.00145 9.20

Assessing the three approrimations

Table 6 provides a summary of the true p-value, Py, and its approximations — P;, P> and P3 —
for Table 5 for § = —2, —1, —1/2, 0 and 1. It shows that P; performed relatively well and, for
0 =—1,—1/2, 0 and 1, is accurate to within about 5% of the true value. The approximation
is relatively poor when determining the p-value for the modified chi-squared statistic (6 = —2)
and has an error of about 11% when compared with the true value. Although, the more simple
approximation of P, proves to produce much better approximations of the p-value for our five
0 values since P, is within about 1.6% of Py. In fact, we see that the approximate p-value for
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Figure 5: Precision of P;, P, and Ps for the divergence statistic for Table 5; § € [—2, 1]

M? using (10) is within 0.12% of the true value. However, it is P; that produces the poorest
approximations of the true p-value. For our five values of §, (10) produces approximations of
the true p-value that exceed about 10%. The worst approximation is, as we saw for P;, when
0 = —2 and is in error in the order of 27%. Figure 5 clearly shows that, for § € [-2, 1], P,
provides the best approximation of the true p-value, lying within 2% for all values of §. This
figure also clearly shows Ps to be the poorest of the three approximation methods, exceeding
about 10% for all values of 4.
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Figure 6: Comparison of Py, P, P» and Ps for the divergence statistic for Table 5; 6 € [—2, 1]

While Ps for Table 5 appears to produce the worst p-value approximation of any approxima-
tion across the three examples we have considered, any discrepancy with the true p-value is
not practically relevant. This is because the true p-value for all five special cases of divergence
statistic, (6), are all very small (being less than 0.0015). Figure 6 shows how close P;, P» and
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Pj are to Py; even for values of ¢ close to -2 where the greatest discrepancies lie, there is no
practical difference between the true p-value and the three approximations.

4. Discussion

While calculations of the p-value for a chi-squared random variable have been developed (and
largely rely on knowing the quantile of the chi-squared or standard normal distribution), a
common difficulty in obtaining the p-value relies on computing reliable approximations of
complex formulae like (2). However, the approximation described by Beh (2018), based on
the quantile approximation of Hoaglin (1977), has helped to address this difficulty. This paper
expands upon the approximation given by Beh (2018) and provides an approximation of the
p-value for any chi-squared statistic that belongs to the Cressie-Read family of divergence
statistics. This paper also provides two additional approximations of the p-value that prove
relatively simple to calculate while providing excellent levels of accuracy for most practical
cases.

From the empirical study of the three contingency tables considered, we have shown that all
three approximations — Py given (7), P, given by (10) and P3 given by (11) — give excellent
levels of accuracy when compared with the true p-value. In many cases, the accuracy of
these approximations lie within 2% of the true p-value. For small dimensional contingency
tables with a relatively small sample size, such as Table 1, P» proved accurate for § ranging
between -0.25 to 1 thereby showing that (10) approximates well the p-value for the Freeman-
Tukey, log-likelihood ratio and Pearson statistics in such cases. For Table 1, P; and P; gave
better approximations for the remaining chi-squared statistics. For the two larger contingency
tables — see Table’s 3 and 5 — approximations using P» were within 1.6% of the true p-value
for all values of § € [—2, 1]. While we did not consider the case when 6 = 2/3 which lies
within this interval, the p-value approximations for the chi-squared statistic CR (2/3) — better
known as the Cressie-Read statistic (Cressie and Read 1984) — are comparable to those of the
Freeman-Tukey statistic.

One observation that can be made from the three approximations studied in this paper is
that their performance greatly improves as the chi-squared statistic increases, and this will
often be the case for large sample sizes (n); note from (1) that multiplying the sample size
by some constant C' > 1 will increase the value of the chi-squared statistic by a factor of C
(this also applies to all members of the Cressie-Read family of divergence statistics). Such a
performance of the approximation for large chi-squared values is reminiscent of the finding
made by Beh (2018) that a more accurate approximation of the p-value can be gained for
larger values of the chi-squared statistic, regardless of the degrees of freedom. Even for cases
where an approximation appears relatively inaccurate (being more than, say, 10% different
from its true value), the p-value was very small (less than 0.005) and so did not impact on
the statistical significance of chi-squared statistic. Therefore, in most practical situations
the simplicity of Ps provides easy to calculate approximations of the p-value, although more
accurate values can be obtained using P; or P. Of course, as Beh (2018) pointed out, if far
more precise calculations of the p-value are required then the researcher can still continue to
use the range of statistical packages that are available for analysing data.
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