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Abstract

In this paper we propose nonlinear regression models in the biparametric family of
distributions. In this class of models we propose two new classes of overdispersed non-
linear regression models: the first, defined from the overdispersion family of distributions
proposed by Dey, Gelfand, and Peng (1994), and the second from a class of compound
distributions. For these models, we develop a Bayesian method in which samples of the
posterior distributions are obtained by applying an iterated Metropolis-Hastings algorithm
obtained by assuming two groups of parameters, defined by the mean and dispersion re-
gression structures. In the first subclass of models, to improve the performance of the
iterated Metropolis-Hastings algorithm, we develop worked variables from the application
of Fisher scoring algorithm, to build the kernel transition function. A Bayesian method
to fit compound regression models is also proposed. Finally, we present an application to
neonatal mortality dataset to illustrate the use of the proposed models and the perfor-
mance of the Bayesian method to fit the proposed models.

Keywords: nonlinear regression models, overdispersed nonlinear regression, compound regres-
sion models, Bayesian methods.

1. Introduction

The binomial and Poisson distributions are usually used to model count datasets. However,
count data frequently present overdispersion, which means that the sample variance exceeds
the nominal variance of the model and if an appropriate model is not considered, the analysis
can present problems in the inference, such as underestimation of the errors and variance, loss
of efficiency in the estimations and incorrect inferences about the confidence intervals of the
regression parameters (Williams 1982; Cox 1983; Collet 1991). Multiple models have been
developed to analyze overdispersed datasets, and have been categorized in two classes (Hinde
and Demétrio 1998): models in which a new independent parameter is added to model the
variance and/or overdispersion and those in which the parameter of the discrete distribution
is assumed to follow an appropriate distribution function. The first class contains models
developed by Williams (1982) for binomial count data and by Breslow (1984) for Poisson
count data. To this class of models also belong the doubly exponential family of distributions
presented by Efron (1986), the exponential dispersion models proposed by Jorgensen (1987)
and overdispersed generalized linear models presented by Dey et al. (1994). The second class
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includes the overdispersion models developed by Crowder (1978), who proposed regression
analysis of proportions based on the beta-binomial distribution, and by Margolin, Kaplan,
and Zeiger (1981), who formulated the negative binomial distribution for data analysis of the
Ames test used for the detection of Salmonella.

The overdispersed models proposed by Dey et al. (1994) are linear in the sense that their
systematic components are linear functions of the regression parameters. However, frequently
a mean linear regression structure is not appropriate to describe the dataset’s behavior, when
the mean of the variable of interest follows a nonlinear regression structure. Thus, in this paper
we propose overdispersed nonlinear regression, model in which the systematic component is
given by:

771:5(331,,3), ’L'Zl,...,n, (1)
where x; = (z1;, ...,iL'pi)T is the i-th vector of observations of p covariates and S(x;,-) is a
known nonlinear function of 8 = (B4, ..., 8,)T, a vector of unknown regression parameters.

In the case of count data, Frome (1983) analyzed lung cancer mortality data among British
physicians who were regular cigarette smokers, by using a nonlinear Poisson regression model
derived from the multistage theory of carcinogenesis, relating the mortality rate with the
time of exposure (years of smoking) and with the amount of carcinogen applied per unit time
(cigarettes per day). McCullagh and Nelder (1989), in chapter 11, presented an experiment
in which the number of grasshoppers that die is observed, from an initial exposed number
(a binomial variable of response) to different combinations of doses of an insecticide and a
synergist (a substance that potentiates the insecticide) and analyzed some nonlinear functions
to model the proportion of dead grasshoppers. Another study, reported in Donoso, Carvajal,
Vera, and Poblete (2014), involved the relationship between maternal age and fetal, neonatal,
infant and maternal mortality rates in Chile. They found that the lowest mortality rates for
both newborns (under 28 days) and infants occurred when the mothers were between 25 and
30 years old, an intermediate age, generating a nonlinear relationship between the rate and
maternal age. Other examples are given in Frome, Kutner, and Beauchamp (1973) and Frome
and Dufrain (1986), where the effects of radiation on the survival of stem cells or the rate of
neutron decay in a Beryllium sample were analyzed using nonlinear regression functions.

In this paper, we propose nonlinear (linear) regression models in the biparametric family of
distributions (F2). In this class of models we propose two new class of overdispersed non-
linear regression models. The first is defined from the family of overdispersed distributions
proposed by Dey et al. (1994) and the second from a class of compound distributions obtained
by assuming that the parameter of a one-parameter distribution follows an appropriate dis-
tribution belonging to F2, in both by assuming that the mean systematic component follows
a nonlinear (linear) regression structure.

For these models we develop a Bayesian method in wish samples of the posterior distributions,
denoted by 7(.), are obtained by applying an iterated Metropolis-Hastings (M-H) algorithm
obtained by assuming two groups of parameters, defined by the mean and dispersion regres-
sion structures. To build the kernel transition functions used to propose samples of 7(.) in
the M-H algorithm, we follow the Bayesian methods proposed in Cepeda-Cuervo (2001) and
Cepeda and Gamerman (2005), developing worked variables from the first order Taylor ap-
proximation of the nonlinear mean regression models or from the application of the Fisher
scoring algorithm. In the first subclass of models, defined from the overdispersed family of
distributions of Dey et al. (1994), to improve the performance of the iterated M-H algorithm,
we develop worked variables from the Fisher scoring algorithm, used to obtain maximum
likelihood estimation of the parameters, and use them to build the kernel transition function.
Finally, we propose a Bayesian method to fit compound models. In these models, we also
propose a M-H iterated algorithm, where the mean kernel transition function is obtained from
the combination of the prior distribution and an observational model proposed from a worked
variable obtained from the first-order Taylor approximation of the mean nonlinear regression
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structure. To define the kernel transition function for the dispersion regression parameters,
we propose to use the worked observation variables obtained from the Fisher scoring algo-
rithm of overdispersed models, but assuming a sample of the distribution used to define the
compound models, at the current values of the mean and dispersion regression parameters.

The performance of the Bayesian method extended in this paper to fit nonlinear double
generalized regression models has been demostrated in the framework of generalized lin-
ear models (Cepeda-Cuervo 2001), heteroscedastic Weibull-normal mixture models (Cepeda-
Cuervo, Migon, Garrido, and Achcar 2014), heteroscedastic normal-exponential mixture mod-
els (Garrido, Cepeda-Cuervo, and Achcar 2011) and heteroscedastic nonlinear regression mod-
els (Cepeda-Cuervo and Achcar 2010). Finally, we report some results of an application of
the nonlinear negative binomial models in the analysis of the neonatal mortality dataset.

After this introduction, this paper is structured as follows: In Section 2, the nonlinear bi-
parametric regression models are defined, including the classes of overdispersed nonlinear
regression models, defined from the Dey et al. (1994), and the compound family of nonlinear
regression models. In Section 3, a Bayesian method to fit nonlinear regression models in F? is
defined. The working variables obtained from the application of the Fisher scoring algorithm
to fit overdispersed nonlinear regression models are used to define the Bayesian method to
fit the proposed models. In Section 4, from the previous maximum likelihood and Bayesian
developments, a Bayesian method to fit nonlinear compound regression models is proposed,
by introduction of latent parameters. Section 5 presents an application to neonatal mortality
dataset. Section 7 is an appendix that include a summary of the main results presented in
Cepeda and Gamerman (2005), related to double generalized linear models, and the maximum
likelihood and Bayesian methods used to obtain parameter inferences.

2. Nonlinear biparametric regression models

In the framework of the biparametric family of distributions, Gelfand and Dalal (1990) dis-
cussed the biparametric exponential family of distributions given by:

F (18, 7) = bly)elPv T WI=pOT, (2)

where, if Y is a continuous random variable, f is a density function with respect to the
Lebesgue measure while if Y is discrete random variable, f is a count measure. The com-
ponents of (§,7) € S are the parameters of the distribution family (2), where S C R x R
denotes their parametric space. To obtain orthogonality between the parameters of the dis-
tribution, Dey et al. (1994) proposed a new parameterization of (2) in terms of the mean
of Y, u = E(ylo,7) = %p(d,?), as in (3), where W) .= 822;;; U, WO (4, 7) = § and
\I/(,LL,T) = M\Ij(l’o) - p((s,’i').

- (1,0) T)TT T
fylp,7) = b(y)e[(y )W () + 7T (y)+ ¥ (7)) (3)

Some examples of distributions belonging to the biparametric exponential family of distri-
butions (3), denoted by F2, are the normal N(u,0?), gamma G(u,«), lognormal LN (u, 0?)
and inverse Gaussian IG(u, \), among others. The beta distribution is an example of a dis-
tribution that does not belong to the exponential family of distribution (2), but the density
function of the random variable obtained by the logit transformation ¥ = logit(Y") belongs to
this family of distributions. The overdispersed exponential family of distributions proposed
by Jorgensen (1987) can be seen as part of the double exponential family of distributions
proposed by Efron (1986), which is part of the biparametric exponential family proposed by
Dey et al. (1994). When the dispersion parameter 7 is known in (2), a one-parameter ex-
ponential family of distributions is obtained, which include the exponential Exp()), Poisson
P(A), binomial Bin(m,p) and, in general, all the power series distributions introduced by
Noack (1950). See McCullagh and Nelder (1989).
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Other examples of the one-parameter exponential family of distributions is Lindley’s contin-
uous distribution LD(#), where 6 > 0. This distribution was introduced by Lindley (1958) to
describe the lifetime of a process and its density function can be expressed as the equation
(2) by calculating b(y) =y + 1, § = —0 and p(6,0) = —log(6%/(—6 + 1)).

From the one- and the two-parameter exponential family of distributions, we define a com-
pound family of distributions by the combination of a distribution F;(6), belonging to the
one-parameter exponential family of distributions, and an appropriate distribution F2(u,7),
belonging to the two-parameter exponential family of distribution (3), by assuming that
0 ~ F2(u,7). Thus, if a random variable Y follows a distribution F}(6) belonging to the
one parameter exponential family of distributions, where 6 follows a distribution F(u,7)
belonging to exponential family of distributions (3), where p := E(f|u,7) > 0 and 7 € R is
a dispersion parameter, the compound distribution of Y, denoted Y ~ F(u,7), is given by:

fr (1, 7)) = /N Fro) () f26] 2, 7)), (4)

where f1(g)(y) is the density (probability) function F1(6) and fa(u, 7)(y) is the density of the
distribution function Fy(u;, 7). Henceforth, we use F'(u, ) to denote the compound distribu-
tion functions, with density (probability) function given by (4). The compound distributions
are also two-parameter distributions.

An important subfamily of the compound model is the compound distribution function, where
F1 is a discrete distribution. Some usual examples of compound discrete distributions are the
Poisson normal distribution (Cameron and Trivedi 1998), the (i, a)-negative binomial dis-
tribution and the (p,¢)-beta-binomial distributions (Cepeda-Cuervo and Cifuentes-Amado
2017). The first is obtained from the combination of Y|\ ~ P(A) and A ~ Lognormal(p, T);
the second is a composition between the Poisson and a gamma distributions, belonging to
the exponential family (3), and the third is a composition of the binomial and beta distri-
butions. The binomial normal distribution, introduced by Williams (1982), is a compound
distribution, where Y follows a binomial distribution, Y'|w ~ Bin(m, ), and logit(m;) follows
a normal distribution logit(mw) ~ N(u, ¢). Other examples are: the Poisson Lindley distribu-
tion (Munuswamy 1970), where Y'|A ~ P(A) and A ~ LD(#)); the Poisson Gaussian-Inverse
distribution , where Y|v ~ P(v) and v ~ IG(u, A)), and the Poisson-Tweedie distribution,
where Y ~ P(X) and A ~ TWy(u, ¢), given that Tweedie distributions belong to the expo-
nential dispersion model family of distributions (Hougaard, Lee, and Whitmore 1997).

Let z; = (21, ..., ip)L and z; = (2i1, .., 2ir) T, i = 1,2,...,7n, be vectors of mean and disper-
sion explanatory variables, respectively, and let 8 = (81, ..., B,) and v = (y1,...,7-)%, be the
vectors of the mean and dispersion regression structures. The biparametric nonlinear (linear)
regression models are defined by the following three components:

o The random component Y = (Y1,...,Y,)T, such that Y; ~ F2(u;,7;), i = 1..n, are
independent random variables, belonging to the F? family of distributions.

« The systematic component n; = (n15,12;)", such that ny; = S(x;, 8) and n2; = U(24,7),
where S(.,.) is a nonlinear function of B and U(.,.) can be a linear or nonlinear function
of ~.

o The link functions h(.) and g(.), such that h(u;) := m; and g(7;) = 1.

The link functions must be strictly monotonous and doubly differentiable to obtain maximum
likelihood parameter estimations, and once differentiable in a Bayesian approach. Some usual
link functions are the logit, logarithmic and identity functions, depending on the parameter
space restrictions of the distribution. The doble generalized linear regression models are
defined by the same tree components, assuming that in the systematic component n1; = =} B
and 7; = 2!~ (Cepeda-Cuervo 2001, Cepeda and Gamerman 2005). Some examples of
nonlinear biparametric regression models are:
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1. Poisson normal regression model. Let Y; ~ PN(u;, ), ¢ = 1,...,n, be n independent
overdispersed random variables that follows Poisson normal distribution. A nonlinear
Poisson normal regression model can be defined by assuming that the systematic com-
ponents are given by: n1; = S(x;, 8)+7:/2 and n9; := z! v, where S(x;, B) is a nonlinear
function of 8, for example, as it proposed in Fokianos (2012).

2. Beta-binomial regression model. Let Y; ~ BB(u;,7), ¢ = 1,....,n, be n indepen-
dent overdispersed random variables that follow a beta-binomial distribution. A non-
linear beta-binomial regression model can be defined by assuming that the system-
atic components are given by: n1; = Bo + Pilog(x1; — P2) + B3x2: /(B4 + x2;) and
N2; = Yo + 7121 + Y2x2;- The nonlinear regression structure of the systematic com-
ponent 7y; is proposed by McCullagh and Nelder (1989) to analyse the proportion of
insects killed by exposure to the mixture of an insecticide and a synergist. Finally, given
that 0 < u; < 1 and ¢; > 0, possible link functions are logit(u;) = m; and log(¢i) = 1.

3. Bayesian biparametric nonlinear regression models

In this section we extend the Bayesian method proposed by Gamerman (1997) and Cepeda-
Cuervo (2001) to obtain samples from the posterior distribution of the linear regression pa-
rameters, by applying the Metropolis-Hastings algorithm. This method was proposed by
Gamerman (1997), in the framework of generalized linear mixed models, and extended by
Cepeda and Gamerman (2000), Cepeda-Cuervo (2001) and Cepeda and Gamerman (2005) to
obtain samples from the posterior distribution in the framework of double generalized linear
regression models defined in the F? family of distributions, when functions of the mean and
dispersion (variance) parameters follow linear regression structures. Usual examples of the
biparametric regression models where both parameters follow linear regression structures are
the joint mean and dispersion beta regression models and the joint mean and shape gamma
regression models, proposed in Cepeda-Cuervo (2001) and fitting by applying Bayesian meth-
ods. As in these works, to define Bayesian nonlinear overdispersed models, we assign normal
prior distributions for the regression parameters, and without loss of generality, we assume
an independent normal prior distribution p(8,~y) = p(B)p(7y) for the regression parameters,

T ey

Thus, if L(B,7) denotes the likelihood function defined from a distribution belonging to ex-
ponential family (3) or (4), the posterior distributions is given by 7(8,4) o L(8,v)p(8,).
However, given that 7(3,~) is analytically intractable, we propose to obtain samples of the
posterior distribution from their posterior conditional distributions = (3|7y) and = (+|8), which
are also analytically intractable, except for m(3|7) in the case of normal linear regression mod-
els (Cepeda and Gamerman, 2001). Thus, we propose to obtain samples from the posterior
conditional distribution by applying the M-H algorithm, for which we propose to build kernel
transition functions as in Gamerman (1997), Cepeda-Cuervo (2001) or Cepeda and Gamer-
man (2005), to propose samples of the posterior distributions. These kernels are obtained as
a combination of working observation model, defined by assuming that appropriate working
variables follow a normal distribution, and the normal prior distributions of the regression
parameters. The working variables are obtained by a linearized form of the mean links and
nonlinear regression structures. These variables can be obtained from the Fisher scoring
algorithm, as in McCullagh and Nelder (1989), for generalized linear models, or in Cepeda
and Gamerman (2000) and in Cepeda and Gamerman (2005), for double generalized linear
models. The first-order Taylor approximation of the link functions are used to define the
kernel transition functions used in the definition of the M-H algorithm applied to fit the joint
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mean and dispersion beta regression models proposed in Cepeda-Cuervo (2001). Examples
of kernels transition functions in the framework of DGLMs are summarized in Appendix 7.1.

A general approximation to obtain worked variables from which the worked observational
models are used to build the kernel transition functions is the Fisher scoring algorithm. In
the biparametric nonlinear regression models, if the distribution belongs to the biparametric
exponential family (3), the mean worked regression variable is given by (28), as obtained in
Section 7.2 by applying the Fisher scoring algorithm. Thus, the worked observational model
is obtained by assuming that the worked observational variable

Vi ~ VS(@i, B8 + 1 () (vi - 1), (6)

follows a normal distribution, where V.S(z;, B(C)) denote the gradient of S(x;,.), estimate
at the current value of B, B9, and I () the first order derivative of h(.). The mean and
variance of these random variables are given by: E(Yy;) = VS(x;, )8 and Var(Yy;) =

{h’ (,uic))}2 Var(Y;). Thus, the kernel transition function ¢; to obtain samples of 8 is the
posterior distribution function obtained by the combination of the conditional prior normal
distribution and the worked observational model obtained by assuming that the worked ob-
servational variable follows the normal distribution, Y; ~ N(VS(x;, 898, Var (41:)).
So, the kernel transition function ¢;(.) is given by:

@1 (Blv) = N(b*, BY), (7)

where b* = B*(B~ b+ X"%7'Y) and B* = (B! + X"S71X)~!; with VS(x;, 89) the i-th
row of X, ¥ = Diag (Var(c) (f@)) and Y the vector of observed values of (6).

If U(.,.), in the definition of systematic component is a linear function of v, g(7;) = z! v, the
worked observational variable to define the kernel transition function to propose samples of
~, can be obtained by applying the Fisher scoring algorithm, as in Section 7, or by first-order
Taylor approximation of g(.), where this worked variable is given by:

Y; ~ g+ g (m)ti—7m), i=1,...,n,

where ¢'(.) denote the first-order derivative of g(.) and ¢; is a random variable such that
E(t;) = 7. For this variable, E(Y;) = 27~ and Var(Y;) = [¢/(m:)]* Var(t;). Thus, if ~(©)
denotes the current values of +, the worked dispersion variables are given by:

Y — 274 1 g (971 (Zz“,y(c))) [ti _ ! (Z@T’Y(C)H : (8)

and thus the kernel transition function ¢o(.) to obtain samples of « is obtained from the
combination of the conditional normal prior distribution, |8 ~ N(g,G), and the worked
observational model obtained from (8) by assuming that it follows the normal distribution,
Ui ~ N(2I'y Var©(y;)), by applying Bayes” Theorem. Thus, gz(.) are given by:

a2 (v|B) = N(g",G"), 9)

where g* = G*(G_lg—l—ZTZQ_lY') and G* = (G™'+Z7%,'Z)~!, with the variance covariance
matrix Xp = diag(Var(®(Y;)), Z the matrix values of the dispersion explanatory variables
and Y a vector of observed worked values. The kernel transition function (9) also can be
obtained from a combination of a normal prior distribution of v and the worked observational
model given by (29), obtained from the Fisher scoring algorithm.

Thus, with these kernel transition functions, the following Bayesian iterated algorithm is
proposed to obtain samples of the posterior parameter distribution of nonlinear regression
models.

25
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1. Begin the chain iteration counter at j=1.
2. Set initial chain values (89, 4T for (8, ).
3. Propose a new value ¢ for 3, generated from (7).

4. Calculate the acceptance probability, q(ﬁ(j _1?, ¢). If the movement is accepted, then
BU) = . If it is not accepted, then BU) = gli—1),

5. Propose a new value ¢ for 7, generated from (9).

6. Calculate the acceptance probability, a(’y(j -1, ¢). If the movement is accepted, then
~U) = . If it is not accepted, then () = ~U~1).

7. Change the counter from j to j + 1 and return to 2 until convergence is reached.

To fit the orthogonal nonlinear overdispersed regression models defined from the biparametric
exponential family of distributions (3), we can apply the Fisher scoring algorithm to obtain the
mean and dispersion worked observational variables (28) and (29), used to built the kernel
transition functions (7) and (9), respectively. Thus, samples of the posterior distributions
of B and 4 can be obtained by applying the same Bayesian Metropolis-Hastings algorithm
algorithm defined above (3).

4. Bayesian method to fit compound regression models

In this section we propose a Bayesian method to fit compound nonlinear (linear) regression
models, defined as in the biparametric nonlinear (linear) regression models, but in the com-
pound distribution defined by (4). The idea is the same as presented in Section 3, where
samples of the mean and dispersion regression parameters are proposed from the kernel tran-
sition functions (7) and (9). However, although the respective worked variables can be ob-
tained from first-order Taylor approximation, here the mean worked variable is given by (28),
the same obtained by the first-order Taylor approximation, but the worked variable for the
dispersion regression parameters is obtained from simulated values generated from a latent
variable. Thus, to obtain a worked variable associated with -, simulated values of a ran-
dom variable 8 must be obtained, for which we propose the following procedure: given that
O;|pi, i ~ F2(u;, 7;), in each iteration, a sample Gl(k) of 0; is obtained from Ff(,uz(»c),r(c)), and
it is assumed to be a sample of the response variable to obtain values of the worked variable
(29), where y; is now replaced by 6;.

With the introduction of this new worked variable, the respective kernel transition functions
are constructed as in Section 3 and the iterated Bayesian algorithm presented in that section
is reformulated as follows:

1. Begin the chain iteration counter at j=1.
2. Set initial chain values (,6'(0),7(0))T for (8,v)7.
3. Propose a new value ¢ for B, generated from (7).

4. Ca]culate the acceptance probability, q(ﬁ(j _1?, ¢). If the movement is accepted, then
BU) = . If it is not accepted, then BU) = gli—1),
(7) (7) (J'*l))

5. Obtain a sample of §;”’ from Fyp(n;”’,; ,fori=1,...,n.

6. Propose a new value ¢ for 7, generated from (9).

7. Calculate the acceptance probability, a(’y(jfl), ¢). If the movement is accepted, then
~U) = . If it is not accepted, then ) = 41,
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8. Change the counter from j to j + 1 and return to 2 until convergence is reached.

Example 4.0.1. (u, a)-negative binomial nonlinear regression models. If y; ~ N B(pi, ), 1 =
1,...,n, where log(y;) = S(=x;, 8) and log(a;) = z!'v, then from (28), the mean random
worked variables are given by:

Jii = (VS(xi;, 89)T B + S — 1.
My

where, S(x;, ,B(C)))T denote the gradient of S(x;,.) estimated on B, From the mean and
variance of the negative binomial distribution, the mean and variance of 1; are given by
(), ()
E(§1;) = (VS(x4, BNTB and Var(ju) = %, respectively.
Hiq ~ 0

’EC)7 a(C))7

For the a regression structures, assuming that 6; follows gamma distribution G(u i

from (29) the worked variables are given by:

(1/00) [(0 = 1) (1/9) + log(8) + log(al /1) — g 10gT(al)]

{‘;‘lj? logl“(agc)) B a(lc) - (o/lc)> {E[log(eiaz('C)/Mic))] - d%i log F(ozgc )}}

7

1[0 6;0\  d 2 1]
— T (C) e _ 1" (C) el 'c) s
= z; Y © |JL<C> 1 —log ( © ) + da; logI’ (OzZ )] [daz logI'(a; ) C)] ,

(
Qg i ¢ @

g = 7Y+

(c)

where, for example, d%i logT’ (ai ), denote the first-order derivative d%i log I'(e;), estimated

(c)

on o, . The mean and variance of this worked variable are given respectively by:
E(fa) = 2z~
0.0\ 0 2 1N
Var(f2i) = Var [10g< §e ) - (lc)] {az(‘c) [2 log I'(a{”) — (a)”
i Hi doj @y

9 -1
_ | | () _ 1
= {ai ldag logT’ (ai ) agc)]}

The variance of g; is obtained by applying the properties of the gamma distribution, proven
in Cepeda-Cuervo (2001):

ay d ay Y d? 1
E |l — || =—logl 1 — -2 =-—logl'(a) — —
{Og(uﬂ da 18T (@) Var{og(;J u} doz 81 (@) — 5

If a distribution does not belong to the biparametric exponential family distribution (3), such
as the beta distribution, the nonlinear regression models also can be defined by assuming a
nonlinear regression structure for the mean and a linear (or nonlinear) structure for the dis-
persion parameter: h(u;) = S(x;, ) and g(¢;) = z! ~. In this case, the maximum likelihood
estimates can be obtained by using the Fisher scoring algorithm and the nonlinear Bayesian
regression model can be fitted by application of a iterated Bayesian algorithm, where the ker-
nel transition functions can be developed from worked variables obtained by the first-order
Taylor approximation.

5. Applications: Neonatal mortality dataset

The age of a woman when she gives a birth is a factor that influences the risk that the newborn
baby will die in the first 28 days of life (neonatal death). To observe the relation between
neonatal death and mother’s age, data on the annual number of live births (LB) and number
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of neonatal deaths (ND) were tabulated between 1999 and 2016 by Donoso et al. (2014), from
the Vital Statistics Yearbooks of the National Statistics Institute of Chile. In this application,
the variable of interest or dependent variable is ND per year, while the explanatory variables
are:

o Maternal age (M A), whose values are: (1) if the mother’s age is under 15 years old,
(2) if the mother’s age is between 15 and 19 years, (3) if the mother’s age is between
20 and 24 years, (4) if the mother’s age is between 25 and 29 years, (5) if the mother’s
age is between 30 and 34 years, (6) if mother’s age is between 35 and 39 years, (7) if
mothers age is between 40 and 44 years, and (8) if mother’s age is over 45 years.

o Annual number of children born alive, in thousands (LB).

o Year in which observations were made (7"). It takes integer values between 1 (year 1999)
and 18 (year 2016).

Figure 1 shows the annual neonatal mortality (1000ND/LB) for each category of maternal
age of 120 observations obtained from 1999 to 2016. From this figure, it is clear that the
number of neonatal deaths decreased with the Maternal Age from M A =1 to M A = 4, after
which the neonatal death increased until M A = 8, corresponding to maternal age bigger than
45 years. Thus, from the nature of the data and the data behavior, we assume the negative
binomial model, where the mean and dispersion regression structure parameters are given by:

i = P+ (52(MA —B3)* + 54) LB+ 35T (10)
o = exp(’h + ’}/QT), (11)

in order to capture the mean change in neonatal death through the categories of the MA,
we take into account that the explanatory variable MA is obtained by a partition of the
continuous variable “Age of the Mother", assumed to be between 10 and 50 years old, in
consecutive equal longitude intervals. The Bayesian nonlinear negative binomial regression
model is defined by assuming normal prior distributions for all the parameters, N(0,100).
These nonlinear negative binomial regression models were fitted by applying the Bayesian
methods proposed in Section 4, which ensure fast convergence of the chains.

In this model, the mean regression structure is proposed taking into account the behavior of
ND as a function of M A, presented in Figure 1, which depends on the LB values, including a
scale transformation, plus a linear component in time to detect possible decreasing behavior
of mortality. Thus, 1 is an intercept parameter; (3o is related with the average rate of
change in a parabola with vertex at (83, $4), and [5 is the parameter related to a linear
regression structure in 7. Thus, taking into account the behavior of ND as a function of
the explanatory variables, we assume a continuous model that can be a good approximation
of the mean behavior of ND in the domain of the function, determined by the values of
(MA,LB,T).

In this fitting procedure, n=60000 posterior samples were generated, with a burn-in of 10,000
and taking one sample each every 10 to reduce autocorrelation. The posterior parameter
estimates, their standard deviations and their 95% confidence intervals are summarized in
Table 1, where the Monte Carlo (MC) error is also estimated for each of the parameters.
The DIC value for this model was 1013. From these results, we conclude that the neonatal
mortality decreased for each category up category 4, corresponding to mother’s age between
25 and 29 years, and that increased from the categories 5 to 8, corresponding to mothers
between 45 and 49 years old. 84 = 4.515 > 0, indicating that N D increased, in each category
of M A, when the number of children born alive, LB, increased, being greatest in the M A
categories with older ages.

Figure 2 shows the behavior of the standardized Bayesian residuals, indicating good perfor-
mance of the model fitting the neonatal deaths dataset, showing residuals distributed around
zero between -3 and 2, that do not show any trend behavior with the observation numbers.
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Figure 1: Neonatal mortality versus maternal age in Chile, between 1999 and 2016

The shape of the nonlinear negative binomial model with mean and regression structures given
by (10) and (11) confirm the conclusion reported in Donoso et al. (2014), where a descriptive
analysis of the data indicated parabolic nonlinear relationship of neonatal mortality versus
maternal age in Chile. As in Villarroel del Pino (2003), this nonlinear model indicates high risk
of maternal and perinatal morbidity of pregnancy in adolescents and women with advanced
maternal ages (Donoso and Villarroel 2003).

6. Conclusions

In this paper we propose nonlinear (linear) regression models in F2. In this class of models,
we propose two new classes of overdispersed nonlinear regression models. The first class is
defined from the overdispersion family of distributions proposed by Dey et al. (1994) and the
second from the class of compound distributions. For these models, we develop a Bayesian
method, as an extension of those proposed in Cepeda-Cuervo (2001), in which samples of
the posterior distributions are obtained by applying an iterated M-H algorithm by assuming
two groups of parameters, defined by the mean and dispersion regression structures. In the
first class of models, defined in the overdispersed family of distributions of Dey et al. (1994),
to propose the iterated M-H algorithm, we obtain working variables by applying the Fisher
scoring algorithm and use these to build kernel transition functions to propose samples of
the posterior parameter distributions. A Bayesian method to fit compound models is also
proposed and applied to fit simulated and real datasets.

Particular cases of Bayesian methods proposed here to fit nonlinear biparametric regression
models were developed in Cepeda-Cuervo and Achcar (2010) to fit heteroscedastic nonlinear
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Table 1: Posterior mean (parameter estimates), standard deviations (SD), and 95% credible
intervals of nonlinear negative binomial regression parameter

’ Parameters ‘ Posterior mean S.D. 95% Credible Intervals M.C. Error ‘

B 5.141 1.822 (1.838,3.96) 0.1597
B 0.5 0.04561 (0.4129,0.5904) 0.00354
Bs 3.976 0.07348 (3.826,4.114) 0.00147
B 4515 0.1229 (4.287,4.51) 0.00539
Bs -0.2651 0.1361 (-0.5304,-0.0053) 0.01161
- 1.405 0.4019 (0.5435,2.127) 0.03276
Y 0.215 0.0455 (0.1296,0.3216) 0.0037
Deviance 1093 3.945 (1088,1103) 0.2251

regression models and in Cepeda-Cuervo (2001) to fit DGLMs. In all of these cases, including
the applications developed in this paper, the results show good performance of the Bayesian
methods proposed. However, there are many possible extensions that can be developed by
practitioners to illustrate the efficiency of the MCMC algorithms developed here. Multiple
applications and simulation studies can be developed as extensions of this work to illustrate
the use of the proposed models and the performance of the Bayesian method proposed to fit
nonlinear regression model.

In the aplication, several chains were generated, starting from different values. All of them
exhibited the same qualitative behaviour though iterations after an small initial transient
period, providing a rough indication of stationarity. The convergence of the posterior chains
can be evaluated by applying Geweke’s diagnostics (Geweke 1992).

7. Appendix

7.1. Double generalized linear models (DGLMs)

This section is a summary of the main results presented in Cepeda and Gamerman (2005),
where the double generalized linear regression models (DGLMs) are defined in the frame-
work of the biparametric family of distributions. A particular case of these models is defined
from the family of distributions defined by Dey et al. (1994), were the mean and dispersion
parameters are orthogonals, in the sense of Box and Cox, and with systematic components
assumed to follow linear regression structures. Some examples of these models, considered
in Cepeda-Cuervo (2001) and Cepeda and Gamerman (2005) are the beta regression models,
where appropriate functions of the mean and dispersion parameters follow regression struc-
tures, or the gamma regression models, where appropriate functions of the mean and variance
(or shape) parameters follow regression structures.

Model definition

The double generalized linear regression models are defined by the following three components:

o The random component: Y = (Y1,...,Y,,)T, where Y; ~ F(u;,7;), i = 1...n, are indepen-
dent random variables with distribution belonging to the two-parameter exponential
family of distributions (F?2).

T

)T, such that ny; = ' 8 and no; = 2!'7.

o The systematic component: n; = (14, N2
o The link functions: h(.) and g(.), such that h(u;) = n1; and g(7) = n2;.

The link functions must be strictly monotonous and doubly differentiable to obtain max-
imum likelihood parameter estimations, and once differentiable in the Bayesian approach.
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Figure 2: Plot of standardized Bayesian residuals versus fited values and Histogram of resid-
uals

Some examples of the double generalized linear regression models, defined in the orthogonal
overdispersed family of distributions of Dey et al. (1994) are:

1. Heteroscedastic normal regression models. Let Y; ~ N(u;,02), i = 1,...,n, be n inde-
pendent random variables that follow normal distributions. This model is defined by
assuming that y; = ' 8 and log(c?) = 27 ~.
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2. Mean and shape gamma regression models. Let Y; ~ G (i, o), i = 1, ...,n, be n indepen-
dent gamma random variables. These models are defined by assuming that u; = aciTﬁ
and log(a;) = 27 .

As examples of non-orthogonal two-parameter regression models, Cepeda-Cuervo (2001) and
Cepeda and Gamerman (2005) proposed:

1. Mean and dispersion beta regression models. Let Y; ~ B(ui, ¢i), i = 1,....,n, be n
independent beta random variables, where p; = a;/(a; + b;), ¢; = a; + b;. These beta
regression models are defined by assuming that:

logit(pi) = B (12)
log(¢s) = =] - (13)
Mean and dispersion beta regression models. Let Y; ~ G(ui,02), i = 1,...,n, be n

independent gamma random variables, where p; = E(Y;) and 07 = Var(Y;). These
gamma regression models are defined by assuming that:

logit (1;) = ] B (14)
log(o7) = z{ 7. (15)

Bayesian method to fit DGLMs

To obtain posterior parameter estimates using Bayesian methods, the authors assumed normal
prior distributions for the regression parameters, denoted by p(8, 7). The posterior parameter
distribution, is given by w(8,4) o L(B,7v)p(B,7), where L(B,~) is the likelihood function.
Samples of the posterior distribution 7(8,), which are analytically intractable, are easily
obtained from the posterior conditional distributions 7(8|v) and = (7|3) by applying the M-
H algorithm, given that these conditional distributions are analytically intractable, except
for m(B|vy) in the case of the heteroscedastic normal linear regression models (Cepeda and
Gamerman 2000).

To obtain samples from the posterior conditional distributions by applying the M-H algorithm,
the authors propose worked variables to approximate h(u) and ¢g(7) around the current pa-
rameter estimates, obtained from the equation of the Fisher scoring algorithm or from the
first-order Taylor approximation of h(.)and g(.) around the current values of u; and 7;. Thus,
a mean working variables are given by:

Vi () + 0 () (Y= ). (16)

where 1/(.) denotes the first order derivative of h(.), h(u(c)) = 7' B and u(c) = h Yzl ).

i i
From (16), a mean working observational model is obtained by assuming that the working

variable Y;, for which E(Y;) = /8 and Var(Y;) = [h/(ugc))r Var(Y;), follows a normal
distribution. The mean kernel transition function ¢;, to obtain samples of B, is defined
as the posterior distribution function obtained by the combination of the conditional prior
distribution 7(8|7y) and the working observational models ¥; ~ N (2! (), Var(©)(Y;)). Thus,

the mean kernel transition function ¢;(.) is given by:
@1 (Bly) = N(b*, BY) (17)

where b* = B*(B~1b+X”% 1Y) and B* = (B~14+ X2 "1X)}; with ¥ = Diag (Var© (V;))

and Y the vector of observed values of (16).
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The full posterior conditional distribution 7(+|8) is also intractable analytically. Thus, sam-
ples from this distribution are obtained by applying the M-H algorithm, for which a kernel
transition function is proposed. From a random variable ¢;, such that E(t;) = 7, a working
dispersion random variable is defined by:

Voi = g(r9) + g (9) (6 = 71) (18)
where E(Ya;) = 27~ and Var(Ye;) = {g’(Ti(C))rVar(ti), by assuming that it follows a
normal distribution. The dispersion (7) kernel transition function ga, to obtain samples of -,
is defined as the posterior distribution function obtained by the combination of the conditional
prior distribution 7(y|8) and the working observational models Y; ~ N (274 Var((;)).
Thus, the kernel transition function g2(.) is given by:

2(v|B) = N(g", G"), (19)

where g* = G*(G g + XT2;1V5) and G* = (G~ 1+Z2T%;1Z)!, with By = Diag (Var(c) (YQ))
and Y the vector of observed values of the working variables.
In following examples we present the working variables developed in Cepeda-Cuervo (2001)

to build the kernel transition function used in the M-H algorithm to fit beta regression and
gamma regression models.

Example 7.1.1. Mean and shape gamma regression models. In gamma regression models
with h(y;) = 27 B and g(a;) = 27, if B(°) denotes the current values of 8, the mean working
variables are given by:

Vi =a{ B+ W@l BN — b B, (20)
for which h(p©)) = 7 B and o? = {W[n~ Y (&l B)}2Var(Y;). If g(.) is the identity func-
tion, Y; = Y;

To define a working variable to build a kernel transition function to propose samples of v, the
random variable ¢; = AY; is proposed, given that E(t;) = a;. Thus, if g(.) is the logarithmic

function, from the first-order Taylor approximation of log(t;) around the current value of (),
the working shape variable is given by:

1

Vi = 2994 Y- al) (21)
O(C
= 2I'y@ 4 ! AYY; — al) (22)
i O

Example 7.1.2. Mean and dispersion beta regression models. In beta regression models
with logit mean link function, h(p;) = logit(u;), and logarithmic dispersion link function,
g(¢i) = log(¢;), where ¢ = a + b, the mean working variable, obtained as in example 7.1.1,
from the first order Taylor approximation of logit(y;) around the current values of ;(©) is:

(©)
Y'i— \
P (23)
12 (1—% )

for which g(u(®) = 274 and o? = Ml(c)(l — ,ul(»c))[l + exp(z;fp‘yz(c))].

Y =ai Y+

To define a working variable to build a kernel transition function to propose samples of ~, the
author starts by defining a random variable ¢; = %Yi, given that F(t;) = ¢;. Thus, from
the first-order Taylor approximation of log(t;) around the current value of #9, the working
dispersion variable is given by:

V, = 2404 2L (24)

and their associated variance is 0? = (1 — ,u(c)){(l — (;S(c))}_l[l + exp(ziT'y(c))].
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7.2. Frequentist parameter estimates of nonlinear DGLMs

The Fisher scoring is defined from the first- and second-order derivatives of the logarithm of
the likelihood function (25), as follows: let y;, i = 1,2, ...,n, be n independent observations of
n random variables Y; ~ F2(yu;,7;), belonging to the exponential family (3). The logarithm
of the likelihood function, ¢ = log L, is given by:

t= Zfi = Z{log(b(%)) + (i — 1) OO (i, ) + 7T (i) + s, i) (25)

where /; is the logarithm of the i-th likelihood component, h(y;) = S(x}, 8) and g(7;) = 27 ~.
Thus, the first-order derivatives of [ are given by:

ol; Ol; Ou; O

= =12, ...,
o8 O om 05; "’ P
Opi 0S(zi, B)
= i — 1) U0 (g, 7 — 2
[ = 10 s )| 5 =00 (26)
Ol _ 0k 07 Omai . (o
Oy Omom oy T T
o
= [(yi — /Ji)\l’(l’l)(,ui,ﬂ) +T(y;) + W(O»l)(uuﬂ)} #zij,
21

67’1' . 1 8}% . 1
Whe.re oz — W(m) :zmnd omi g (1)
derivatives of ¢, is given by:

. Thus, the Hessian matrix, obtained by second-order

82li -8% (8;% )2 + 812 82,LLZ' 81711' 87]11' i 811 8,uz- 827711'
0BkB; _8%2 O Ow; O3, | 0Bk 0B; O O, 08,03,

[ = )P0 () = O (i) (i — ) WO (i, )R (i) | 0S (i, B) DS (i, B) (27)
' (pi)? B (pi)3 OBk P,

[ 0 i 823 .’Bi,,B
L i 7

6211' _ 8211 371 8,LL¢ 87}21‘ 87711;
a%:aﬂj 070 On2; Oy O aﬁj
1 1 85(:131 ﬁ)
= (v — )9 (i, 7 ( )( ) 2
(Yi — 1) (his 7) o ) \g o5,
82l1- o 8211 8’7’1' 2 + 8lz 827}' 8772i ({97721'
o0y, |02 \ Onai O O3 | Oy 0;
{(yi pa) O (i, i) + 0O (i) {(ys = ) D (i i) + Tlys) + 9O (i, ) } ZikZij
g'(7:)? 9'(m)*/ 9" (7:) e

where k,j = 1,...,pfor fand k,j = 1,...,r for 7. So, the Fisher information matrix, obtained
by the expected values of the second-order derivatives, is given by:

P e A um) 5 (x;, B) 9S(z;, B)
E [aﬁkaﬁj = le 2 B 0D,

0%l :
—E|l——F5| = 0
[8%851’_

P02 m, ) B @) + 0O (i, )} h ()
h/(Ti)g

Zij il

8’)@ 87,] 1 i=1

From these results, the Fisher information matrix is block diagonal, the parameter vectors, 8
and =y, are globally orthogonal (Cox and Reid 1987) and their maximum likelihood estimates
are asymptotically independent.
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Thus, given the k-th estimates of the regression parameters, B(k) and v*), by the Fisher
scoring algorithm, the (k+1)-th estimate of 8 is given by the equation Igc) ﬂ(kH) = I/(Bk) ,B(k)

T
+ qgc), where qék) = (8%11’ - 8%11,) and the i-th component of the right hand is given by:

2
p n
(k) g(k) (k) (2,0)(,, (k) (k) 1 95(wy, B) 05 (w1, B) | k) , O
;'8 +aq5”) = U () B’ +
( A A >’ Z Z : ! g (Ml(k)) 9B 0Bm 0B

2
p n
_ 0)(, (k) (k) 1 98 (x1, B) 95 (1, B)
= > | 20wy )(g,< (k))) B o5

B o))

3 : 1 8S(wz,ﬁ)ﬁ$>+(yl_#§k>>>

= ;%(mz,ﬁ) g’(u(k)) m:lg(ul(k)) 9Bm

In summary, I(ﬂk) ﬂ(k) + qgﬁ) = X W Y, where the entries of X are given by Zij =

a8 W(2,0) (Hgk)ﬁfk))

ggi (z;,B0), W = Diag(w(k)), where w; = , and Y7 is an (n x 1) worked

‘ g (n™)?
vector with components 31;, ¢ = 1,2,...,n, given by:
_ 708 (i, B*) o N
=) 55— Pn + (s — ) o (7). (28)
m=1 m

vs(2r8%)8%

Then, given the k-th estimates of the regression parameters, ,B(k) and 'y(k), by the Fisher
scoring algorithm, the (k+1)-th estimate of 4 is given by the equation ng)'y(k“) = ng)'y(k) +

(k) A ol

!/
qay ', where qgg) = ( By E) , and the i-th component of the right-hand side is given by:

k k
—wO2 (P AP) B (@) + w0 (), 7

g’ (Tl(k))Q : g (Tz(k))g /QN (Tl(k)>

215 Zlm

T n
(W 4q) = ¥ |3
=1

m=1

" —p0:2) (Hl(k), Tl(k)> {E (T(y)) + v (Ml(k), Tl(k)) } q" (Tl(k))
=t | TR W ()
- o (= ) e P 0 4 )+ w00 (P, 1)
m=1 " g’ (Tl(k))
) zn:%, [_\I,(o,z) (Mgm’n(k)) J (Tl(m) n {E(T(yl)) Lo (u?k),ﬁ(}“))}g” (Tluc)ﬂ
- =1 g’ (Tl(k))3
0 (59) [ — w0 7) 4 T + 20D (4, 7)]

—g(02) (u}’“),n"“)) P (T}’”) N { E(T(y)) + $O.D) (Hgm’n(k))} g (le))

Thus, the Fisher scoring worked variables used to build the kernel transition function to

k
ﬂél) +

X
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obtain samples of v are given by:

. ) q (Ti(k)>2 {(Z/i — ;) TG (Mgk),n(k)) +T(y;) + vV (Mgk)’n(k))}
Y = ) (1,23 g (7Y + {B (@) + 9O (1P, 7)1 g7 (7Y

With these results an iterate maximum likelihood algorithm can be proposed to obtain maxi-
mum likelihood estimates of the regression parameters. To fit the Bayesian model obtained by
assuming a normal prior distribution for the regression parameters, we can apply the Bayesian
method proposed in Section (3), where the mean kernel transition function is given by (19),
built with the worked variable (28).

(29)
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