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Abstract

Generalizations of the 1-factorial tests by Kruskal-Wallis and Friedman, as well as
of the van der Waerden test are proposed for factorial split-plot designs, both allowing
interactions. They are compared in regard to the type I error control and the power
with the parametric F test, including the Huynh-Feldt adjustment, the inverse normal
transform (INT), the ANOVA type statistic by Brunner et al. (ATS), the aligned rank
transform (ART), the L statistic by Puri & Sen and a procedure by Koch. The two
methods proposed show a perfect type I error control, except for two situations, and
an attractive power, particularly in case of nonnormal distributions. The charm and
advantage of these procedures are the possibility to apply them with statistical standard
tools using only variable transformations and data management, and to receive results
from well-known methods which are easy to understand.

Keywords: ANOVA, split-plot design, Kruskal Wallis, Friedman, van der Waerden,
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1. Introduction

Split plot designs, repeated measures designs involving two or more independent groups, are
among the most common experimental designs in educational, psychological, medical and
many other fields of scientific research. For analyzing data from such designs, in general the
parametric ANOVA model is applied, which requires normality of the residuals, sphericity
and homogeneity of the covariance matrices as well as the independence of the observed units
(see e.g. Beasley and Zumbo 2009; Winer, Brown, and Michels 1991). Most people trust in
the robustness of the parametric tests though it is not as great as for between subject designs.
But during the last decades a number ANOVA procedures have been suggested for situations,
when the assumptions of the parametric model are not met, also for analyzing data from split-
plot designs. Here to mention first the rank based methods: the rank transform method RT
by Conover and Iman (1981), the inverse normal transform method INT (see e.g. Mansouri
and Chang 1995), the tests by Puri and Sen (1985), here denoted by PS and often referred as
L statistic (see e.g. Harwell and Serlin 1989) and Koch‘s ANOVA for split-plot designs (Koch
1969).
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A number of authors express concern about ranking methods for factorial ANOVA designs.
Toothaker and Newman (1994) as well as Beasley and Zumbo (2009), to name only a few,
found out that the type I error rate of the interaction can reach beyond the nominal level, if
there are significant main effects because the effects are confounded. Headrick and Sawilowsky
(2000) demonstrated this phenomenon computationally. On the other hand, the RT lets
sometimes vanish an interaction effect, as Salter and Fawcett (1993) had shown in a simple
example. The reason:

”
additivity in the raw data does not imply additivity of the ranks, nor

does additivity of the ranks imply additivity in the raw data“, as Hora and Conover (1984)
found out. Payton, Richter, Giles, and L. (2006) pointed out this problem in connection with
split-plot designs. There are a couple of remedies. First and often used, the aligned rank
transform ART with an alignment for the interaction (see e.g. Beasley and Zumbo 2009).
Secondly the anova type statistic ATS by Brunner, Munzel and Akritas (see e.g. Brunner,
Munzel, and Puri 1999; Bathke, Schabenberger, Tobias, and Madden 2009), a method with
a nonparametric model based on relative effects. Thirdly to mention the generalized linear
models GLM, from which GEE (Generalized Estimating Equations), established by Liang and
Zeger (1986), and GLMM (Generalized Linear Mixed Models, sometimes also called MLM,
multi level models) by Harville (1977) are probably the most popular. They allow correlated
responses and nearly arbitrary covariance matrices, but are based on large sample asymptotic
theory and need large ni ≥ 50 (see e.g. Stiger, Kosinski, Barnhart, and Kleinbaum 1998).
These methods as well as some more are discussed in detail e.g. by Algina (1994), Stiger
et al. (1998) and Keselman, Algina, and Kowalchuk (2001).

The most well-known nonparametric ANOVA tests perhaps, the Kruskal-Wallis H-test (K-W)
for between-subject designs and the Friedman ANOVA for repeated measures designs, do not
appear in the list above, because they are designed for the analysis of 1-factorial designs.
It is shown here that also a corresponding procedure for factorial split-plot designs can be
defined, which incorporates these two methods as special cases, and will be denoted here by
KWF. Another well-known procedure, the van der Waerden test (van der Waerden 1953),
has been developed so far only for factorial between subject designs (Mansouri and Chang
1995) and for 1-factorial repeated measures designs (Marascuilo and McSweeney 1977). Here,
an extension for the analysis of split-plot designs is proposed and will be named van der
Waerden scores test and abbreviated vdWS. The van der Waerden test is closely related to
the K-W and the Friedman tests. If the inverse normal transformation (for a definition see
next section) is applied to the ranks, on which these tests are based, before applying the χ2

-test, i.e. transforming them into normal scores, then the van der Waerden test is the result.
Finally to mention that (Beasley 2000) suggested an interaction in split-plot designs based
on the Friedman test. But he also pointed to several problems with this solution, so that it is
not generally advisable. Own simulations, generally showing type I error rates of 30 percent
for a nominal level of 5 percent, confirmed these problems.

The main motivation for the proposition of the KWF and vdWS methods arises from their
popularity, particularly of the Kruskal-Wallis and the Friedman tests, the basis of the KWF,
as well as the positive evaluation of these two tests and the van der Waerden test. Here
to mention the articles by Feir and Toothaker (1974), Lix, Keselman, and Keselman (1996)
and Sawilowsky (1990) considering the K-W test, Marascuilo and McSweeney (1977), Harwell
and Serlin (1994) and Ernst and Kepner (1993) investigating the Friedman test, and finally
Dijkstra (1987), Sheskin (2004) and Luepsen (2018) who studied the van der Waerden test.
They all mention the robustness against nonnormality and heterogeneity. In the case of
between subject designs, the van der Waerden test scored overall the best in view of type I
error control and power, compared with other rank based procedures (see e.g. Luepsen 2018).
One attractive feature of the two methods suggested here: both can be computed using
standard statistical software like SAS and SPSS together with some variable transformations
(see e.g. Luepsen 2020). This enables researchers to analyze split-plot designs even if programs
for more sophisticated methods like the above quoted ATS, GEE or GLMM are not available.

A view words to the composition of this study. In section 2 the rank based ANOVA procedures
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considered here will be described. Particularly, at the end of section 2 the proposed KWF
and vdWS methods will be presented. As the main objective it will be proved in section 3
that the KWF and the vdWS methods are generalizations of the well-known classical tests,
even though there is no complete coincidence for the latter one in the case of ties. In the same
section it will be demonstrated that the differences are neglectable. To show the reliability of
the proposed methods, they will be compared with the F test and other rank based ANOVA
methods using a Monte Carlo simulation (section 4). Special attention has to be laid upon
the interaction effect, whereas the main effects coincide with the established Kruskal Wallis,
Friedman and van der Waerden tests. But also the models with nonnull main effects have
to be examined, because first, such situations are not covered by the 1-factorial analyses,
and secondly, according to the above concerns about interactions a control of their type I
error seems reasonable. It is neither intended to present a statistical factorial model for the
procedures proposed, nor a complete comparison of the procedures quoted above, which will
be subject of a larger study.

2. The methods to be considered

2.1. The parametric F-test

At first the model for the mixed design and the parametric F-test will be given with the
corresponding sum of squares, as some formulae will refer to these later. Here the classical
approach will be used (see e.g. Winer et al. 1991), though in recent publications often mixed
models, considering e.g. covariance structures, are preferred. For one grouping factor A and
one repeated measures factor B the 2-factorial ANOVA model for a dependent variable y shall
be denoted by

γijm = αi + βj + (αβ)ij + τim + (βτ)ijm + eijm (1)

with fixed effects αi (factor A, i = 1, .., I), βj (factor B, j = 1, .., J), (αβ)ij (interaction AB),
ni subjects per group (i = 1, .., I), a subject specific variation τim (m = 1, .., ni), multivariate
normal distributed error eijm with covariance matrices Σi, and N=

∑
ni. Additionally, the

F-test assumes the pooled covariance matrix to be spherical and equal for i = 1, .., I. The
parameters αi , βj and (αβ)ij , with the restrictions

∑
αi = 0,

∑
βj = 0,

∑
(αβ)ij = 0, can

be estimated by means of a linear model y> = Xp> + e> using the least squares method,
where y are the values of the dependent variable, p the vector of the parameters, X a suitable
design matrix and e the random variable of the errors. If the contrasts for the tests of the
hypotheses HA(αi = 0),HB(βj = 0) and HAB((αβ)ij = 0) are orthogonal, the resulting sum
of squares SSA, SSB, SSAB of the parameters are also orthogonal and commonly called type
III SSq. The sums of squares and mean squares of the effects are computed as follows:

SSA = J
∑
i

ni(ȳi.. − ȳ)2 SSB = N
∑
j

(ȳ.j. − ȳ)2 SSAB =
∑
i

∑
j

ni(ȳij. − ȳi.. − ȳ.j. + ȳ)2

MSA = SSA/(I − 1) MSB = SSB/(J − 1) MSAB = SSAB/((I − 1)(J − 1)) (2)

where ȳi.., ȳ.j. are the level means of factor A and B, ȳij. are the cell means and ȳ is the grand
mean. Finally the sums of squares and mean squares of the error terms:

MSbetween = J
∑
i

∑
m

(ȳi.m − ȳ)2/(N − 1)

MSwithin = J
∑
i

∑
m

∑
j

(yijm − ȳi.m)2/(N(J − 1))

MSerror(between) = J
∑
i

∑
m

(ȳi.m − ȳi..)
2/(N − I)

MSerror(within) = J
∑
i

∑
m

∑
j

(yijm − ȳi.m − ȳij. + ȳi..)
2/((N − I)(J − 1)) (3)
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and the F-ratios as

FA = MSA/MSerror(between) FB = MSB/MSerror(within) FAB = MSAB/MSerror(within)

which are F distributed as long as the assumptions mentioned above are fulfilled. To make up
for nonspherical data, e.g. heterogeneous variances on factor B, an appropriate adjustment of
the degrees of freedom for the F-test is applied. Here the Huynh-Feldt adjustment including
the correction by Lecoutre, abbreviated H-F, is chosen (see e.g. Winer, Brown, and Michels
1991; Quintana and Maxwell 1994).

2.2. Nonparametric model

The null hypotheses for the nonparametric methods have to be formulated in a different
way. The model underlying a split-plot design can be described by independent continuous
random vectors Yim = (Yi1m, . . . , YiJm)> with marginal distributions Yijm ∼ Fij for the jth
observation of subject m in group i. Whereas Kruskal & Wallis as well as Friedman state
in their original work simply “equal distribution functions” as H0, Koch (1969) and Gibbons
and Chakraborti (2020) modify the hypotheses in order to restrict differences to location
differences: if Fi(Y) = G(Y − µi) is the distribution function of Y in group i with vectors
µi = (µi1, ..., µij) of J location parameters (e.g. medians) and a distribution function G
characterizing their shape, then

HA : µ1 = ... = µI HB : µi1 = ... = µiJ for i = 1, .., I and

HAB : γij = 0 for i = 1, .., I and j = 1, .., J (4)

if γij = µij−µ̄.j−µ̄i.+µ̄ where µ̄.j and µ̄i. are the location parameters related to the effects of A
and B, and µ̄ the grand mean. In contrast, Brunner et al. (1999) use a different model for their
ATS method, which does not require equal distribution shapes: if F̄i.(y) = (1/J)

∑
j Fij(y),

F̄.j(y) = (1/N)
∑

i niFij(y) and F̄..(y) = (1/NJ)
∑

i

∑
j niFij(y) then the null hypotheses can

be expressed in terms of marginal distribution functions (see e.g. Noguchi, Gel, Brunner, and
Konietschke 2012):

HA : F̄1. = ... = F̄I. HB : F̄.1 = ... = F̄.J HAB : F̄ij = F̄i, − F̄.j + F̄..

Here the normalized distribution function Fij(y) = [P (Yij ≤ y) + P (Yij < y)]/2 is used to
allow tied values.

2.3. RT (rank transform) and INT (inverse normal transform)

The rank transform method (RT), proposed by Conover and Iman (1981), comprises just
the transformation of all NJ values of y into ranks R(y), so-called Wilcoxon ranks, before
applying the parametric F-test to them, as described above. Here midranks are used in case
of tied values. Huang (2007) as well as Mansouri and Chang (1995) showed, that applying the
inverse normal transform (INT) to the ranks R(y), i.e. computing their normal scores before
computing the parametric F-test, results in an improvement of the RT procedure. The normal
scores are defined as z(y) = φ−1(R(y)/(n + 1)) , where φ−1 denotes the inverse cumulative
normal distribution function and n the number of observations, here n=NJ. Huang (2007)
showed that the classical F statistic applied to normal scores z(y) has the same limiting null
distribution as when applied to normal data.

2.4. ART (aligned rank transform) and ART INT

For using the RT method an alignment is proposed in order to avoid an increase of type I
error rates for the interaction due to nonnull main effects: all effects not to be tested are
subtracted from y before performing the parametric analysis of variance, a method dating
back to Hodges and Lehmann (1962). The procedure consists of first computing the residuals,
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either as differences from the cell means or by means of a regression model, then adding the
effect to be tested, transforming this sum into ranks and finally performing the parametric F
test on them. For the alignment in the 2-factorial model (1) first the error eijm is computed as
the residuals from a parametric between subject ANOVA including all effects and the subject
specific variation τim. In the next step the means corresponding to the effect being tested (A,
B or AB) are added:

y
(A)
ijm = eijm + ai y

(B)
ijm = eijm + bj y

(AB)
ijm = eijm + abij

where ai, bj , abij are the means of y corresponding to the effect. Then the aligned variables
y(A), y(B), y(AB) are each transformed into Wilcoxon ranks R(y(A)), R(y(B)), R(y(AB)). To test
one effect the parametric F test is applied to the corresponding aligned variable, where only
that effect is examined ignoring the other two. Salter and Fawcett (1993) showed that the
normal theory F tests used for testing these rank statistics are valid, because their asymptotic
distributions are the same.

Mansouri and Chang (1995) as well as Luepsen (2018) suggested to apply the normal scores
transformation INT (see above) to the ranks obtained from the ART procedure. They showed
that the transformation into normal scores improves the type I error rate for the ART proce-
dure, too, at least in the case of underlying normal distributions. Computationally the ranked
aligned variables R(y(A)), R(y(B)), R(y(AB)) are to be transformed into normal scores, as de-
scribed for the INT method, before applying the parametric F test on them. This procedure
will be denoted here by ART INT. Unfortunately these methods react on discrete outcomes
with increasing error rates (see e.g. Luepsen 2017).

2.5. Puri & Sen tests (L statistic)

The tests by Puri and Sen (1985), often referred as L statistic, offer a nonparametric test
statistic for the General Linear Model (see e.g. Harwell and Serlin 1989). The resulting test
statistics are asymptotically χ2 distributed. They can be seen as a generalization of the well-
known Kruskal-Wallis H test (for independent samples). The χ2-ratios are computed in the
case of only grouping factors as

χ2
effect = SSeffect/MStotal

and in the case of a mixed design for the tests of A, B and AB as

χ2
A = SSA/MSbetween χ2

B = SSB/MSwithin χ2
AB = SSAB/MSwithin

Here SSA, SSB, SSAB or generally SSeffect, are the sum of squares as outlined before (2),
but computed for R(y), the Wilcoxon ranks of y, in the same way as for the RT procedure.
MSbetween and MSwithin are the mean squares previously defined, and MStotal the variance
of R(y). The degrees of freedom are those of the numerator of the corresponding F test. The
major disadvantage of this method is the lack of power for any effect in the case of other
nonnull effects in the model.

Similar to the modification of the RT and the ART techniques, the PS method can be improved
by the INT transformation of R(y) into normal scores φ−1(R(y)/(n+ 1)) of y (n=NJ ) before
applying the χ2 tests in the same way as for the L statistic. This leads to a procedure, denoted
by PS INT, which has been proposed already by Puri and Sen (1969).

2.6. Koch‘s ANOVA

Koch (1969) proposed a couple of nonparametric procedures for split-plot designs based on a
multivariate version of the Kruskal-Wallis test and a nonparametric analogue of the one-way
MANOVA based on the trace (see e.g. Chatterjee and Sen 1966). The resulting test statistics
are approximately χ2 distributed. There are several variants for the cases with and without
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compound symmetry, as well as with and without independence of the factors A and B. The
version used here assumes an interaction, but no compound symmetry. A detailed description
of the method and the extensive computational procedure can be found in Koch (1969) and
shall not be reproduced here.

2.7. Tests by Brunner, Munzel and Puri (ATS)

The authors reflect the relative effect of a random variable X1 to a second one X2 , i.e. the
probability thatX1 has smaller values than X2 , which is defined as p = P (X1 < X2)+P (X1 =
X2)/2, considering the case P (X1 = X2) > 0. As the definition of relative effects is based
only on an ordinal scale of y, this method is suitable also for variables of ordinal or even
dichotomous scale (see e.g. Noguchi et al. 2012). Based on above model (4) they developed
two tests to compare samples by means of comparing the relative effects: the approximately
F distributed ATS (anova-type statistic) and the asymptotically χ2 distributed WTS (Wald
type statistic). In contrary to the WTS, the ATS accounts for the sample sizes that makes it
attractive for small cell counts. These tests have been extended to repeated measures designs
by Brunner et al. (1999). Bathke et al. (2009) described the procedures, which involve a lot
of matrix algebra and shall not be reproduced here.

2.8. The generalized Kruskal & Wallis and Friedman procedure (KWF)

First the well-known rank tests by Kruskal & Wallis and by Friedman will be quoted, because
these are essential for the proposed algorithms. Let xim(i = 1, .., I andm = 1, .., ni) be the
observations in a 1-way layout with I independent groups of factor A, Rim the Wilcoxon rank
of xim, Ri. =

∑ni
m Rim and N =

∑
ni. Then the Kruskal-Wallis H

H =
12

N(N + 1)

I∑
i

R2
i.

ni
− 3(N − 1) (5)

tests the identity of the I distribution functions, where H is χ2-distributed with (I-1 ) df. The
test assumes equal shapes of the distribution function for all groups. It is well-known that
the H test can be performed by ranking y (using midranks for ties), conducting a parametric
ANOVA and finally computing χ2 ratios using the sum of squares (see e.g. Winer et al. 1991):

H = SSA/MStotal (6)

where SSA =
∑
ni(R̄i.− (N +1)/2)2 is the sum of squares related to A, MStotal the variance,

both based on the ranks Rim of x, and R̄i. = Ri./ni. If additionally the ranks Rim are
transformed into normal scores

zim = φ−1(Rim/(N + 1)) (7)

before applying the parametric ANOVA, then SSA =
∑
ni(z̄i. − z̄)2 and above H coincides

with the statistic W of the van der Waerden test (van der Waerden 1953).

Now let xjm (j=1,..,J and m=1,..,N ) be the observations in a 1-way layout with J repeated
measurements of factor B, Rim the rank of xjm within subject m, so-called Friedman ranks,

and Rj. =
∑N

mRjm. Then the Friedman statistic

FR =
12

NJ(J + 1)

J∑
j

R2
j. − 3N(J + 1) (8)

tests the identity of the J distribution functions, where FR is χ2-distributed with (J -1) df.
The derivation of the Friedman test assumes that the raw scores have equal variances and
covariances (Lehmann 1975). It is well-known that, similar to the H test, Friedman‘s test
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can be performed by ranking x (using midranks for ties) within each subject, conducting a
parametric repeated measurements ANOVA and finally computing χ2 ratios using the sum
of squares (see e.g. Winer et al. 1991):

FR = SSB/MSwithin (9)

where SSB =
∑
n(R̄j. − (J + 1)/2)2 is the sum of squares related to B, MSwithin the within

subject mean squares of Rjm , the Friedman ranks of x, and R̄j = Rj./J . If additionally the
ranks Rjm are transformed into normal scores for each subject m

zjm = φ−1(Rjm/(J + 1)) (10)

before applying the parametric ANOVA, then SSB =
∑
n(z̄j. − z̄)2 and above FR coincides

with the statistic W of the van der Waerden test for dependent samples (Marascuilo and
McSweeney 1977).

Now the KWF procedure shall be presented. Let sim denote the sum of the J observed values
of y for subject m in group i :

sjm =
∑
j

Jyijm (11)

and RA(sim) their ranks (i = 1, .., I andm = 1, .., ni), corresponding to Wilcoxon ranks. For
subject m in group i RB(yijm) (j=1,...,J ) shall be the ranks of the J observed values yijm,
corresponding here to Friedman ranks. Then

rijm = (RA(sim) − 1)J +RB(yijm) (12)

comprehends a transformation of yijm into ranks 1,...,JN. Computing the sum of squares for
a parametric ANOVA with rijm as described in (2) and (3), then

χ2 = SSA/MSbetween

is identical to H in (5) and (6) and the test of main effect A (HA) in (4),

χ2 = SSB/MSwithin

is identical to FR in (8) and (9) and the test of main effect B (HB) in (4), and

χ2 = SSAB/MSwithin

is the test of the interaction effect AB (HAB) in (4), with SSA, SSB,MSbetween and MSwithin

as described in (2). Proofs are in section 3. Therefore the ANOVA using the ranks in (12)
is a generalization of both the Kruskal-Wallis and the Friedman test and can be extended to
designs with more than one between subject or within subject factors.

2.9. The van der Waerden procedure

Similar to the KWF procedure, a generalization of the van der Waerden method can be
obtained. Let NA(sim) be the normal scores of sim (see (11)), and NB(yijm) the normal
scores of yijm for subject m in group i (j = 1, ..., J), and

zijm = NA(sim) +NB(yijm) (13)

the combined scores. If a parametric ANOVA is performed with zijm , then

χ2 = SSA/MSbetween

is the test of main effect A (HA) in (4) and identical to the van der Waerden test for inde-
pendent samples,

χ2 = SSB/MSwithin
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is the test of main effect B (HB) in (4) and identical to the van der Waerden test for dependent
samples, and

χ2 = SSAB/MSwithin

is the test of the interaction effect AB (HAB) in (4), with SSA, SSB,MSbetween and MSwithin

as described in (2) and (3). However under two restrictions: first RA(sim), the ranks of the
sums sim , have no ties, and second, for each subject m(m = 1, .., ni and i = 1, .., I) there are
no ties within RB(yijm), the ranks of yijm. Proofs are in section 3, where it is shown that in
fact the tests of both factors A and B are affected by ties, but in a neglectable magnitude.
Therefore the ANOVA using the scores in (13) can be seen as a generalization of the van der
Waerden test. Finally it should be noted that Lu and Smith (1979), who investigated the
distribution of the normal scores, recommend to apply the parametric F tests directly to the
normal scores without computing the above described χ2 ratios, simply because the χ2 tests
are too inaccurate for small sample sizes.

It is easy to see, that both, the KWF and the vdWS procedures, are applicable in factorial
designs, also for more than one repeated measures factor.

2.10. Some notes on the selected methods

The basis for a comparison of the procedures is the parametric F test. To consider nonspherical
covariance matrices, additionally the Huynh-Feldt adjustment of the degrees of freedom for
the F test is chosen together with the correction by Lecoutre. Furthermore those methods have
been preferred which are well known and applicable in standard software. At first there is the
INT method which is for the reasons mentioned above preferred to the RT. As, on the other
hand, often the ART technique is chosen instead of the RT method to prevent confounding
effects, this one is included, too, but also in conjunction with the INT transformation. All
these methods apply the F test and hence assume sphericity of the covariance matrix. The
Puri & Sen test as well as the version based on normal scores PS INT have been taken
into consideration, because there is only a minor difference to the proposed KWF method
in view of the ranking. Thompson (1991) showed that under the less stringent condition
of equal correlations of the J repeated measurement variables both procedures lead to valid
χ2 tests. The less known procedure by Koch seems to be attractive, because, first, it does
not assume sphericity, and secondly, there are a few studies, amongst others by Tandon and
Moeschberger (1989) and Ernst and Kepner (1993), who attested this one a good performance
in terms of both type I error control and power. Also the ATS does not require sphericity of
the covariance matrix (see e.g. Bathke et al. 2009). As this method is based on a completely
nonparametric model, it is perfectly suited for this comparison. As the proposed KWF and
vdWS methods are both based on the Friedman test, they have of course the same assumption:
equal variances of the J repeated measurement variables and equal covariances, as mentioned
above. But Harwell and Serlin (1994) attested the Friedman test a strong robustness against
this assumption, which therefore should also apply to the KWF and vdWS methods.

A few words to the differences between the proposed KWF and vdWS methods and some
of the other procedures. While the PS and PS INT methods use overall Wilcoxon ranks,
computed over all JN y values, the KWF and vdWS methods apply Wilcoxon ranks only
for ranking cases, but Friedman ranks for ranking the repeated measurements within a case.
The difference between the PS and the KWF methods on one side and the PS INT and
vdWS methods on the other side is the transformation of the ranks into normal scores before
applying the χ2 tests as demonstrated in the definition of the KWF and vdWS methods
above.

2.11. Methods not selected

As this study has not been conceived as a general comparison of ANOVA methods for split-
plot designs, a number of well-known methods have not been considered, among them the
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GLM techniques (GEE and GLMM), which both performed unsatisfactorily in a similar study
(Luepsen 2021), and the multivariate methods, which are restricted to the tests of the repeated
measurements effects: e.g. the tests by Hotelling-Lawley, Pillai, Wilks and the nonparametric
equivalent by Agresti & Pendergast (see e.g. Beasley and Zumbo 2009), for an extension to
split-plot designs).

3. Proofs

First it will be proved by means of algebraic transformations that the proposed KWF and the
vdWS procedures coincide with the K-W and the Friedman test, respectively the 1-factorial
van der Waerden tests for the tests of the main effects. As ties may lead to small differences
between the exact 1-factorial van der Waerden and the scores test, a simulation study is
performed to give an impression of the magnitude of the deviation.

3.1. KWF method

First the proof that both the Kruskal-Wallis test, applied in a 2-factorial split-plot design,
and the KWF test return identical results for factor A. As remarked (see (6)) both methods
use the ratio of SSA and MStotal. Therefore it is sufficient to show that SSA and MStotal
differ for both tests only by the same factor.

To use the Kruskal-Wallis test for the test of factor A, first for each subject m the sum sim (see
11) is to be computed, before the test is applied on the sim. Therefore SSA and the variance
are calculated for RA(sim) according to (6) noting that their mean rank is (N + 1)/2:

SSA =
∑
i

ni(R̄A(si.) − (N + 1)/2)2

where R̄A(si.) is the mean rank of RA in group i. On the other hand, when performing a
split-plot ANOVA on the combined ranks rijm (12) and computing SSA, according to (2)
these ranks are averaged over the J measurements:

tim :=
1

J

J∑
j

rijm =
1

J

J∑
j

[(RA(sim) − 1)J +RB(yijm)]

=
1

J
[J(RA(sim) − 1)J + (J + 1)J/2]

= J(RA(sim) − 1) + (J + 1)/2

= JRA(sim) − (J − 1)/2

remembering that RB(yijm) has the values 1, .., J(i = 1, .., I and m = 1, .., ni) and therefore
their sum is (J + 1)J/2. Thus according to (2), using the definition of tim and remembering
that the mean rank of RA(si) is (N+1)/2

SSA = J

I∑
i

ni(t̄i. − t̄)2

= J
I∑
i

ni[R̄A(si.) − (J − 1)/2) − (J(N + 1)/2 − (J − 1)/2)]

= J3
I∑
i

(R̄A(si.) − (N + 1)/2)

which is identical to the SSA above, differing only by the factor J3. Finally, it is obvious that
the denominators of the resulting χ2 ratios, the variance of RA(sim) and MSbetween (see (3)),
are the same, in this case also differing by the factor J3.
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Next to the proof that both the Friedman ANOVA and the KWF test for factor B yield the
same result. To use the Friedman test for the effect of factor B, according to (9) it will do,
to compute SSB for RB(yijm), the ranks of yijm, and MSwithin e.g. by means of a repeated
measures ANOVA:

SSB =

J∑
j

N [R̄B(y.j.) − (J + 1)/2]2

where R̄B(y.j.) is the mean rank for level j of factor B.

Now to the split-plot ANOVA on the combined ranks rijm (12) and computing SSB according
to (2), noting the average of rijm is (NJ + 1)/2 and R̄A(si.) = (N + 1)/2 :

SSB = N

J∑
j

[ ¯[r.j. − (NJ + 1)/2]2

= N
J∑
j

[J(R̄A(si.) − 1) + R̄B(y.j.) − (NJ + 1)/2]2

= N

J∑
j

[J((N + 1)/2 − 1) + R̄B(y.j.) − (NJ + 1)/2]2

= N
J∑
j

[R̄B(y.j.) − (J + 1)/2]2

which is identical to the SSB above. Similarly it can be shown that MSwithin are the same
in either computational method.

3.2. van der Waerden method

The argumentation is similar to the proof above. To apply the van der Waerden test for factor
A, here too, for each subject m the sum sim of yi1m, ..., yijm is computed before transforming
them into normal scores NA(sim) for i = 1, .., Iandm = 1, .., ni. Here two assumptions have
to be made. At first, there are no ties within RA(sim), thus RA(sim) is a permutation of
1,..,N, and hence the NA(sim) symmetric around 0. Therefore the mean of the NA(sim) is 0.
According to (7) it will do, to compute SSA and the variance for NA(sim):

SSA =

I∑
i

ni[N̄A(si.)]
2

On the other hand, when performing a split-plot ANOVA on the scores zijm (13) and com-
puting SSA, these values have to be averaged over the J measurements (see (2)):

tim :=
1

J

J∑
j

zijm =
1

J

J∑
j

[(NA(sim) − 1)J +NB(yijm)]

= NA(sim) +
1

J

J∑
j

NB(yijm)

Now, the second assumption: y has no ties, i.e. for each subject m the ranks of yijm are
exactly 1, . . . , J, hence the sum of the NB(yijm) is 0 and independent of i and m. In this case
tim = NA(sim). Therefore t̄ = 0, and hence

SSA = J
I∑
i

ni(t̄i. − t̄)2 = J
I∑
i

ni(N̄A(si.) − 0)2 (14)
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and identical to the above SSA disregarding the factor J. Finally, it is obvious that the
denominators of the resulting χ2 ratios, the variance of RA(sim) andMSbetween (see (3)), are
the same, in this case differing by the factor J.

Next the application of the van der Waerden test for factor B. Here too, it will be assumed
that there are no ties within RB(yi.m) for i = 1, .., I and m = 1, .., ni, thus RB(yi.m) is a
permutation of 1,..,J, and the NB(yi.m) symmetric around 0. Therefore the means of NB(yi.m)
are 0. According to (9) and (10) it will do to compute SSB for NB(yijm), the normal scores of
yijm , and MSwithin , e.g. by means of a repeated measures ANOVA with z̄ being the overall
mean of zijm:

SSB =

J∑
j

N [N̄B(y.j.) − z̄]2

Now to the split-plot ANOVA on the scores zijm and computing SSB. As under the above
stated assumption of no ties the following equation holds: N̄A(si.) = 0 , as previously noted:

SSB = N

J∑
j

(z̄.j. − z̄)2

= N
J∑
j

[N̄A(si.) + N̄B(y.j.) − z̄]2

= N

J∑
j

[N̄B(y.j.) − z̄]2

Similarly it can be shown that MSwithin are the same in either computational method.

3.3. van der Waerden method: difference between the exact 1-factorial and
the scores test

As mentioned in section 2 and shown above, the proof, that the tests of the main effects
using the van der Waerden scores and the exact test are the same, is based on a restriction
concerning tied ranks. Therefore it is essential to check the difference of the two test results
for both main effects, for those cases when the assumption is not fulfilled. This is done by
means of a Monte Carlo simulation considering the following influencing factors: distribution
of y (2, 4 or 6 integer values with 2 different distribution shapes), factor A (2, 4 or 5 groups
with a total of 20, 40 or 100 subjects), factor B (2, 4 or 6 repeated measurements) and design
(equal or unequal sample sizes of the groups of factor A), making all in all 108 different
conditions, which were replicated 100 times each. All generated data sets fulfilled the desired
condition of tied ranks. Of special interest were those, which resulted in significant p values
for either factor A or B. dA and dB shall denote the differences between p-values from the
exact and the scores test for factor A respectively factor B.

Table 1: Statistics of dA and dB for several restricted regions of p

factor A factor B

region minimum median maximum minimum median maximum

0 <p <1.0 - 0.2642 - 0.0021 0.0359 - 0.0049 0.0019 0.0142
0 <p <0.1 - 0.0200 0.0001 0.0055 - 0.0048 0.0019 0.0141
0 <p <0.01 - 0.0021 0.0000 0.0003 - 0.0040 - 0.0015 - 0.0002

The most important result: in the critical region 0<p<0.1, where most decisions are made,
the differences dA and dB are approximately normally distributed with mean near 0, and lie in
the range [- 0.0021, 0.0141] (see table 1). The histograms (figure 1) and the boxplots (figure 2
and 3) indicate that for factor A extreme differences have a slight tendency towards negative
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values, i.e. the p values from the scores test are sometimes larger than the exact values. The
distribution and the design show no impact on the differences (figure 3). But apparently the
size of the design has an effect (figure 2). Concerning dA the number of negative outliers
increases with rising sample sizes, while mean and dispersion stay unchanged, which means
that for larger samples the p values for the test of A from the scores test are sometimes larger
than the exact values, whereas for dB mean and dispersion decrease with rising sample sizes,
which means that for smaller samples the p values for the test of B from the scores tend to be
smaller than the exact values. The number of repeated measurements shows no remarkable
tendencies.
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Figure 1: Histograms of dA (left) and dB (right)
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Figure 2: Boxplots of dA (left) and dB (right) in regard to the total sample size, restricted to
the region 0<p<0.1

4. A Monte Carlo simulation

The aim of this simulation study is to demonstrate the reliability of both proposed methods.
These are compared with the parametric F test, including the Huynh-Feldt adjustment, and
the rank based methods quoted in section 2. For this reason the type I error rates at 5% and
the power, both as percentages of rejected null hypotheses, are investigated by means of a
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Figure 3: : Boxplots of dA (left) and dB (right) in regard to the number of repeated measure-
ments, restricted to the region 0<p<0.1

Monte Carlo study, where several settings of a split-plot ANOVA layout are varied.

4.1. Methodology

The parameters of this study are the size (number of cells), cell frequencies (equal, unequal),
cell counts (5,10,...,50), pairing of ni and s2i (independent, positive, negative), model (effect of
factors and interaction), as well as correlation structure (equal or unequal correlations). This
should cover all important situations. One remark to the pairing problem: the parametric F
test tends to be conservative, if cells with larger ni have also larger variances s2i (positive or
direct pairing), and reacts liberal, if cells with larger ni have the smaller variances (negative
or inverse pairing), (see e.g. Feir and Toothaker 1974).The resulting sample sizes N vary from
10 to 1200. For each cell count and situation there are 2000 replications, so that there is a
total of 20.000 replications for each scenario. Without loss of generality the layout will be
restricted to two factors A and B, and for each factor only one vector of effect sizes has been
chosen, which should suffice to see, if one factor has at all an impact on the results. The
schema below gives an overview of the design of this study, where e.g. A(B) denotes the test
of factor A with a nonnull effect of factor B.

Table 2: An overview of the design

size design cell counts pairing nisi corr structure model distribution

small (3*3)
large (4*6)

equal ni

unequal ni
ni=5,...,50

independent
positive
negative

equal r
descending r

A(-), A(B), A(AB)
B(-), B(A), B(AB)
AB(-),AB(A),AB(B)

1. multivar. normal
. . . . . .
14. contaminated III

Four designs are analyzed:

• a 3*3 design (“small design”), one with equal cell counts (balanced), and one with
unequal cell counts having a ratio max(ni)/min(ni) of 3.5 (unbalanced), and

• a 4*6 design (“large design”), one with equal cell counts (balanced), and one with unequal
cell counts having a ratio max(ni)/min(ni) of 4 (unbalanced),

14 different models of multivariate distributions with mean vectors µi and covariance matrices

Σ(i) (i=1,..,I ) have been chosen. The variances will be denoted by s
(i)
jj , the correlations by
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r
(i)
j1j2

(j, j1, j2 = 1, ..., J).

The following two correlation structures are used, which are assumed equal for all groups:

• exchangeable (equal covariances, compound symmetry) with r
(i)
j1j2

= 0.3, a value that
seems realistic and had often been chosen (see e.g. Emrich and R. 1992), and

• descending correlations r
(i)
j1j2

= (0.7, 0.5, 0.4, 0.2, 0.1) for large designs, respectively

r
(i)
j1j2

= (0.7, 0.5) for small designs, which is similar to the AR(1) structure (unequal
covariances, no sphericity).

The following distributions have been selected:

1. multivariate normal with equal variances s
(i)
jj (i = 1, .., I),

2. multivariate normal with unequal variances and max(s
(i)
jj )/min(s

(i)
jj ) = 4 (i = 1, .., I) on

factor A (ni and s
(i)
jj independent, correlation ni with s

(i)
jj r=0.07), denoted by V(A)

3. multivariate normal with unequal variances and max(s
(i)
jj )/min(s

(i)
jj ) = 4 (j = 1, .., J)

on factor B, denoted by V(B)

4. multivariate normal with unequal variances and max(s
(i)
jj )/min(s

(i)
jj ) = 4 (i = 1, .., I and

j = 1, ., J) on both factors, (correlation ni withs
(i)
jj r=0.07), denoted by V(A,B)

5. multivariate normal with unequal variances and max(s
(i)
jj )/min(s

(i)
jj ) = 4 (i = 1, .., I) on

factor A, where small ni correspond to small variances s
(i)
jj (positive pairing, r=0.98).

6. multivariate normal with unequal variances and max(s
(i)
jj )/min(s

(i)
jj ) = 4 (i = 1, .., I) on

factor A, where small ni correspond to large variances s
(i)
jj (negative pairing, r=-0.87).

7. multivariate exponential (λ = 0.4) with µ = 2.5, which is highly skewed (skewness=2),

8. multivariate exponential (λ = 0.4) with µ = 2.5, rounded to integer values 1,2,..,

9. multivariate uniform in the interval [0,5],

10. multivariate uniform in the interval [0,5], rounded to integer values 1,..,5,

11. multivariate lognormal (µ = 0 and s
(i)
jj =0.25) which is slightly skewed (skewness=0.778),

12. multivariate normal N(µi,Σ
(i)) with equal variances where at random 20% of the N

subjects were contaminated with N(µi, 4Σ(i)) (only some subjects are affected, but
potentially all values of that subject), denoted by contaminated I,

13. multivariate normal N(µi,Σ
(i)) with equal variances where at random 30% of all JN

subjects were contaminated with N(µi, 4Σ(i)) (all values are incidentally affected, and
potentially any subject with any measurement), denoted by contaminated II,

14. multivariate normal N(µi,Σ
(i)) with equal variances where at random 15% of all JN

subjects were contaminated with N(µi, 4Σ(i)) (all values are incidentally affected, but
outliers are only on the right side), denoted by contaminated III,

Skewed distributions with unequal variances are not considered, because a number of stud-
ies show that nonparametric procedures cannot handle skewed distributions in the case of
heteroscedasticity (see e.g. Vallejo, Ato, and Fernandez 2010; Keselman, Carriere, and Lix
1995; Tomarken and Serlin 1986). A more precise investigation of the error rates for rank
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Figure 4: Histograms of the contaminated normal distributions I, II and III (no 12-14 in the
list above)

based procedures applied on the lognormal distribution has been done by Luepsen (2016),
who confirmed earlier results by Carletti and Claustriaux (2005).

The type I error rates of all main and interaction effects are checked in the range of n=5,...,50
for the case of the null model, the case of one significant main effect A0.5 or B0.5, and the
case of a significant interaction AB0.5. Here e.g. Ad denotes an effect of size d for factor
A, corresponding to effect vectors (−sd/2, 0, ..., 0, sd/2) with the standard deviation s of y.
Analog definitions for Bd and ABd. To eliminate spurious oscillations within the range of
n=5,...,50 the type I error rates are smoothed by means of simple two-sided moving averages.
The power is computed in relation to n=5,...,50, but for slightly different effect sizes: A0.4,
B0.3 and AB0.5, because the power rates come to close to 100 % for larger d.

For unbalanced designs the interaction effects (ab)ij had to be adjusted respecting the different
cell counts, in order to avoid impacts on the main effects. It should be remarked that most
ANOVA procedures are based upon LS estimation, which corresponds to weighted means
analysis, where the cell counts ni have a larger impact on the results than with the unweighted
means analysis. The latter assumes equal cell counts by design and allows only a couple of
missing observations (see e.g. Winer et al. 1991). Unfortunately the ATS method for split-plot
designs, as implemented in the R package nparLD, is based on the unweighted means analysis
(see e.g. Noguchi et al. 2012), which may lead to results, which are not comparable with those
from the other analyses. For the ATS method also unadjusted rates are added in the tables.
All results report the percentage of rejections of the corresponding null hypothesis. Since only
the correct adherence to the α-level for given effects is of interest here, the slight differences
in the null hypotheses of the individual nonparametric procedures are irrelevant.

4.2. Criteria

A deviation of 25 percent (α + 0.25α) - that is 6.25 percent for α = 0.05 - can be regarded
as a moderate definition of robustness (see Peterson 2002), whereas 50 percent (α+ 0.50α) -
that is 7.50 percent for α = 0.05 - will be treated as liberal robustness, according to Bradleys
liberal criterion (see Bradley 1978), which is often used in other studies. As a large amount
of the results concerns the error rates for 10 sample sizes ni = 5, ..., 50, it seems reasonable to
allow a couple of exceedances within this range.

4.3. Tables and graphical illustrations

The results quoted in the next part of this section represent only a small extract from the
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numerous tables and graphics produced in this study and will concentrate on essential results.
All tables and corresponding graphical illustrations report the percentage of rejections of the
corresponding null hypothesis, for different models and ni = 5, 10, .., 50, small and large
designs as well as balanced and unbalanced designs. They are divided into the chapters
C1 for type I error rates at α = 0.05 for fixed ni and C2 for the power in relation to ni.
Both are available online on the server of the university of Cologne under http://www.uni-
koeln.de/∼ luepsen/statistik/texte/comparison-tables/. An extract of the type I error rates
is given in the appendix: for the interaction AB in case of the null model and the case with
one nonnull main effect in tables 2-4, for factor B in table 5, and for the case of pairing in
table 6. Comparisons of the power are visualized in figures 6 and 7.

4.4. Type I error rates

The type I error rates of the two tests proposed are nearly identical for all distributions,
situations and effects considered. Overall they stay in the range of moderate robustness, for
the interaction AB as well as for both main effects. There are only two exceptions in the
case of heterogeneous variances of factor A: first, the test of the interaction if B has a nonnull
effect, and secondly, the test of B if there is a nonnull interaction. In both situations the
type I error rates rise up to 10 or more for increasing cell counts ni depending on the degree
of heterogeneity (see tables 4 and 5), a problem which Lei, Holt, and Beasley (2004) as well
as Payton, Richter, Giles, and L. (2006) already pointed to. And the rates are even more
upsetting for unequal correlations. On the other side, these two tests are able to control the
type I error rates completely in many situations, where the parametric F test, and often also
the H-F adjustment, fails with rates up to 10 and beyond. Here to mention:

• First the tests for factor B and the interaction AB, when there are heterogeneous vari-
ances (see figure 5 as well as tables 2, 3, 4 and 5), even though the Huynh-Feldt ad-
justment reduces the rates mostly to an acceptable range. Overall the KWF and the
vdWS procedures are more robust regarding heterogeneous variances compared with
the parametric F test, especially in situations where the error rates of the F test are
oscillating around the upper limit of the interval of robustness, e.g. for the test of the
interaction when A is nonnull (see table 3).

• Secondly the cases of negative and positive pairing: when large variances are paired with
small sample sizes, both procedures control the error rates for the test of the interaction
(see figure 5), except the situation mentioned above, if B is nonnull. And for the test of
factor A the KWF method is able to damp the type I error rates down to values below
7 for moderate ni ≤ 30 (see table 6) and below 9.5 for larger cell counts. Also when
large variances are paired with large sample sizes, the rates are under control in most
instances, so that the power of both methods is the best. The type I error rates are
displayed in table 6, where for comparative purposes also those of the ATS are shown,
because this is often described as retaining the error level close to the nominal level in
all situations (see e.g. Noguchi et al. 2012; Luepsen 2018). Perhaps to complete: the
pairing problem has generally no impact on the test of B. Compared with the F test,
including the H-F adjustment, and the ATS method, the KWF procedure seems to be
best in this scenario.

• Thirdly the tests for factor B, when the underlying distribution is normal but con-
taminated (see e.g. table 5). Here the H-F adjustment is unable to reduce the error
rates.

Power
Concerning the power, the F test including the H-F adjustment performs better in many
situations for all three effects, with rates about 10-20% above those of the KWF and the
vdWS procedures, especially for small ni and for an underlying exponential distribution (see
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figure 6) which had to be expected from the studies by Feir and Toothaker (1974) and Ellis
and Haase (1994). But these two procedures can keep up with the F test in most cases of
heterogeneous variances and perform often even better (see e.g. figure 6). On the other side
it will be not surprising that the KWF and the vdWS methods show higher power rates than
the F test in most cases of contaminated normal distributions (see figure 7). For factor A
the two tests proposed cannot outperform the F test, but achieve at least the same level of
power. But things look better for factor B and the interaction. In fact the F test performs
slightly better than the KWF and the vdWS methods for small ni ≤ 20 in some instances, but
generally these two procedures belong to the best performing, with rates between 30% and
100% above those of the F test. And for unequal correlations their performance is even better
with rates between 80% and 150% above those of the F test, and clearly better than all other
procedures (see figure 7). In fact the PS INT and the INT procedures score slightly better for
small designs, but their insufficient type I error control has to be taken into account. Finally
one more positive feature of the KWF and the vdWS methods: in the case of positive pairing
they are the best performing methods, particularly for the interaction with rates about 20-
50% above those of other tests for small ni ≤ 30 (see e.g. figure 6). To make power differences
better visible in the area of small n, where the graphs of the absolute power lie close together,
a relative power is used. The relative power of a method is computed as its (absolute) power
divided by the 25% trimmed mean of the power of all 8 methods in percent.

4.5. Comparisons

How do the two procedures perform compared with other rank based ANOVA procedures? A
stable method, particularly in regard of the type I error control, is the Hyunh-Feldt adjustment
to the F test. It is the favorite for split-plot designs in many studies (see e.g. Stiger et al.
1998). But in this study the H-F adjustment cannot hold completely the error rates in
the interval of moderate robustness, in contrary to the two procedures under consideration,
e.g. in the cases of negative pairing (see table 6) and for contaminated normal distributions
(see e.g. table 5). Furthermore, the H-F adjustment has also lower power rates in case
of contaminated distributions. The best one from the other rank based procedures listed in
section 2 seems to be Koch‘s method. It keeps the type I error rates completely in the interval
of moderate robustness, even in the situations where the KWF and the vdWS methods fail.
But unfortunately Koch‘s procedure has two problems: extreme reactions in the situations
of positive and negative pairing, in contrary to the proposed methods, and the poor power
of the tests for B and AB for ni ≤ 20. Else the normal scores method (INT): in nearly all
situations with heteroscedasticity the error rates exceed the limits of robustness, particularly
for the tests of B and AB with rates rising to 10 and beyond (see e.g. tables 2, 3 and 5), as
well as for the case of negative pairing. Also the ART INT and both Puri & Sen procedures
(PS and PS INT) have severe deficiencies concerning the type I error rates when there are
heterogeneous variances, for the test of B (see e.g. table 5) as well as for the test of AB (see
tables 2 and 3), showing rates up to 10 and more. With regard to the power, the PS INT
procedure is generally able to keep up with the F test in many situations (see e.g. figures 6 and
7). Particularly for the test of the interaction its performance lies above average. In addition
the ART INT method reacts on discrete outcomes with increasing error rates, particularly for
the tests of the main effects (see e.g. table 5). This phenomenon has already been observed
for between subject designs by Luepsen (2017). Finally, the ATS shows exceeding error rates
generally for small and medium cell counts ni ≤ 30, starting often with rates about 15 (ni=5)
and 12 (ni=10), particularly for the test of factor A, but sometimes also for AB and B (see
e.g. tables 3, 5 and 6). This deficiency has been previously noted by Tian and Wilcox (2007).
Furthermore to mention the deficient type I error control in the case of negative pairing (see
table 6). In all of these situations both the KWF and the vdWS methods keep the type I
error under complete control. Advantages of the other methods regarding the power are at
the expense of their increased type I error rates.

Although both, the KWF and the vdWS procedures, show nearly an identical behaviour,
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Figure 5: Relative powerin the range of ni=5,..,30 for the interaction AB and main effect B
(null model, balanced large design, unequal correlations) for 4 different distributions: uniform,
exponential, normal with unequal variances on both factors, and for the case of positive pairing
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there are some minor differences. Concerning the type I error the KWF method is able to
control the situation of negative pairing better than the vdWS method. With regard to the
power there are only very few situations where the vdWS outperforms the KWF method,
e.g. for underlying uniform distributions, while both show equal rates else. Here, compared
with the study for between subject designs (see e.g. Luepsen 2018), a generally better power
performance of the van der Waerden test has been expected.

5. Conclusion

The study showed that both, the KWF and the vdWS procedures, have the same attributes,
that were noted previously by several authors for 1-factorial analyses and mentioned in section
1: robustness in cases of departures from normality and homoscedasticity, but on the other
side, in some situations the need for large samples to achieve a satisfying power. Similarly
this is valid for the test of the interaction, also in the cases of a nonnull model. Both methods
are able to score in cases of heterogeneous conditions such as positive and negative pairing, as
well as in cases of nonnormal distributions such as contaminated normal distributions, where
they belong to the best performing procedures in terms of power and type I error control.
Especially the test of the interaction shows no conspicuous findings. On the other side, the
tests of the effects in case of other nonnull effects revealed a precarious, but possibly rare
problem, which remain covered in a 1-factorial analysis: the tests of B and the interaction
are confounded in the case of heterogeneous variances of factor A. A comparison with other
procedures showed that only the Huynh-Feldt adjustment of the F test and Koch‘s method
are able to compete on the whole. The final deduction: the vdWS method, and even more the
KWF method are reliable tools for analyzing data from split-plot designs for nearly all kinds
of underlying distributions, as long as not the tests of both repeated measures effects show
a remarkable impact. And both methods can be applied using standard statistical software
providing familiar tests.

6. Programming

This study has been programmed in R (version 3.5.3). For the data generation the function
mvrnorm from the package MASS (see e.g. Ripley 1987) has been used to receive multivariate
normal distributed variates. Other multivariate distributions were obtained by suitable data
transformations. Various functions have been chosen to analyze the simulated data: the
function aov in combination with drop1 (to receive type III sum of squares estimates in the
case of unequal cell counts) for the standard ANOVA F-test, an own function np.anova for
the factorial Puri & Sen-tests as well as for the KWF and the vdWS tests, and an own
function koch.anova for Koch‘s nonparametric analysis of split-plot designs. Finally the
function nparLD from the package nparLD has been applied for the ATS method. For the
own functions see Luepsen (2014). Some of the computations have been performed on a
Windows notebook, but for the major part the high performance cluster CHEOPS of the
Regional Computing Centre (RRZK) of the university of Cologne has been used. I would like
to thank the staff of the RRZK for their technical support as well as Prof. Unkelbach for his
organizational support.
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Figure 6: Power for the test of main effect B and the interaction for multivariate normal con-
taminated distributions I and II (unbalanced small design), for equal and unequal correlations
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The following tables give an extract of the type I error rates of the interaction AB as well
as of main effect B for the proposed KWF and vdWS procedures, for the parametric F test
including H-F adjustment, the PS INT, Koch, INT, ART INT and ATS methods. The error
rates are listed for ni=5,50, equal and unequal cell counts, small and large designs, equal and
unequal correlations. Rates outside the interval of liberal robustness are marked bold.
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Table 3: Type I error rates for the interaction AB (null model)

size / correlation small / equal r large / equal r small / unequal r large / unequal r

eq ne eq ne eq ne eq ne

distribution method 5 50 5 50 5 50 5 50 5 50 5 50 5 50 5 50

normal parametric 5.5 5.4 5.9 5.5 7.3 7.6 7.6 7.8 6.2 6.3 7.1 6.3 9.4 10.5 9.2 9.6
hetero B param/HF 4.8 4.8 5.3 4.9 5.0 5.6 5.1 5.8 4.7 4.8 5.3 4.9 5.2 5.9 5.2 5.5
V(B) vdWaerden 4.2 5.2 3.7 5.0 4.7 5.4 4.0 5.5 4.2 5.4 3.6 5.1 5.5 6.3 4.3 6.2

KWF 4.2 5.2 3.7 5.0 4.6 5.3 4.2 5.8 4.2 5.4 3.6 5.1 5.3 6.3 4.3 6.2
PS INT 4.3 5.3 4.9 5.4 5.4 6.8 5.0 7.0 5.1 6.0 5.8 6.0 6.9 9.5 7.0 8.6
Koch 3.6 4.2 3.4 5.0 2.5 4.9 2.3 5.3 3.7 4.5 3.4 4.9 2.6 4.8 2.4 5.0
INT 5.2 5.4 5.8 5.6 6.6 7.0 6.1 7.1 6.2 6.0 7.0 6.1 8.4 9.7 8.2 8.8
ART/INT 5.6 5.3 5.8 5.5 7.0 7.4 6.5 7.4 6.1 6.2 6.9 6.2 8.6 9.9 8.0 8.6
ATS 5.8 5.3 12.1 6.2 4.0 5.0 5.8 5.1 6.2 5.4 10.8 6.0 4.7 5.6 6.9 5.4

normal parametric 6.0 5.6 5.3 4.2 6.6 6.9 5.8 5.4 6.4 6.1 6.0 4.4 7.6 8.0 6.8 6.9
hetero A param/HF 6.0 5.6 5.3 4.2 6.2 6.8 5.5 5.4 5.9 5.8 5.6 4.2 6.2 6.8 5.5 5.9
V(A) vdWaerden 4.5 4.3 3.5 4.8 3.9 5.2 3.6 5.2 4.5 5.2 3.9 5.0 4.6 5.3 4.2 5.8

KWF 4.5 4.3 3.5 4.8 3.9 5.2 3.6 5.0 4.5 5.2 3.9 5.0 4.4 5.2 4.1 5.7
PS INT 4.3 5.5 3.7 4.4 4.6 6.2 4.6 5.3 4.6 5.6 4.7 4.7 5.7 7.1 5.0 6.6
Koch 4.3 5.4 3.7 5.2 3.0 6.2 2.6 5.5 4.1 5.6 3.9 5.6 2.9 6.0 2.8 5.8
INT 5.6 5.6 5.0 4.6 5.8 6.2 5.6 5.5 5.8 5.7 6.0 4.8 7.5 7.2 6.4 6.8
ART/INT 6.2 6.0 5.8 5.2 6.8 7.3 6.2 6.0 7.0 6.3 6.2 5.2 7.4 8.0 7.0 7.3
ATS 5.6 5.0 10.7 5.5 3.5 5.1 4.1 5.0 6.3 5.1 10.4 5.9 4.3 5.1 4.7 5.1

normal parametric 6.5 6.1 6.2 5.1 8.5 8.9 7.9 8.0 7.3 6.7 6.8 5.8 11.3 10.9 9.3 9.6
hetero param/HF 5.9 5.3 5.2 4.5 6.1 6.7 5.9 5.8 5.8 5.4 5.6 4.4 6.3 7.0 5.5 5.9
A and B vdWaerden 4.2 5.2 3.7 5.0 4.7 5.4 4.0 5.5 4.2 5.4 3.6 5.1 5.5 6.3 4.3 6.2
V(A,B) KWF 4.2 5.2 3.7 5.0 4.6 5.3 4.2 5.8 4.2 5.4 3.6 5.1 5.3 6.3 4.3 6.2

PS INT 4.3 5.2 5.0 5.2 5.3 6.8 5.3 6.5 5.2 5.9 5.3 5.6 7.5 9.1 7.0 7.9
Koch 4.2 5.1 3.8 6.1 3.0 5.7 2.8 5.6 3.9 5.1 3.8 5.9 2.8 5.9 2.8 5.7
INT 5.8 5.3 6.2 5.3 6.4 7.0 6.6 6.8 6.5 6.1 6.6 5.7 8.9 9.2 8.1 8.1
ART/INT 6.4 6.2 6.4 6.0 8.2 8.9 7.9 8.0 7.2 7.1 6.9 6.2 10.3 10.8 8.9 9.1
ATS 6.2 5.2 11.6 6.0 3.8 5.0 4.8 5.0 6.5 5.1 10.7 5.8 4.7 5.2 5.7 5.2

exponent parametric 4.8 4.7 6.1 5.3 4.7 4.5 5.8 5.1 5.3 5.4 6.7 5.4 5.5 5.2 6.4 5.5
discrete param/HF 4.4 4.6 5.7 5.3 3.8 4.5 5.0 4.9 4.3 4.8 5.9 4.8 4.3 4.4 5.1 4.8

vdWaerden 4.6 5.0 4.2 5.0 3.9 4.7 4.0 5.0 4.8 5.2 4.5 4.6 4.6 5.3 4.1 5.4
KWF 4.7 5.0 4.2 5.0 3.9 4.7 3.9 4.9 4.6 5.3 4.5 4.7 4.6 5.4 4.0 5.3
PS INT 4.4 4.8 4.8 5.2 3.6 4.6 4.1 5.2 5.1 5.5 6.0 5.2 5.0 6.2 5.0 5.6
Koch 3.8 4.8 3.6 5.5 2.7 4.6 2.8 5.0 3.8 5.3 3.4 4.9 2.5 4.7 2.6 5.0
INT 5.5 5.1 5.8 5.4 4.8 4.8 4.9 5.3 6.6 5.6 7.0 5.4 6.0 6.5 6.2 5.8
ART/INT 5.6 4.9 6.1 5.5 5.1 4.8 5.2 5.3 5.8 5.5 6.4 5.3 5.7 5.5 5.9 5.6
ATS 6.1 5.2 11.2 5.7 3.0 4.7 5.4 5.2 6.8 5.2 10.4 5.3 4.0 5.2 5.4 5.0

uniform parametric 5.1 4.6 5.9 5.8 4.8 5.0 5.2 5.4 5.6 5.5 6.4 5.6 5.8 6.2 5.9 5.8
discrete param/HF 5.4 4.7 5.9 5.8 4.9 5.0 5.3 5.4 5.2 5.1 5.9 5.3 5.2 5.4 5.0 5.3

vdWaerden 4.2 4.9 3.8 5.3 4.0 4.8 3.8 5.2 4.2 4.8 3.9 5.3 4.4 5.4 3.8 5.9
KWF 4.2 5.0 3.8 5.4 4.0 4.8 3.9 5.2 4.2 4.8 3.9 5.4 4.4 5.4 3.9 5.9
PS INT 4.2 4.7 4.8 5.7 3.9 5.0 3.9 5.2 4.5 5.2 5.2 5.3 4.8 6.2 4.5 5.8
Koch 3.6 4.8 3.2 5.7 2.6 4.9 2.2 5.0 3.4 4.7 3.1 5.2 2.4 5.2 2.4 4.9
INT 5.2 4.8 5.8 5.8 4.9 5.2 5.1 5.3 5.3 5.4 6.3 5.5 5.9 6.2 5.8 6.1
ART/INT 5.4 4.8 5.7 5.6 4.6 4.9 5.2 5.4 5.7 5.5 6.3 5.6 5.8 6.3 5.8 5.9
ATS 6.0 4.7 11.4 5.7 3.7 4.8 5.5 5.5 5.9 5.2 10.0 5.7 4.2 5.2 5.8 4.8

normal parametric 4.9 5.1 5.4 5.9 5.5 5.3 5.7 5.4 5.1 5.3 5.4 4.8 5.4 5.5 5.7 5.4
contamintd param/HF 4.4 4.9 5.2 5.8 5.3 5.2 5.2 5.0 4.7 5.1 5.1 4.8 4.8 5.3 5.2 5.0
III vdWaerden 5.0 4.7 4.6 4.8 4.2 5.2 4.6 5.2 4.4 5.2 3.8 4.9 4.8 5.2 4.6 5.2

KWF 5.0 4.7 4.6 4.8 4.2 4.9 4.5 5.2 4.4 5.2 3.8 4.9 4.8 5.2 4.5 5.2
PS INT 4.3 4.8 4.1 5.5 3.8 5.0 4.5 5.1 4.3 4.8 4.2 4.6 4.0 5.2 4.5 5.1
Koch 3.9 4.8 3.2 5.1 3.0 5.0 2.8 4.7 3.8 4.7 3.1 4.5 3.0 5.1 2.8 4.7
INT 5.5 4.9 5.0 5.6 4.8 5.2 5.4 5.3 5.4 4.9 5.3 4.8 5.3 5.5 5.4 5.3
ART/INT 5.3 4.9 5.6 5.8 5.4 5.3 6.0 5.2 5.3 5.3 5.6 4.7 5.9 5.6 6.0 5.2
ATS 6.5 5.1 10.4 5.4 3.6 4.8 5.6 4.6 6.0 5.3 8.9 5.6 4.1 5.2 5.6 4.6
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Table 4: Type I error rates for the interaction AB (model with nonnull A effect)

size / correlation small / equal r large / equal r small / unequal r large / unequal r

eq ne eq ne eq ne eq ne

distribution method 5 50 5 50 5 50 5 50 5 50 5 50 5 50 5 50

normal parametric 5.5 5.4 5.9 5.5 7.3 7.6 7.6 7.8 6.2 6.3 7.1 6.3 9.4 10.5 9.2 9.6
hetero B param/HF 4.8 4.8 5.3 4.9 5.0 5.6 5.1 5.8 4.7 4.8 5.3 4.9 5.2 5.9 5.2 5.5
V(B) vdWaerden 4.2 5.2 3.7 5.0 4.7 5.4 4.0 5.5 4.2 5.4 3.6 5.1 5.5 6.3 4.3 6.2

KWF 4.2 5.2 3.7 5.0 4.6 5.3 4.2 5.8 4.2 5.4 3.6 5.1 5.3 6.3 4.3 6.2
PS INT 4.2 5.2 4.9 5.5 5.4 7.2 5.1 7.2 5.2 6.2 5.9 6.4 7.5 10.0 7.5 9.3
Koch 3.6 4.2 3.4 5.0 2.5 4.9 2.3 5.3 3.7 4.5 3.4 4.9 2.6 4.8 2.4 5.0
INT 5.2 5.3 6.0 5.7 6.8 7.2 6.4 7.2 6.2 6.2 7.1 6.6 8.6 10.2 8.6 9.4
ART/INT 5.6 5.3 5.8 5.5 7.0 7.4 6.5 7.4 6.1 6.2 6.9 6.2 8.6 9.9 8.0 8.6
ATS 6.0 8.2 11.6 7.4 4.8 10.4 6.1 8.1 6.6 9.2 11.5 8.2 5.5 11.2 7.2 8.4

normal parametric 6.0 5.6 5.3 4.2 6.6 6.9 5.8 5.4 6.4 6.1 6.0 4.4 7.6 8.0 6.8 6.9
hetero A param/HF 6.0 5.6 5.3 4.2 6.2 6.8 5.5 5.4 5.9 5.8 5.6 4.2 6.2 6.8 5.5 5.9
V(A) vdWaerden 4.5 4.3 3.5 4.8 3.9 5.2 3.6 5.2 4.5 5.2 3.9 5.0 4.6 5.3 4.2 5.8

KWF 4.5 4.3 3.5 4.8 3.9 5.2 3.6 5.0 4.5 5.2 3.9 5.0 4.4 5.2 4.1 5.7
PS INT 4.5 5.3 4.2 4.7 4.4 6.0 4.4 5.4 4.3 5.8 4.9 5.0 5.8 7.2 5.1 6.8
Koch 4.3 5.4 3.7 5.2 3.0 6.2 2.6 5.5 4.1 5.6 3.9 5.6 2.9 6.0 2.8 5.8
INT 5.4 5.5 5.4 5.0 5.7 6.2 5.6 5.5 5.7 5.9 6.2 5.1 6.9 7.3 6.2 7.0
ART/INT 6.2 6.0 5.8 5.2 6.8 7.3 6.2 6.0 7.0 6.3 6.2 5.2 7.4 8.0 7.0 7.3
ATS 5.8 5.1 10.9 5.6 3.8 5.1 4.0 5.0 6.2 5.1 10.4 5.8 4.3 5.1 4.3 5.0

normal parametric 6.5 6.1 6.2 5.1 8.5 8.9 7.9 8.0 7.3 6.7 6.8 5.8 11.3 10.9 9.3 9.6
hetero param/HF 5.9 5.3 5.2 4.5 6.1 6.7 5.9 5.8 5.8 5.4 5.6 4.4 6.3 7.0 5.5 5.9
A and B vdWaerden 4.2 5.2 3.7 5.0 4.7 5.4 4.0 5.5 4.2 5.4 3.6 5.1 5.5 6.3 4.3 6.2
V(A,B) KWF 4.2 5.2 3.7 5.0 4.6 5.3 4.2 5.8 4.2 5.4 3.6 5.1 5.3 6.3 4.3 6.2

PS INT 4.4 5.8 4.8 6.0 5.9 8.3 5.3 7.5 5.5 6.8 5.7 6.6 7.6 10.1 7.1 9.2
Koch 4.2 5.1 3.8 6.1 3.0 5.7 2.8 5.6 3.9 5.1 3.8 5.9 2.8 5.9 2.8 5.7
INT 5.6 5.9 6.2 6.1 7.1 8.5 6.6 7.8 6.5 7.2 6.9 6.9 9.2 10.4 8.2 9.4
ART/INT 6.4 6.2 6.4 6.0 8.2 8.9 7.9 8.0 7.2 7.1 6.9 6.2 10.3 10.8 8.9 9.1
ATS 6.2 8.8 11.9 7.6 4.6 10.3 5.3 8.4 6.9 10.3 11.2 8.9 5.8 10.6 6.2 8.7

exponent parametric 5.3 5.6 4.1 3.9 5.5 5.2 6.1 5.5 5.3 5.3 4.5 4.4 5.7 6.1 6.8 6.9
discrete param/HF 4.9 5.4 3.8 3.6 4.5 5.0 4.8 5.3 4.4 4.7 3.8 4.1 4.2 5.2 4.9 5.6

vdWaerden 3.9 5.2 3.2 4.6 3.9 4.7 3.6 4.5 4.4 5.7 3.5 4.2 4.6 5.1 4.2 5.8
KWF 3.8 5.2 3.1 4.6 4.1 4.8 3.5 4.3 4.4 5.7 3.4 4.3 4.3 5.2 4.1 5.6
PS INT 4.0 5.3 3.3 4.5 3.7 4.6 4.0 5.1 4.6 5.7 4.3 4.2 4.5 5.8 4.7 6.5
Koch 3.5 5.1 2.7 4.7 2.8 4.4 2.5 4.7 3.6 5.4 2.6 3.9 2.8 4.5 2.7 5.3
INT 4.7 5.4 4.4 4.6 4.9 4.6 5.1 5.2 5.6 5.8 5.2 4.4 5.3 5.8 6.0 6.6
ART/INT 5.7 6.0 4.5 4.9 5.8 5.4 6.2 5.7 6.4 6.1 4.8 4.9 6.4 6.4 6.7 6.8
ATS 6.1 5.0 10.4 4.9 3.4 4.4 4.9 4.7 6.1 5.8 8.8 4.6 4.0 4.7 5.3 5.3

uniform parametric 5.2 4.8 5.6 5.3 4.7 5.2 4.3 5.2 5.3 5.1 6.1 5.4 6.3 6.4 5.3 5.8
discrete param/HF 5.4 4.8 5.5 5.2 4.6 5.2 4.5 5.2 5.0 4.8 5.6 5.2 5.8 5.6 4.8 5.0

vdWaerden 4.1 5.0 3.5 5.1 4.0 4.9 3.3 5.4 4.4 4.7 3.9 5.1 5.1 5.7 3.6 5.4
KWF 4.2 4.9 3.5 4.9 4.0 5.1 3.3 5.4 4.4 4.7 3.9 5.0 5.0 5.7 3.5 5.3
PS INT 4.2 4.6 4.2 5.2 3.5 5.5 3.5 5.1 4.2 4.9 4.6 4.9 5.3 6.2 4.2 6.1
Koch 3.8 4.5 3.3 5.2 2.6 5.2 2.6 5.1 3.6 4.6 3.2 4.8 2.7 5.1 2.7 4.6
INT 5.2 4.8 5.3 5.3 4.5 5.6 4.2 5.3 5.2 5.1 5.8 5.0 6.3 6.4 5.4 6.3
ART/INT 5.2 4.8 5.1 5.3 4.7 5.3 4.4 5.2 5.5 5.1 5.7 5.5 6.2 6.4 5.4 5.8
ATS 6.0 4.8 10.9 5.8 3.4 4.7 5.2 5.5 5.9 4.8 10.3 5.7 4.6 5.2 5.4 4.9

normal parametric 4.9 5.1 5.4 5.9 5.5 5.3 5.3 4.9 5.1 5.3 5.4 4.8 5.4 5.5 5.7 5.4
contamintd param/HF 4.4 4.9 5.2 5.8 5.3 5.2 4.9 4.7 4.7 5.1 5.1 4.8 4.8 5.3 5.2 5.0
III vdWaerden 5.0 4.7 4.6 4.8 4.2 5.2 3.8 4.8 4.4 5.2 3.8 4.9 4.8 5.2 4.6 5.2

KWF 5.0 4.7 4.6 4.8 4.2 4.9 3.8 4.8 4.4 5.2 3.8 4.9 4.8 5.2 4.5 5.2
PS INT 4.3 4.8 4.5 5.6 4.2 5.0 3.9 4.3 4.4 4.9 5.0 5.1 4.3 5.3 4.5 5.0
Koch 3.9 4.8 3.2 5.1 3.0 5.0 2.6 4.2 3.8 4.7 3.1 4.5 3.0 5.1 2.8 4.7
INT 5.6 4.8 5.8 5.8 5.1 5.1 4.9 4.6 5.4 5.0 6.0 5.2 5.5 5.5 5.5 5.2
ART/INT 5.3 4.9 5.6 5.8 5.4 5.3 5.3 4.9 5.3 5.3 5.6 4.7 5.9 5.6 6.0 5.2
ATS 6.2 5.0 10.6 5.4 3.5 4.9 6.0 4.9 6.0 5.0 9.0 5.5 4.0 5.4 5.9 4.8
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Table 5: type I error rates for the interaction AB (model with nonnull B effect)
size / correlation small / equal r large / equal r small / unequal r large / unequal r

eq ne eq ne eq ne eq ne

distribution method 5 50 5 50 5 50 5 50 5 50 5 50 5 50 5 50

normal parametric 5.5 5.4 5.9 5.5 7.3 7.6 7.6 7.8 6.2 6.3 7.1 6.3 9.4 10.5 9.2 9.6
hetero B param/HF 4.8 4.8 5.3 4.9 5.0 5.6 5.1 5.8 4.7 4.8 5.3 4.9 5.2 5.9 5.2 5.5
V(B) vdWaerden 3.0 3.4 2.8 3.4 2.5 3.2 2.2 3.4 2.4 3.0 2.1 3.2 2.4 2.9 2.3 3.0

KWF 3.0 3.4 2.8 3.4 2.3 3.0 2.2 3.3 2.4 3.0 2.1 3.2 2.2 2.8 2.1 2.7
PS INT 2.6 3.5 2.9 3.3 2.9 4.0 2.6 4.2 2.9 3.5 3.2 3.5 4.0 5.8 3.7 5.3
Koch 3.6 4.2 3.4 5.0 2.5 4.9 2.3 5.3 3.7 4.5 3.4 4.9 2.6 4.8 2.4 5.0
INT 5.5 5.3 5.8 5.5 6.4 7.1 6.1 7.2 6.1 6.2 7.1 6.0 8.4 10.0 8.1 9.0
ART/INT 5.6 5.3 5.8 5.5 7.0 7.4 6.5 7.4 6.1 6.2 6.9 6.2 8.6 9.9 8.0 8.6
ATS 6.2 5.0 11.4 6.3 3.9 5.0 5.6 4.9 6.2 5.5 11.0 6.3 5.0 5.7 6.8 5.4

normal parametric 5.4 5.3 5.4 4.5 6.7 7.3 5.6 5.8 6.0 6.3 5.8 5.0 7.6 8.0 6.4 6.6
hetero A param/HF 5.5 5.3 5.2 4.4 6.4 7.3 5.3 5.8 5.5 5.8 5.3 4.7 6.2 6.8 5.5 5.8
V(A) vdWaerden 4.1 8.7 4.0 9.7 4.3 9.4 3.7 10.3 4.0 12.9 4.4 15.7 3.2 29.2 3.8 12.9

KWF 4.1 8.7 4.0 9.7 4.2 9.5 3.7 10.3 4.0 12.9 4.4 15.7 3.2 29.6 3.6 12.9
PS INT 3.5 4.7 3.9 3.5 3.8 5.4 3.1 4.9 3.1 4.8 3.4 4.2 3.0 4.1 4.2 5.4
Koch 3.8 5.6 3.8 5.2 3.3 6.2 3.0 5.7 3.9 5.8 3.4 5.6 2.9 6.0 3.0 5.8
INT 5.1 5.4 5.6 4.6 6.2 6.8 5.1 5.9 5.6 6.3 5.7 5.4 7.2 7.9 6.7 7.0
ART/INT 5.7 5.6 5.7 5.2 6.8 7.5 6.1 6.6 6.4 6.8 5.8 5.7 7.4 8.0 6.7 7.2
ATS 6.1 6.2 10.5 6.2 4.0 6.2 3.9 6.5 5.8 7.2 10.2 6.5 5.2 12.3 4.3 6.4

normal parametric 5.4 5.3 5.4 4.5 6.7 7.3 5.6 5.8 6.0 6.3 5.8 5.0 11.3 10.9 6.4 6.6
hetero param/HF 5.5 5.3 5.2 4.4 6.4 7.3 5.3 5.8 5.5 5.8 5.3 4.7 6.3 7.0 5.5 5.8
A and B vdWaerden 3.7 13.2 3.6 16.7 4.0 14.0 3.5 14.1 3.1 18.6 3.7 25.5 3.6 28.1 3.3 19.0
V(A,B) KWF 3.7 13.2 3.6 16.7 3.8 13.8 3.6 13.9 3.1 18.6 3.7 25.5 3.5 29.1 3.3 19.2

PS INT 2.9 3.9 3.1 2.7 3.4 4.5 2.8 4.2 2.1 3.4 2.2 2.9 4.0 6.0 3.3 4.4
Koch 3.8 5.6 3.8 5.2 3.3 6.2 3.0 5.7 3.9 5.8 3.4 5.6 2.8 5.9 3.0 5.8
INT 5.0 5.5 5.8 4.6 6.3 6.8 5.1 5.9 5.9 6.6 5.5 5.7 9.6 10.6 6.8 7.0
ART/INT 5.7 5.6 5.7 5.2 6.8 7.5 6.1 6.6 6.4 6.8 5.8 5.7 10.3 10.8 6.7 7.2
ATS 6.0 7.8 11.3 6.7 4.1 7.6 4.0 7.5 6.4 9.9 10.9 7.8 5.5 11.6 4.4 7.9

exponent parametric 5.5 5.4 6.4 5.2 5.6 5.6 6.0 5.9 4.9 5.4 6.4 5.6 5.6 5.1 5.6 6.1
discrete param/HF 4.3 4.8 5.5 4.7 4.0 4.6 4.5 5.0 4.2 5.1 5.8 5.4 4.2 4.3 4.6 5.2

vdWaerden 3.9 3.9 3.4 4.2 2.7 3.7 2.3 3.7 2.9 3.1 2.9 3.3 2.5 3.6 2.2 3.7
KWF 3.8 3.9 3.4 4.2 2.8 3.8 2.2 3.8 2.9 3.0 2.9 3.3 2.5 3.5 2.1 3.9
PS INT 3.3 3.9 3.9 4.3 2.4 3.4 2.1 3.5 2.6 3.5 3.5 3.5 2.5 3.5 2.3 3.6
Koch 4.0 4.5 3.6 5.3 2.5 4.4 2.4 4.6 3.6 5.1 4.0 5.0 2.5 4.4 2.0 5.0
INT 5.4 5.1 5.9 5.5 4.8 5.3 4.6 5.0 5.9 5.8 6.7 5.1 5.3 5.6 4.7 5.7
ART/INT 5.8 5.1 6.0 5.4 5.6 5.4 5.4 5.5 5.5 5.6 6.1 5.4 5.6 5.1 5.3 6.1
ATS 6.4 5.0 12.0 5.9 3.4 4.5 4.7 4.7 6.6 5.2 10.6 5.2 3.8 5.1 4.8 4.7

uniform parametric 5.5 4.9 5.8 5.2 4.9 5.3 4.2 4.9 5.5 5.0 6.6 5.8 6.0 6.4 5.2 5.7
discrete param/HF 5.5 5.0 5.9 5.3 5.1 5.2 4.2 4.8 5.1 4.8 6.1 5.4 5.4 5.5 4.8 5.2

vdWaerden 3.1 3.1 2.2 3.3 1.9 2.6 1.8 3.1 1.8 2.0 1.7 2.5 1.8 2.4 1.6 2.1
KWF 3.1 3.1 2.3 3.3 2.0 2.7 1.8 3.2 1.8 2.0 1.8 2.5 1.9 2.5 1.7 2.1
PS INT 2.1 2.9 2.7 3.1 1.4 2.3 1.5 2.5 1.7 1.9 2.0 2.3 1.8 2.3 1.7 2.1
Koch 3.6 4.7 3.1 5.2 2.5 4.9 2.5 5.0 3.7 4.4 3.2 5.3 2.5 4.9 2.4 4.7
INT 5.4 4.8 5.8 5.2 4.7 4.9 4.2 5.0 5.2 5.0 6.0 5.7 5.8 6.1 5.2 5.5
ART/INT 5.5 4.9 5.6 5.2 4.9 5.2 4.3 4.9 5.6 4.9 6.2 5.7 6.1 6.3 5.2 5.7
ATS 6.1 4.7 11.0 5.4 3.7 4.9 5.2 5.6 5.8 4.8 10.8 5.8 4.2 5.1 5.7 5.0

normal parametric 4.9 5.1 5.4 5.9 5.5 5.3 5.3 4.9 5.1 5.3 5.4 4.8 5.4 5.5 5.7 5.4
contamintd param/HF 4.4 4.9 5.2 5.8 5.3 5.2 4.9 4.7 4.7 5.1 5.1 4.8 4.8 5.3 5.2 5.0
III vdWaerden 3.2 4.2 3.5 4.3 3.0 3.8 2.2 3.3 3.0 3.5 2.8 3.3 3.0 3.6 2.6 3.6

KWF 3.2 4.2 3.5 4.3 2.9 3.9 2.2 3.0 3.0 3.5 2.8 3.3 2.9 3.6 2.8 3.7
PS INT 3.6 4.1 3.7 4.6 3.1 3.8 2.8 3.5 3.4 4.0 3.6 3.8 3.2 4.2 3.4 3.8
Koch 3.9 4.8 3.2 5.1 3.0 5.0 2.6 4.2 3.8 4.7 3.1 4.5 3.0 5.1 2.8 4.7
INT 5.3 5.2 5.2 5.6 5.0 5.2 5.0 4.6 5.5 5.0 5.9 4.9 5.8 5.6 5.8 5.4
ART/INT 5.3 4.9 5.6 5.8 5.4 5.3 5.3 4.9 5.3 5.3 5.6 4.7 5.9 5.6 6.0 5.2
ATS 6.3 5.2 10.4 5.2 3.8 4.9 5.6 4.6 6.2 5.3 9.0 5.6 4.2 5.6 5.6 4.8
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Table 6: Type I error rates for main effect B (model with nonnull A effect)

size / correlation small / equal r large / equal r small / unequal r large / unequal r

eq ne eq ne eq ne eq ne

distribution method 5 50 5 50 5 50 5 50 5 50 5 50 5 50 5 50

normal parametric 5.8 5.9 5.9 5.9 7.3 6.8 7.2 6.8 6.4 6.6 6.4 6.6 8.5 8.1 8.4 8.1
hetero B param/HF 5.3 5.3 5.6 5.2 5.9 5.2 5.8 5.3 5.4 5.2 5.5 5.2 5.7 5.0 5.8 5.1
V(B) vdWaerden 6.0 5.4 6.0 5.4 5.2 5.1 5.2 5.1 5.7 5.3 5.7 5.3 5.9 5.0 5.9 5.0

KWF 6.0 5.4 6.0 5.4 5.2 5.2 5.2 5.2 5.7 5.3 5.7 5.3 5.9 5.0 5.9 5.0
PS INT 5.4 5.3 5.4 5.5 6.1 5.6 6.1 5.6 6.2 6.3 6.0 6.1 7.4 7.3 7.4 7.3
Koch 5.2 5.4 5.2 5.4 4.0 4.5 4.0 4.5 5.5 5.5 5.5 5.5 4.1 4.5 4.1 4.5
INT 5.9 5.5 5.9 5.4 6.5 5.6 6.4 5.6 6.9 6.3 6.5 6.1 7.6 7.4 7.4 7.4
ART/INT 5.9 5.2 6.0 5.1 6.6 5.7 6.3 5.8 6.5 6.3 6.5 6.4 7.9 7.3 7.8 7.3
ATS 7.6 6.2 11.5 6.3 6.5 5.6 6.7 5.7 8.4 7.0 11.3 7.1 6.5 5.8 7.1 5.6

normal parametric 5.6 5.4 5.4 5.6 5.3 5.3 5.2 5.2 6.0 6.1 6.0 6.0 6.3 6.2 6.1 6.2
hetero A param/HF 5.6 5.4 5.5 5.5 4.9 5.2 4.8 5.2 5.4 5.7 5.5 5.5 5.5 5.6 5.3 5.4
A vdWaerden 5.1 5.6 5.1 5.6 5.2 5.3 5.2 5.3 5.6 5.9 5.6 5.9 5.0 5.2 5.0 5.2
V(A) KWF 5.1 5.6 5.1 5.6 5.0 5.3 5.0 5.3 5.6 5.9 5.6 5.9 4.9 5.0 4.9 5.0

PS INT 4.8 5.6 5.0 5.6 4.4 5.1 4.3 5.2 5.3 5.6 5.3 5.8 5.5 5.8 5.4 5.9
Koch 4.8 5.8 4.8 5.8 4.0 5.2 4.0 5.2 5.6 6.0 5.6 6.0 4.1 5.0 4.1 5.0
INT 5.7 5.8 5.9 5.7 5.2 5.2 5.3 5.3 5.8 5.7 5.8 5.8 6.1 6.1 6.2 6.0
ART/INT 6.3 6.4 6.8 6.7 6.5 6.7 6.8 7.0 6.7 6.8 7.1 6.8 7.8 7.3 7.7 7.4
ATS 6.7 5.5 9.7 5.6 4.8 5.0 4.9 5.0 6.2 5.5 9.4 5.2 5.5 4.9 5.4 4.9

normal parametric 6.3 5.8 6.5 5.6 7.0 7.1 7.2 7.2 7.3 6.6 7.1 6.5 8.5 8.4 8.5 8.4
hetero param/HF 5.7 5.2 5.6 5.0 5.3 5.2 5.4 5.4 5.8 5.2 5.8 5.3 5.4 5.5 5.5 5.4
A and B vdWaerden 6.0 5.4 6.0 5.4 5.2 5.1 5.2 5.1 5.7 5.3 5.7 5.3 5.9 5.0 5.9 5.0
V(A,B) KWF 6.0 5.4 6.0 5.4 5.2 5.2 5.2 5.2 5.7 5.3 5.7 5.3 5.9 5.0 5.9 5.0

PS INT 5.3 6.3 5.3 6.9 6.4 8.4 6.5 9.0 6.2 8.2 6.2 8.5 7.5 10.5 7.6 10.8
Koch 5.2 5.4 5.2 5.4 4.0 4.5 4.0 4.5 5.5 5.5 5.5 5.5 4.1 4.5 4.1 4.5
INT 6.0 6.4 6.0 7.0 6.8 8.6 7.0 9.1 7.0 8.2 6.8 8.7 8.1 10.7 8.1 11.0
ART/INT 7.9 8.4 8.6 9.4 8.9 12.5 9.4 13.5 9.2 10.8 9.8 11.8 11.1 14.7 11.5 15.0
ATS 7.5 7.1 11.4 6.3 6.6 7.6 6.3 7.4 8.2 7.7 11.1 7.0 6.6 7.4 6.7 7.2

exponent parametric 4.3 4.9 5.0 5.0 4.6 4.8 4.6 4.7 4.4 4.9 5.3 5.2 5.0 6.0 5.0 6.0
discrete param/HF 3.7 4.8 4.3 4.9 3.4 4.6 3.5 4.6 3.9 4.5 4.4 4.6 3.4 4.9 3.4 4.9

vdWaerden 4.2 4.6 5.2 4.6 4.7 4.8 4.7 4.8 4.3 5.1 5.3 5.2 4.9 5.4 4.9 5.4
KWF 4.3 4.6 5.2 4.5 5.0 4.9 5.0 4.9 4.5 5.1 5.4 5.2 4.9 5.4 4.9 5.4
PS INT 4.2 4.3 4.7 4.9 4.4 5.1 4.4 5.1 4.3 5.1 5.2 4.9 4.6 5.6 4.6 5.6
Koch 4.2 4.6 5.0 4.5 3.6 4.9 3.6 4.9 4.2 5.0 4.7 4.9 3.3 4.9 3.3 4.9
INT 4.7 4.4 5.2 5.1 4.7 5.1 4.7 5.2 4.7 5.2 5.5 5.0 4.8 5.6 4.9 5.7
ART/INT 5.3 7.2 5.8 7.5 4.5 4.4 5.6 5.7 6.4 9.6 6.5 10.8 5.3 6.3 6.2 8.2
ATS 5.3 4.6 8.6 5.0 4.6 5.4 5.7 4.6 5.6 5.0 8.2 4.8 4.3 4.6 5.2 4.9

uniform parametric 6.1 5.2 5.8 5.5 4.8 5.2 4.8 5.2 5.6 5.8 5.5 5.5 5.9 5.7 5.9 5.7
discrete param/HF 6.0 5.3 6.0 5.5 4.7 5.2 4.8 5.2 5.4 5.4 5.3 5.2 5.5 5.3 5.5 5.2

vdWaerden 5.2 5.2 5.3 5.2 5.2 5.3 5.2 5.3 4.8 5.2 4.8 5.2 5.3 5.5 5.3 5.5
KWF 5.4 5.2 5.4 5.3 5.2 5.4 5.2 5.4 4.8 5.2 4.9 5.3 5.2 5.4 5.2 5.4
PS INT 5.5 5.3 5.4 5.3 4.3 5.2 4.3 5.2 5.0 5.6 5.2 5.5 5.6 6.0 5.6 6.0
Koch 5.0 5.2 5.1 5.1 3.8 5.6 3.8 5.6 4.5 5.2 4.6 5.3 3.9 5.4 3.9 5.4
INT 6.0 5.6 5.8 5.3 4.7 5.3 4.6 5.3 5.6 5.7 5.7 5.6 6.2 6.1 6.0 6.0
ART/INT 6.3 11.2 6.9 13.8 5.1 9.3 5.7 16.3 6.7 14.5 7.5 19.1 6.5 11.8 7.2 19.4
ATS 6.7 5.2 10.4 6.1 4.6 5.1 5.7 5.2 6.1 5.4 9.0 5.5 5.4 5.0 5.9 5.3

normal parametric 5.2 10.2 5.5 10.2 6.0 16.1 6.2 16.2 5.0 10.8 5.2 10.8 6.6 17.7 6.6 17.6
contamintd param/HF 4.9 9.9 5.0 9.8 5.2 15.5 5.2 15.5 4.4 10.3 4.5 10.4 5.8 16.9 5.6 17.0
III vdWaerden 5.6 5.3 5.6 5.3 4.8 5.8 4.8 5.8 5.1 4.7 5.1 4.7 4.5 5.7 4.5 5.7

KWF 5.6 5.3 5.6 5.3 4.8 5.7 4.8 5.7 5.1 4.7 5.1 4.7 4.6 5.6 4.6 5.6
PS INT 5.1 6.9 5.0 6.8 4.8 9.7 4.8 9.7 4.4 7.3 4.5 7.4 5.3 10.5 5.3 10.5
Koch 5.3 5.5 5.3 5.5 4.0 5.8 4.0 5.8 5.0 4.8 5.0 4.8 3.8 5.2 3.8 5.2
INT 5.6 7.0 5.4 6.9 5.3 9.6 5.3 9.6 4.9 7.3 5.2 7.4 5.8 10.5 5.7 10.5
ART/INT 4.7 6.6 4.9 7.0 4.6 9.3 4.8 9.4 4.6 7.0 5.1 6.9 5.0 9.9 5.2 10.2
ATS 6.2 5.3 9.6 5.8 4.9 5.6 5.8 5.4 5.7 5.2 8.6 5.4 4.9 6.0 5.8 6.0
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Table 7: Type I error rates for all models for the cases of positive and negative pairing, here
e.g. A(B) denotes the test of factor A with a nonnull effect of factor B

pairing positive negative

covariance equal r equal r unequal r unequal r

size small large small large small large small large

model method n 5 50 5 50 5 50 5 50 5 50 5 50 5 50 5 50

A(-) parametric 2.9 2.1 2.0 2.0 3.0 2.2 2.0 1.9 11.1 11.3 12.6 12.9 11.3 11.2 12.5 12.8
vdWaerden 2.7 2.0 1.8 1.7 2.7 2.0 1.9 1.8 6.6 9.8 6.9 10.2 6.9 9.8 7.0 10.3
KWF 2.8 3.1 2.4 2.6 2.9 3.0 2.4 2.6 5.5 8.3 6.2 9.1 5.5 8.2 6.3 8.8
Koch 2.8 3.1 2.5 2.7 2.9 3.1 2.4 2.7 5.8 8.2 6.8 9.1 5.8 8.2 6.9 8.8
ATS 12.4 5.1 10.3 5.7 13.0 5.4 11.0 5.4 16.5 6.2 13.6 6.4 18.3 6.5 14.1 6.3

A(B) parametric 2.9 2.1 2.0 2.0 3.0 2.2 2.0 1.9 11.1 11.3 12.6 12.9 11.3 11.2 12.5 12.8
vdWaerden 2.7 2.0 1.8 1.7 2.7 2.0 1.9 1.8 6.6 9.8 6.9 10.2 6.9 9.8 7.0 10.3
KWF 2.8 3.1 2.4 2.6 2.9 3.0 2.4 2.6 5.5 8.3 6.2 9.1 5.5 8.2 6.3 8.8
Koch 2.8 3.1 2.5 2.7 2.9 3.1 2.4 2.7 5.8 8.2 6.8 9.1 5.8 8.2 6.9 8.8
ATS 12.3 5.3 10.5 5.7 12.6 5.3 11.0 5.4 17.1 6.1 13.7 6.3 18.0 6.4 14.4 6.3

A(AB) parametric 2.4 2.1 2.0 2.0 2.5 2.1 2.0 1.9 14.5 13.5 12.6 12.9 14.7 13.6 12.5 12.8
vdWaerden 2.2 2.0 1.8 1.7 2.6 1.8 1.9 1.8 8.2 10.9 6.9 10.2 7.5 10.6 7.0 10.3
KWF 2.6 3.1 2.4 2.6 2.8 2.9 2.4 2.6 6.7 9.4 6.2 9.1 6.0 9.6 6.3 8.8
Koch 2.8 3.0 2.5 2.7 2.8 2.7 2.4 2.7 7.2 9.2 6.8 9.1 6.5 9.4 6.9 8.8
ATS 10.6 6.3 10.5 5.8 11.5 6.3 10.9 5.6 17.8 6.8 13.8 6.4 18.8 6.9 14.2 6.3

B(-) parametric 5.1 5.8 4.2 4.8 5.7 6.0 5.2 6.2 6.3 5.8 6.4 5.5 6.8 6.0 7.4 6.6
param/HF 4.9 5.9 4.1 4.8 5.1 5.6 4.6 5.3 6.2 5.7 6.2 5.4 6.3 5.7 6.6 5.8
vdWaerden 4.7 5.6 5.1 5.2 5.6 6.1 4.9 5.0 4.7 5.6 5.0 5.5 5.6 6.1 5.2 5.6
KWF 4.7 5.6 5.0 5.2 5.6 6.1 4.8 4.9 4.7 5.6 5.0 5.5 5.6 6.1 5.3 5.3
Koch 4.8 5.8 4.0 5.2 5.6 6.0 4.1 5.0 4.8 5.8 4.0 5.2 5.6 6.0 3.7 5.1
ATS 8.8 5.7 5.3 4.9 8.6 5.3 5.6 5.0 10.3 5.8 5.7 5.2 9.0 5.6 6.1 5.3

B(A) parametric 5.1 5.8 4.2 4.8 5.7 6.0 5.2 6.2 6.3 5.8 6.4 5.5 6.8 6.0 7.4 6.6
param/HF 4.9 5.9 4.1 4.8 5.1 5.6 4.6 5.3 6.2 5.7 6.2 5.4 6.3 5.7 6.6 5.8
vdWaerden 4.7 5.6 5.1 5.2 5.6 6.1 4.9 5.0 4.7 5.6 5.0 5.5 5.6 6.1 5.2 5.6
KWF 4.7 5.6 5.0 5.2 5.6 6.1 4.8 4.9 4.7 5.6 5.0 5.5 5.6 6.1 5.3 5.3
Koch 4.8 5.8 4.0 5.2 5.6 6.0 4.1 5.0 4.8 5.8 4.0 5.2 5.6 6.0 3.7 5.1
ATS 8.8 5.5 5.5 4.6 8.6 5.5 5.3 4.9 9.8 5.8 5.8 5.3 9.0 5.4 5.5 5.5

B(AB) parametric 4.5 5.0 4.4 4.9 4.8 4.8 5.0 5.8 5.9 5.0 6.7 4.6 6.2 5.8 7.4 5.2
param/HF 4.6 5.0 4.2 4.9 4.7 4.5 4.5 5.2 5.8 5.0 6.3 4.5 5.8 5.6 6.1 4.3
vdWaerden 4.5 7.1 4.3 6.1 4.7 6.2 4.4 6.2 5.5 7.8 5.0 6.6 5.5 9.4 5.4 7.0
KWF 4.5 7.1 4.2 6.1 4.7 6.2 4.3 6.0 5.5 7.8 4.8 6.4 5.5 9.4 5.4 6.9
Koch 4.6 12.4 3.5 8.0 5.1 21.0 3.7 9.5 12.8 67.6 7.8 45.3 17.6 90.3 9.1 61.2
ATS 16.1 67.9 9.9 41.3 21.3 88.2 10.4 50.9 11.0 13.5 6.5 8.6 10.3 18.1 6.9 8.7

AB(-) parametric 2.1 1.9 1.0 1.3 2.5 2.1 1.7 1.7 15.5 13.7 24.9 22.7 15.4 13.2 25.0 23.4
param/HF 2.0 1.9 0.9 1.2 2.4 1.9 1.3 1.4 15.4 13.6 24.5 22.6 14.4 12.2 22.5 21.4
vdWaerden 3.3 4.6 3.2 4.6 4.2 4.6 3.5 5.0 3.5 4.5 3.0 4.9 4.0 4.9 3.4 6.0
KWF 3.3 4.6 3.3 4.6 4.2 4.6 3.4 5.0 3.5 4.5 2.8 4.8 4.0 4.9 3.4 5.7
Koch 1.6 2.7 1.0 2.1 1.7 2.6 1.1 2.1 5.8 8.2 5.3 10.6 5.7 8.2 5.3 10.8
ATS 9.2 5.3 4.5 4.9 8.9 5.0 4.8 5.5 12.3 5.4 5.8 4.6 10.8 5.4 6.4 5.0

AB(A) parametric 2.1 1.9 1.0 1.3 2.5 2.1 1.7 1.7 15.5 13.7 24.9 22.7 15.4 13.2 25.0 23.4
param/HF 2.0 1.9 0.9 1.2 2.4 1.9 1.3 1.4 15.4 13.6 24.5 22.6 14.4 12.2 22.5 21.4
vdWaerden 3.3 4.6 3.2 4.6 4.2 4.6 3.5 5.0 3.5 4.5 3.0 4.9 4.0 4.9 3.4 6.0
KWF 3.3 4.6 3.3 4.6 4.2 4.6 3.4 5.0 3.5 4.5 2.8 4.8 4.0 4.9 3.4 5.7
Koch 1.6 2.7 1.0 2.1 1.7 2.6 1.1 2.1 5.8 8.2 5.3 10.6 5.7 8.2 5.3 10.8
ATS 9.0 5.5 4.2 5.0 9.1 5.2 4.9 5.6 11.9 5.2 5.4 4.7 10.3 5.1 6.2 4.7

AB(B) parametric 2.1 1.9 1.0 1.3 2.5 2.1 1.7 1.7 15.5 13.7 24.9 22.7 15.4 13.2 25.0 23.4
param/HF 2.0 1.9 0.9 1.2 2.4 1.9 1.3 1.4 15.4 13.6 24.5 22.6 14.4 12.2 22.5 21.4
vdWaerden 2.2 5.8 1.7 10.1 1.8 5.8 1.6 12.4 3.0 5.6 2.4 10.3 2.3 5.5 2.7 12.3
KWF 2.2 5.8 1.6 10.3 1.8 5.8 1.6 12.6 3.0 5.6 2.3 10.2 2.3 5.5 2.7 12.3
Koch 1.6 2.7 1.0 2.1 1.7 2.6 1.1 2.1 5.8 8.2 5.3 10.6 5.7 8.2 5.3 10.8
ATS 9.4 6.5 4.5 7.6 9.2 7.0 5.6 9.7 12.6 6.1 5.8 6.4 11.9 6.8 6.6 6.8
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