Analysis of Count Time Series: A Bayesian GARMA(p, q) Approach
DOI:
https://doi.org/10.17713/ajs.v52i5.1568Abstract
Extensions of the Autoregressive Moving Average, ARMA(p, q), class for modeling non-Gaussian time series have been proposed in the literature in recent years, being applied in phenomena such as counts and rates. One of them is the Generalized Autoregressive Moving Average, GARMA(p, q), that is supported by the Generalized Linear Models theory and has been studied under the Bayesian perspective. This paper aimed to study models for time series of counts using the Poisson, Negative binomial and Poisson inverse Gaussian distributions, and adopting the Bayesian framework. To do so, we carried out a simulation study and, in addition, we showed a practical application and evaluation of these models by using a set of real data, corresponding to the number of vehicle thefts in Brazil.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 Luiz Otávio de Oliveira Pala, Marcela de M. Carvalho, Thelma Sáfadi

This work is licensed under a Creative Commons Attribution 3.0 Unported License.
The Austrian Journal of Statistics publish open access articles under the terms of the Creative Commons Attribution (CC BY) License.
The Creative Commons Attribution License (CC-BY) allows users to copy, distribute and transmit an article, adapt the article and make commercial use of the article. The CC BY license permits commercial and non-commercial re-use of an open access article, as long as the author is properly attributed.
Copyright on any research article published by the Austrian Journal of Statistics is retained by the author(s). Authors grant the Austrian Journal of Statistics a license to publish the article and identify itself as the original publisher. Authors also grant any third party the right to use the article freely as long as its original authors, citation details and publisher are identified.
Manuscripts should be unpublished and not be under consideration for publication elsewhere. By submitting an article, the author(s) certify that the article is their original work, that they have the right to submit the article for publication, and that they can grant the above license.