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Abstract

In explaining and forecasting real life scenarios, statistical distributions are very help-
ful. It is very important to select the best fitting statistical distribution for modelling
data. In analysis of real world phenomena like in reliability and economics, we may find
distributions for bounded data observed as percentages, proportions or fractions (see, for
example, Marshall and Olkin (2007)). In this context, in view of pertinent transformation
on the Gumbel Type-II model, we suggest and study the unit Gumbel Type-II (UG-TII)
model and explore few of its statistical characteristics. We also consider various methods
of estimating the unknown parameters of UG-TII model from the frequentist perspec-
tive. Monte Carlo simulations are worked out in order to compare efficiency of suggested
estimation methods for small as well as large samples. The efficiency of estimators is
measured using simulated samples in terms of their bias and mean square error. In the
end, two datasets have been examined in attempt to validate the realistic possibilities of
new model. In comparison to the six severe competitors.

Keywords: UG-TII distribution, estimation methods, Cramér-von Mises estimates, right tail
Anderson Darling estimates, likelihood..

1. Introduction

A typical challenge in applied statistics is concerned with the uncertainty dynamics found
within the interval (0, 1). In real life, we frequently experience measurements such as pro-
portion/fraction of a particular characteristic, ratings of certain ability evaluations, various
indices and rates, in the interval, that lies between (0, 1) (see, for instance, Gupta and
Nadarajah (2004); Hunger, Baumert, and Holle (2011); Kieschnick and McCullough (2003)
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among others studies). In this regard, Papke and Wooldridge (1996) noticed that variables
within zero and one normally exist in many economic contexts, like the proportion of the over-
all fortnightly hours concentrated on jobs. The percentage of money spent on non-durable
consumption, the membership rate of the pension scheme, the market share of the sector,
television ratings, the fraction of the land allotted to cultivation, etc. There is finite support
for the distribution of UG-TII, and in reliability and lifespan studies Often data sets are mod-
elled using finite support distributions (e.g. Barlow and Proschan (1975)). In particular, the
UG-TII distribution can be well applicable if reliability is evaluated as ratio of the number
of effective trials to the number of total trials. These distributions have applications in many
domains in stress-strength analysis. If Y denotes the radius of the base of a little mug and
X denotes the radius of the circular depression in the centre of a plate then P denotes the
chance of having the cup. Another example, a market research agency may like to compare
two products’ sales percentages with a separate promotional strategy on each one. In these
scenarios, it is more appropriate to use a distribution of bounded support than a distribution
with unbounded support.

In this article, we present a two parameter UG-TII distribution, derived from a transformation
on the Gumbel distribution. The key benefit of the UG-TII distribution is that experts would
have a novel, very flexible, unimodal two parameter model that has some critical character-
istics that are not enjoyed by other distributions restricted to domain (0, 1). The challenge
of parameter estimation for several distributions is very vital. Common estimation methods
like the MLE, MME, LSE and WLSE are often chosen for parameter estimation. Each one
has its own positives and negatives however the most popular technique of estimation is the
maximum likelihood estimation technique. In terms of determining the parameters of any dis-
tribution due to its desirable properties, maximum likelihood estimation (MLE) is normally
a starting point. They are, for instance, asymptotically unbiased, consistent, and asymptoti-
cally normally distributed Lehmann (1999). However, there are other estimation techniques
formulated over time for other distributions. In the last few years there are several ample
articles on parameter estimation for different distributions in literature. Ramos and Louzada
(2016) also developed a new distribution named as the generalized weighted lindley distribu-
tion and considered various techniques of assessment for this distribution. Tahir, Cordeiro,
Ali, Dey, and Manzoor (2018) have examined the techniques of assessment of parameters for
Nadarajah and Haghighi distribution. Dey, Mazucheli, and Nadarajah (2018) have analyzed
estimation approaches for KSW distribution. Ramos, Louzada, Ramos, and Dey (2020) have
viewed problem of estimation of parameters for Frechet distribution. Loganathan and Uma
(2017) evaluated the MLE, LSE, WLSE and MME and outlined that WLSE yielded similar
outcomes. The parameter estimation for the complementary Beta distribution considering
the L-moments and maximum probability methods was studied by Mazucheli and Menezes
(2019). The maximum likelihood and maximum product spacing methods were used by Al-
metwally and Almongy (2019) to estimate parameters of generalized power Weibull model.
Sindhu, Shafiq, and Al-Mdallal (2021b) used MLE approach to estimate the new class of
model. Sindhu, Shafiq, and Al-Mdallal (2021a) presented a new three parametric distribution
known as Exponentiated transformation of Gumbel Type-II model and use MLE approach to
estimate parameters of model.

In this study, we characterize a novel two-parameter lifetime model by incorporating Gum-
bel Type II distribution. The goal of current article is to incorporate different evaluation
methodologies for the unknown UG-TII model indexing parameters and to analyze the be-
haviour of these estimators for different sample sizes and various parameter values. Apart
from the above mentioned techniques, we study six methods to estimate the parameters of
UG-TII model. In particular, we discuss ML, LS, WLS, CVM, AD and RTAD estimators.
The ultimate motivation of the current study is to explain how various frequentist estimators
of this model are used and execute for varying sample sizes and different parameter values and
to provide a framework for selecting suitable estimation technique for UG-TII model. The
present research is different in that no effort has been made in this direction to date. This
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research is focused to both its analytical and practical characteristics, with a concentration
on the implemented side.

2. UG-TII specifications

Over the years, especially in extreme value analysis of extreme events, the Gumbel distribu-
tion, also named as the type 1 extreme value model, has got considerable research interest.
For an examination of the latest developments of Gumbel model and its uses, see Pinheiro
and Ferrari (2016). Its PDF and CDF are specified as

f(x; Θ) = νµx−µ−1 exp
(
−νx−µ

)
(1)

and
F (x; Θ) = exp

(
−νx−µ

)
(2)

where x > 0, and Θ = (ν, µ). Here µ > 0 is the shape parameter and ν > 0. Observe that ν is
neither a rate nor a scale parameter — F (x; ν, µ) 6= F (νx; 1, µ) and F (x; ν, µ) 6= F (ν/x; 1, µ).
From (1) we develop a new distribution utilizing the transformation Z = X/(1 + X) with
unit-interval support. The PDF and CDF of extracted distribution are given, accordingly, by

g(z; Θ) = µν
z−µ−1

(1− z)1−µ exp

[
−ν
(

z

1− z

)−µ]
(3)

and

G(z; Θ) = exp

[
−ν
(

z

1− z

)−µ]
. (4)

The HRF i.e. h(z) = g(z; Θ)/[1 − G(z; Θ)] is an ideal mechanism in reliability study.
Reliability or survival function S (z) is an indicator of the capability of equipment to work
without failure when placed into operation and it is a non-increasing function. Here, the S (z)
and h (z) functions of the UG-TII (Θ) distribution are respectively,

S(z; Θ) = 1− exp

[
−ν
(

z

1− z

)−µ]
(5)

and

h(z; Θ) =

µν z−µ−1

(1−z)1−µ exp

[
−ν
(

z
1−z

)−µ]
1− exp

[
−ν
(

z
1−z

)−µ] . (6)

The CHRF is also called the integrated hrf. The CHRF is not a probability. It is also,
however, a measure of risk: the higher the H (t) value, the higher the risk of failure by t-time.

H (t) =

t∫
0

h(z; Θ)dz = − log [S(t)] . (7)

It is noted that
S(z) = e−H(z) and f (z) = h (z) e−H(z). (8)

Therefore,

H (z) = − log

{
1− exp

[
−ν
(

z

1− z

)−µ]}
. (9)

Just in Figs. 1 and 2 the above-mentioned PDF and HRF demonstrate how the parameters
(Θ) affect the density of UG-TII(Θ) model. We would have to note that the values for
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Θ parameters have indeed been chosen arbitrarily till we captured a wide range of shapes
for the parameters concerned. We note that the PDF is right-skewed or reversed-J shaped,
symmetrical and U formed. It is U-shaped µ = 0.2 along with various choices of ν and inverted
U-shaped when µ ≥ 1. Fig. 2 provides flexible hazard rate shapes such as increasing, inverted
U-shaped and U shaped. Data that can be modelled by UG-TII(Θ) model are percentage
data, rates, particle sizes and certain chemical processes.
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Figure 1: Variations of g(z; Θ) of UG-TII(Θ) along with µ and ν

These maps show that in modelling various data sets of different forms, the UG-TII(Θ)
distribution is very useful.

2.1. Another form of PDF and CDF

Here,we have alternate representations for the PDF and CDF of the UG-TII(Θ) distribution.

Proposition 1. An alternate representation of PDF is as follows

g(z; Θ) =

+∞∑
j=k=0

Bjkz
k−µ(1+j)−1, (10)

where Bjk = µνj+1 (−1)j+k
(µ(1+j)−1

k

)
.

Proof. Using |x| < 1 and s ∈ R+, we have (1− x)s−1 =
+∞∑
i=0

(−1)i
(
s−1
i

)
xi.

By using exponential series on exp

[
−ν
(

z
1−z

)−µ]
, we can write

exp

[
−ν
(

z

1− z

)−µ]
=

+∞∑
j=0

(−1)j νjz−µj (1− z)µj . (11)

Also [1− z]µ(1+j)−1 ∈ (0, 1) , therefore using the above expansion provides,

[1− z]µ(1+j)−1 =

+∞∑
k=0

(−1)k
(
µ (1 + j)− 1

k

)
zk. (12)
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Figure 2: 3D fluctuations of g(z; Θ) of UG-TII(Θ) along with µ and ν.

By incorporating together the above equations, we have

g(z; Θ) =

+∞∑
j=k=0

Bjkz
k−µ(1+j)−1.

This concludes the confirmation of Proposition 1.

Remark 1. An alternative form of CDF of the UG-TII(Θ) is represented by Eq. (11).
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Figure 3: Fluctuations of h(z; Θ) of UG-TII(Θ) distribution along with µ and ν
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Figure 4: 3D fluctuations of h(z; Θ) of UG-TII(Θ) distribution along with µ and ν

Table 1: Mean, variance, µ́2, µ́3, µ́4, coefficient of skewness and kurtosis of UG-TII(Θ) distri-
bution for arbitrary values of µ and ν

(µ, ν) ↓ Mean Variance µ́2 µ́3 µ́4 SΘ KΘ

(2, 2) 0.64 0.09 0.42 0.29 0.21 0.07 1.19
(2, 3) 0.68 0.01 0.48 0.34 0.25 0.05 1.19
(2, 4) 0.71 0.01 0.52 0.38 0.29 0.04 1.19
(2, 6) 0.75 0.01 0.57 0.44 0.35 0.02 1.18

(3, 3) 0.63 0.03 0.40 0.27 0.18 0.09 1.23
(3, 4) 0.65 0.15 0.43 0.29 0.20 0.08 1.23
(3, 6) 0.68 0.01 0.47 0.33 0.23 0.07 1.22
(3, 8) 0.70 0.01 0.50 0.36 0.26 0.07 1.22

(4, 3) 0.60 0.04 0.37 0.23 0.14 0.10 1.25
(5, 3) 0.58 0.03 0.34 0.20 0.12 0.11 1.26
(6, 3) 0.57 0.02 0.33 0.19 0.11 0.11 1.27
(8, 3) 0.55 0.02 0.31 0.17 0.10 0.11 1.27

The values of mean, variance, µ́2, µ́3, µ́4, coefficient of skewness (SΘ) and kurtosis (KΘ) of UG-
TII(Θ) distribution for arbitrary values of µ and ν are given in Table 1. For the fixed levels of
µ, it can be observed that, with the increasing trend of the ν, the mean, variance, SΘ and KΘ

decrease, also for the fixed levels of ν, these measures decrease with the few exceptions. In all
cases of consideration platykurtic and positively skewed behavior of UG-TII(Θ) distribution
are noticed.
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3. Mathematical and statistical features

3.1. Quantile function

The next result can be utilized to simulat values from the UG-TII(Θ) distribution. The QF
of Z is given by

Q(q; Θ) =

(
− 1
ν log q

)−1
µ[

1 +
(
− 1
ν log q

)−1
µ

] , 0 < q < 1, (13)

were Z̃ = Q(0.5; Θ) gives the median of Z. The other partition values can be explained in a
same way. In specific, by putting q = (0.25, 0.75) in Eq. (13), the first, and third quartiles
are attained. The accompanying quantile density function is provided by the differentiation
of

Q′(q; Θ) = −
(
− 1
ν log q

)−1
µ

qµ(log q)
[
1 +

(
− 1
ν log q

)−1
µ

]2 . (14)

Based on partition measures, the assessment of the variability of the skewness and kurtosis
of Z can be studied. The Bowley skewness is

SΘ =
Q (0.75; Θ)− 2Q (0.5; Θ) +Q (0.25; Θ)

IQR
, (15)

and the Moors’ kurtosis is

KΘ =
Q (0.875; Θ)−Q (0.625; Θ) +Q (0.375; Θ)−Q (0.125; Θ)

IQR
. (16)

At different values of the distribution parameters ν and µ, Fig. 5 provides maps of the median,
skewness and kurtosis. The distribution is found to be positively skewed and leptokurtic to
platykurtic in nature. As the higher inputs of the parameter ν and µ contribute the higher
change in median curve. On the other hand significant change in the skewness behavior is
noticed along ν for smaller values of µ. The variation of µ does not contribute any significant
change in the behavior of kurtosis as does the parameter ν. Also median yields lower values
when µ is less than 3, but as µ and ν increase, it ends up to approximately 1.

Figure 5: Fluctuation of Z̃, skewness and kurtosis of UG-TII(Θ) along with µ and ν

3.2. Ordinary moments

We hardly require to moments in any data analysis particularly in applied study. Some of
the most essential features and characteristics of a model can be analyzed through moments
including, tendency, dispersion, skewness and kurtosis. For Θ > 0, using the description of
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the rth moment, r = 1, 2, ..., of the random variable Z and replacing Eq. (3), we obtain the
UG-TII(Θ) moments as

µ́r = E (Zr) =

1∫
0

zrdFZ(z; Θ),

µ́r =

1∫
0

zrµν
z−µ−1

(1− z)1−µ exp

[
−ν
(

z

1− z

)−µ]
dz. (17)

Let
(

z
1−z

)−µ
= t, then −µ

(
z−µ−1

(1−z)1−µ

)
dz = dt and after some algebraic manipulation, we

have

µ́r = ν

∞∫
0

t
−r
µ(

1 + t
−1
µ

)r exp {−νt} dt = ν

∞∫
0

1(
1 + t

1
µ

)r exp {−νt} dt.

After some algebra, we have

µ́r =
+∞∑
k=0

(−1)k ν

(
r + k − 1

k

)
Γ (1 + k/µ)

ν(1+k/µ)
, if Re

(
k

µ

)
> −1, Re (ν) > 0. (18)

The mean of Z can be obtained by putting r = 1 in Eq. (18) i.e.,

µz =
+∞∑
k=0

(−1)k ν
Γ (1 + k/µ)

ν(1+k/µ)
, if Re

(
k

µ

)
> −1, Re (ν) > 0.

The variance of Z
(
σ2
z

)
can be expressed as

σ2
z =

+∞∑
j=k=0

+∞∑
k=0

(−1)k ν

(
k + 1

k

)
Γ (1 + k/µ)

ν(1+k/µ)

−

(
+∞∑
k=0

(−1)k ν
Γ (1 + k/µ)

ν(1+k/µ)

)2

, if Re

(
k

µ

)
> −1, Re (ν) > 0. (19)

Table 2: Real and approximated values of first four ordinary moments of UG-TII(Θ) distri-
bution for arbitrary values of µ and ν

(µ, ν) µ́1|Real µ́1|Approx. µ́2|Real µ́2|Approx. µ́3|Real µ́3|Approx. µ́4|Real µ́4|Approx.
(2, 0.5) 0.48 0.48 0.25 0.25 0.14 0.14 0.09 0.09
(3, 0.2) 0.42 0.42 0.18 0.18 0.09 0.09 0.04 0.04
(4, 0.9) 0.53 0.53 0.28 0.28 0.16 0.16 0.09 0.09
(5, 2.0) 0.56 0.56 0.32 0.32 0.18 0.18 0.11 0.11
(6, 3.0) 0.57 0.57 0.33 0.33 0.19 0.19 0.11 0.11

In Table 2, for comparing the approximate expression of µ́r given in Eq. (18) with the direct
result of µ́r in Eq. (17), we provided a table for multiple values of parameters and compute
µ́1, ..., µ́4 using computational software Mathematica 12.1. These outcomes show that real
values of moments are well coincide with the approximate results.

It is important to emphasize that incomplete moments, mean deviations, Bonferroni and
Lorenz curves Pundir, Arora, and Jain (2005) are also expressed in infinite series, however
they can be easily calculated numerically.
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3.3. Moment generating function

The MGF is broadly utilized in characterisation of model. The MGF of UG-TII(Θ) using the
Maclaurin series expansion of an exponential function is mentioned as

M (z; Θ) = E
(
etz
)

=

+∞∑
r=0

tr

r!
µ́r =

+∞∑
r,k=0

tr

r!
(−1)k ν

(
r + k − 1

k

)
Γ (1 + k/µ)

ν(1+k/µ)
,

if Re

(
k

µ

)
> −1, Re (ν) > 0. (20)

3.4. The central moments

The rth central moment of UG-TII(Θ) can be attained as

µr =
r∑
l=0

(
r

l

)
(−1)l µlz

1∫
0

zr−ldFZ(z; Θ) (21)

replacing r by r − l in Eq. (18), we have

µr =

r∑
l=0

+∞∑
k=0

(
r

l

)
(−1)l µlz (−1)k ν

(
r − l + k − 1

k

)
Γ (1 + k/µ)

ν(1+k/µ)
,

if Re

(
k

µ

)
> −1, Re (ν) > 0. (22)

3.5. Characteristic function

The cf of Z can be evaluated as

Φ (τz; Θ) =

1∫
0

eiτzdFZ(z; Θ). (23)

Appplying Taylor expansion on eiτz, we have

Φ (τz; Θ) =
+∞∑
r=0

(iτ)r

r!

1∫
0

zrdFZ(z; Θ). (24)

Using Eq. (18) we obtain the characteristic function of the UG-TII(Θ) as

Φ (τz; Θ) =

+∞∑
k,r=0

(iτ)r

r!
(−1)k ν

(
r + k − 1

k

)
Γ (1 + k/µ)

ν(1+k/µ)
,

if Re

(
k

µ

)
> −1, Re (ν) > 0. (25)

3.6. Factorial generating function

The FGF of UG-TII(Θ) is obtained as

Ψ (τz; Θ) =

1∫
0

elog(1+τ)zdFZ(z; Θ) =
+∞∑
r=0

{log (1 + τ)}r

r!

1∫
0

zrdFZ(z; Θ). (26)
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Including the result given in Eq. (18), The FGF of UG-TII(Θ) is taken in the form

Ψ (τz; Θ) =

+∞∑
k,r=0

{log (1 + τ)}r

r!
(−1)k ν

(
r + k − 1

k

)
Γ (1 + k/µ)

ν(1+k/µ)
,

if Re

(
k

µ

)
> −1, Re (ν) > 0. (27)

3.7. Order statistics

In the perspective of the standard normal distibution, order statistics was first discussed in
Tippett (1925). It continuously grow in a more broad manner for modelling a huge range
of phenomenas, generally in life testing and reliability analysis. Here, we have some useful
findings concerning the order statistics of the UG-TII(Θ) distribution. Let Z(1) ≤ Z(1)... ≤
Z(n) be order statistics of a random sample of size n from the model UG-TII(Θ) . Thus, for

m = 1, 2, ..., n, and i = 1, 2, 3,the PDF of mth order statistic, Z(m) is

g(m) (z; Θ) = K̃ G (z; Θ)m−1 {1−G (z; Θ)}n−m g (z; Θ) ,

= K̃
n−m∑
l=0

(−1)l
(
n−m
l

)
g (z; Θ)G (z; Θ)m+l−1 (28)

where K̃ = n!
(n−m)!(m−1)! . Thus the PDF of mth order statistic is obtained by replacing Eq.

(3), Eq. (4) and above Eq. (28), we have

g(m) (z;φ, Θ) = Ψ̂m

n−m∑
l=0

z−µ−1

(1− z)1−µ exp

[
−ν (m+ l)

(
z

1− z

)−µ]
, (29)

where Ψ̂m = K̃ (−1)l
(
n−m
l

)
µν. The CDF of Z(m) is given by

G(m) (z; Θ) =
n∑

j=m

(
n

j

)
G (z;φ, Θ)j {1−G (z;φ, Θ)}n−j ,

=
n∑

j=m

n−j∑
p=0

(
n

j

)(
n− j
p

)
(−1)pG

j+p
(z; Θ) , (30)

then the CDF of the mth order statistic, Z(m) of UG-TII(Θ) model is

G(m) (z; Θ) =
n∑

j=m

n−j∑
p=0

(
n

j

)(
n− j
p

)
(−1)p exp

[
−ν (j + p)

(
z

1− z

)−µ]
. (31)

Specifically, the CDFs of Z(n) and Z(1) are attain, respectively by

G(n) (z; Θ) = Gn (z; Θ) , G(1) (z; Θ) = 1− [1−G (z; Θ)]n . (32)

For i.i.d. RV, it is practicable to obtain the equation for the sth ordinary moment of the order
statistics for µ́s <∞. Therefore, we can define the sth moment of the mth order statistic Z(m)

as (see Silva, Ortega, and Cordeiro (2010))

µs(m) = E
{
Zs(m)

}
=

n∑
j=n−m+1

(
j − 1

n−m

)(
n

j

)
(−1)j−n+m−1 kIj (s) , (33)

where kIj (s) = s
1∫
0

zs−1 [1−G (z; Θ)]j dz.
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In particular, for the UG-TII(Θ) model, we obtain

kIj (s) = s
n∑

j=n−m+1

(
j − 1

n−m

)(
n

j

)
(−1)j−n+m−1

1∫
0

zs−1 [1−G (z; Θ)]j dz. (34)

where the last integral can be evaluated numerically.

4. Inference with simulation

Several statistical characteristics of the UG-TII distribution are contributed to this section,
considering that Θ are unknown. The assessment of Θ is carried out by the variety of known
estimation methods. From now, z1, z2, ..., zn represent n observed values from Z and their
ascending odering values z(1) ≤ z(2) ≤ ... ≤ z(n).

4.1. MLE approach

There are many techniques for calculating parameters, but the most widely used is the max-
imum likelihood method. The MLE’s have beneficial properties, like developing confidence
intervals for the parameters of the model. For these estimates, large sample theory provides
straightforward approximations that perform well in finite samples. Let Θ = (ν, µ)τ be the
2 × 1 parameter vector. The assesments of MLEs of Θ can be provided by optimizing the

likelihood function with respect to ν and µ given by L (z; Θ) =
n∏
i=1

g(zi; Θ) or likewise the

log-likelihood function for ν and µ given by

l (z; Θ) = n logµ+n log ν−(µ+1)
n∑
i=1

log zi+(µ− 1)
n∑
i=1

log (1− zi)−ν
n∑
i=1

(
zi

1− zi

)−µ
. (35)

The MLEs are therefore derived by concurrently solving the following equations ∂l (z; Θ) /∂ν =
0, and ∂l (z; Θ) /∂µ = 0, where

∂l (z; Θ)

∂ν
=
n

ν
−

n∑
i=1

(
zi

1− zi

)−µ
, (36)

∂l (z; Θ)

∂µ
=
n

µ
−

n∑
i=1

log zi +

n∑
i=1

log (1− zi) + ν

n∑
i=1

(
zi

1− zi

)−µ
log

(
zi

1− zi

)
. (37)

Although these equations can not be analytically solved, we use statistical software through
iterative techniques such as a Newton-Raphson technique to address them numerically.

4.2. The other estimation approaches

There are many ways to evaluate the parameters of distributions that each of them has its
distinctive features and strengths. Five of those strategies are presented momentarily in
this subsection and will be numerically investigated in the simulation study. Here, G is the
distribution function of the UG-TII(Θ) distribution.

4.3. LS approach

Swain, Venkatraman, and Wilson (1988) introduced the least square estimators and the
weighted least square estimators to estimate the parameters of beta distributions. The LSEs,
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Figure 6: Fluctuation of theoretical and simulated density function under different parametric
values

Figure 7: Fluctuations of Bias and MSE of estimations for parameter values (i) µ = 2.5,
ν = 1.5 (ii) µ = 1.7, ν = 2.3

ν̂LS , and µ̂LS , can be achieved by minimizing

LS(Θ) =

n∑
i=1

(
G(z(i); Θ)− i

n+ 1

)2

LS(Θ) =

n∑
i=1

{
exp

[
−ν
(

z(i)

1− z(i)

)−µ]
− i

n+ 1

}2

. (38)

with respect to ν and µ. For more details see Erto (1989). These can be extracted equivalently
by solving ∂LS(Θ)/∂ν = 0, and ∂LS(Θ)/∂µ = 0 where

∂LS(Θ)

∂ν
= 2

n∑
i=1

ξ1
i (Θ)

{
exp

[
−ν
(

z(i)

1− z(i)

)−µ]
− i

n+ 1

}
, (39)

∂LS(Θ)

∂µ
= 2

n∑
i=1

ξ2
i (Θ)

{
exp

[
−ν
(

z(i)

1− z(i)

)−µ]
− i

n+ 1

}
, (40)
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Figure 8: Fluctuations of Bias and MSE of estimations for parameter values (i) µ = 2.5,
ν = 1.5 (ii) µ = 1.7, ν = 2.3

and

ξ1
i (Θ) =

(
z(i)

1− z(i)

)−µ
e
−ν

(
z(i)

1−z(i)

)−µ

,

ξ2
i (Θ) = exp

[
−ν
(

z(i)

1− z(i)

)−µ]
ν

(
z(i)

1− z(i)

)−µ
log

(
z(i)

1− z(i)

)
(41)

4.4. WLS approach

The WLSEs, ν̂WLS and µ̂WLS , can be determined by minimizing, with respect to ν and µ,
the following function

WLS(Θ) =

n∑
i=1

(n+ 1)2(n+ 2)

i(n− i+ 1)

[
G(z(i); Θ)− i

n+ 1

]2

=

n∑
i=1

(n+ 1)2(n+ 2)

i(n− i+ 1)

n∑
i=1

{
exp

[
−ν
(

z(i)

1− z(i)

)−µ]
− i

n+ 1

}2

. (42)

We can also obtain these estimators by solving ∂WLS(Θ)/∂ν = 0, and ∂WLS(Θ)/∂µ = 0
where

∂LS(Θ)

∂ν
= 2

n∑
i=1

(n+ 1)2(n+ 2)

i(n− i+ 1)
ξ1
i (Θ)

{
exp

[
−ν
(

z(i)

1− z(i)

)−µ]
− i

n+ 1

}
, (43)

∂LS(Θ)

∂µ
= 2

n∑
i=1

(n+ 1)2(n+ 2)

i(n− i+ 1)
ξ2
i (Θ)

{
exp

[
−ν
(

z(i)

1− z(i)

)−µ]
− i

n+ 1

}
, (44)

where ξji (Θ), j = 1, 2. are given in Eq. (41).

4.5. CVM approach

Minimum distance estimators of the Cramér-von Mises type are focused on minimising the
distance between the theoretical and empirical cumulative distribution functions. Macdonald
(1971) presented empirical evidence that these estimators’ bias is smaller than the bias of
other estimators of minimum distance.

C(Θ) =
1

12n
+

n∑
i=1

[
G(z(i); Θ)− 2i− 1

2n

]2

,

=
1

12n
+

n∑
i=1

{
exp

[
−ν
(

z(i)

1− z(i)

)−µ]
− 2i− 1

2n

}2

. (45)
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Thus, the CVEs, ν̂CVM , and µ̂CVM , are obtained by solving the following equations simulta-
neously ∂C(Θ)/∂ν = 0, and ∂C(Θ)/∂µ = 0 where

∂C(Θ)

∂ν
= 2

n∑
i=1

ξ1
i (Θ)

{
exp

[
−ν
(

z(i)

1− z(i)

)−µ]
− 2i− 1

2n

}
, (46)

∂C(Θ)

∂µ
= 2

n∑
i=1

ξ2
i (Θ)

{
exp

[
−ν
(

z(i)

1− z(i)

)−µ]
− 2i− 1

2n

}
, (47)

where ξji (Θ) and j = 1, 2 are defined in Eq.(41)

Figure 9: Fluctuations of bias of estimations for parameter values µ = 2.5, and ν = 1.5

Figure 10: Fluctuations of bias of estimations for parameter values µ = 1.7, and ν = 2.3

Figure 11: Fluctuations of bias of estimations for parameter values µ = 3.5, and ν = 4.5

4.6. AD approach

Anderson and Darling (1952) introduced the AD test as an alternative to statistical tests for
identifying sample distributions’ the deviation from normality. Notably Anderson–Darling
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Figure 12: Fluctuations of bias of estimations for parameter values µ = 4.0, and ν = 6.0

test converges quite rapidly towards the asymptote (Anderson and Darling (1954); Pettitt
(1976); Stephens (1974)). Boos (1981) also discussed the properties of the AD estimators.

A(Θ) = −n− 1

n

n∑
i=1

(2i− 1)
[
log(G(z(i); Θ)] + log(Ḡ(z(n+1−i); Θ))

]
, (48)

where Ḡ(.) = 1−G(.). Thus, the ADs, ν̂AD, and µ̂AD, are obtained by solving the following
equations simultaneously ∂AD(Θ)/∂ν = 0, and ∂AD(Θ)/∂µ = 0 where

∂A(Θ)

∂ν
= − 1

n

n∑
i=1

(2i− 1)

[
ξ1
i (Θ)

G(z(i); Θ)
−

ξ1
(n+1−i)(Θ)

Ḡ(z(n+1−i); Θ)

]
, (49)

∂A(φ,Θ)

∂µ
= − 1

n

n∑
i=1

(2i− 1)

[
ξ2
i (Θ)

G(z(i); Θ)
−

ξ2
(n+1−i)(Θ)

Ḡ(z(n+1−i); Θ)

]
, (50)

where ξji (Θ) and j = 1, 2 are given in Eq. (40) respectively.

4.7. RTAD approach

Similarly, the right-tail Anderson–Darling estimates (RTADEs) of ν̂RTAD and µ̂RTAD can be
obtained by minimizing, with respect to µ and ν, the following function

R(Θ) =
n

2
− 2

n∑
i=1

G(z(i); Θ)− 1

n

n∑
i=1

(2i− 1) log[Ḡ(z(n+1−i); Θ)]. (51)

The RTADEs can be evaluated by concurrently solving the below equations ∂R (z|Θ) /∂ν = 0
and ∂R (z|Θ) /∂µ = 0, where

∂R(Θ)

∂ν
= −2

n∑
i=1

ξ1
i (Θ)

G(z(i); Θ)
+

1

n

n∑
i=1

(2i− 1)
ξ1
n+1−i(Θ)

Ḡ(z(i); Θ)
, (52)

∂R(Θ)

∂µ
= −2

n∑
i=1

ξ2
i (Θ)

G(z(i); Θ)
+

1

n

n∑
i=1

(2i− 1)
ξ2
n+1−i(Θ)

Ḡ(z(i); Θ)
. (53)

5. Simulation study

We consider the one model that has been used in this section to explore the estimators
introduced above, and analyse the bias and MSE of such estimators for various samples.
The estimators of the parameters of proposed distribution have been evaluated by simulating
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(µ, ν) = {(2.5, 1.5) , (1.7, 2.3) , (3.5, 4.5) , (4, 6)} . The density functions of the UG-TII(Θ)
model for these choices are shown in Fig. 5. The bias and the MSE of estimators have been
used to evaluate the validity of the estimators. Consideration is given to the efficiency of
each parameter estimation method for the UG-TII(Θ) model with respect to sample size n.
Simulation study is executed for this purpose on the basis of the following steps

1. Generate two thousand samples of size n from Eq. (3). This work is carried out simply
by QF and obtained data from uniform distribution.

2. Calculate the estimates for the 2000 samples, say (µ̂i, ν̂i) for i = 1, 2, ..., 2000.

3. Calculate the biases and MSEs. These objectives are obtained with the help of the
following formulas

BiasΘ (n) =
1

2000

2000∑
i=1

(
Θ̂i −Θ

)
, (54)

MSEΘ (n) =
1

2000

2000∑
i=1

(
Θ̂i −Θ

)2
, (55)

where Θ = µ, ν.

4. These steps were repeated for n = 30, 34, ..., 500, with the mentioned parameters for
MLEs, and for other methods of estimation n is taken upto 800. So, for Θ = µ, ν,
and n = 30, 34, ..., 500, biasΘ(n) and MSEΘ(n) have been computed. We have used
the optima function in R to obtain the value of the estimators. The outcome of the
simulations of this subsection is indicated in Figs. 7-16.

In particular, we can infer that the estimators have the property of asymptotic unbiasedness,
because as n grows, the bias tends to zero, whereas the pattern in the mean squared error
indicates consistency, because the errors tend to zero when the value of n increases. From
Figs. 7-16, the following observations can be extracted.

Figure 13: Fluctuations of MSE of estimations for parameter values µ = 2.5, and ν = 1.5
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Figure 14: Fluctuations of MSE of estimations for parameter values µ = 1.7, and ν = 2.3

Figure 15: Fluctuations of MSE of estimations for parameter values µ = 3.5, and ν = 4.5

Figure 16: Fluctuations of MSE of estimations for parameter values µ = 4.0, and ν = 6.0

• For all estimation methods, the bias of µ̂ reduces as n increases.

• For all estimation methods, the bias of ν̂ reduces as n increases.

• For the MLE, the biases of µ̂ and ν̂ are generally positive.

• The bias of parameter µ is higher than parameter ν, when µ < ν and it is related
inversely accordingly µ > ν in ML estimation approache (Figs. 7-8).

• The MSE of parameter µ is higher than parameter ν, when µ < ν and it is related
inversely accordingly µ > ν in ML estimation approache (Figs.7-8).

• For the CVM, and the RTAD, the biases and MSEs of µ̂ and ν̂ seem larger (Figs.9-16).

• For the LSE, CVM, WLSE, AD and RTAD, the biases of µ̂ and ν̂ are generally positive,
but for the LSE, the negative biases of µ̂ and ν̂ are also noticed (Figs.9-12).
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• In case of other estimation methods, LS estimation is stronger than other estimation
approach for the all chosen parameter values in terms of bias, approximately for both
parameters, when sample volume tends towards infinity (Figs. 9-12).

• While considering other estimation approaches, WLS and AD estimation are stronger
than other estimation approach for the all chosen parameter values in terms of MSE,
approximately for both parameters, But when sample volume n > 200, each method of
parameters estimations work approximately equally (Figs. 9-16).

A generic consequences about above figures are that bias and MSE graphs for two parameters
with the increase in the volume of the sample all techniques will approach zero. This verifies
the validity of these techniques of estimation and of the numerical calculations for the UG-TII
distribution parameters.

6. Demonstrative example

Real data are now included in this section to illustrate the versatility and applicability of the
proposed new model. The object of the UG-TII(Θ) distribution is to provide an alternate
distribution to fit the unit interval data with other distributions that are present in the
literature. We present two applications by fitting the UG-TII(Θ) model as well as some
competitor models. For these two examples, the Akaike Information Criterion (AIC), Bayesian
Information Criterion (BIC), Cram-von Mises (W ∗), Anderson-Darling (A∗), Kolmogorov-
Smirnov (K.S) and the P -Value of K.S test have been specified to compare models. The last
two discussed in Chen and Balakrishnan (1995). In general, the lower the values of these
statistics, the stronger the fit to the data. The Unit Gompertz Mazucheli, Menezes, and
Dey (2019), Kumaraswamy (KSW), Size biased Kumaraswamy (SBKSW) distribution, Unit
Weibull distribution Mazucheli, Menezes, Fernandes, de Oliveira, and Ghitany (2020) Beta
distribution, Kumaraswamybeta (KSWbeta) distributions have been selected for comparison.
The MLE approach has been used to estimate the parameters of models. The maximum
likelihood estimation of the parameters are presented in Tables 3 and 4.

Table 3: MLEs and SEs of the parameters of considered distribution for data set I

Distributions MLEs Standard errors

Unit Gompertz (η, b) (2.91, 0.01) (0.23, 0.00)
KSW(α, β) (2.72, 44.81) (0.29, 17.68)
SBKSW(λ, δ) (2.19, 32.76) (0.30, 12.22)
Unit Weibull(α, β) (0.06, 5.14) (0.02, 0.58)
Beta(α, β) (5.93, 21.18) (1.18, 4.34)
UG-TII(µ, ν) (2.47, 0.02) (0.26, 0.01)
KSWbeta(α, β, λ, κ) (25.17, 30.99, 1.24, 0.39) (35.37, 130.14, 4.70, 0.43)

The first dataset refers to twelve core specimens from four cross-sections of petroleum wells
sampled, and there are 48 values. For permeability, each core sample was measured and each
cross-section has the following variables: the total area of pores, the total perimeter of pores
and shape. For further detail see in R Core Team (2017). The next data set refers to 20
overall flood level observations for the Susquehanna River at Harrisburg, Pennsylvania (in
millions of cubic feet per second). In addition, we notice that Mazucheli, Menezes, and Dey
(2018) analysed these datasets to demonstrate the suitability of the unit-Gamma distribution
in order to compare second-order bias corrections MLE. To conclude, for the two datasets, the
UG-TII(Θ) model shows itself to be the most suitable model, demonstrating its applicability
in a realistic environment.
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Table 4: MLEs and SEs of the parameters of considered distribution for data set II

Distributions MLEs Standard errors

Unit Gompertz (η, b) (4.13, 0.02) (0.75, 0.01)
KSW(α, β) (3.36, 11.79) (0.60, 5.36)
SBKSW(λ, δ) (2.78, 10.57) (0.62, 4.62)
Unit Weibull(α, β) (1.03, 3.89) (0.24, 0.71)
Beta(α, β) (6.76, 9.11) (2.10, 2.85)
UG-TII(µ, ν) (2.56, 0.24) (0.46, 0.10)
KSWbeta(α, β, λ, κ) (25.94, 24.65, 4.93, 0.19) (0.73, 14.07, 0.45, 0.05)

Table 5: Values of the considered goodness-of-fit measures for data I

Distribution AIC BIC W∗ A∗ K − S p-value

Unit Gompertz (η, b) -109.06 -105.32 0.04 0.31 0.08 0.90
KSW(α, β) -100.95 -97.20 0.21 1.28 0.16 0.20
SBKSW(λ, δ) -103.17 -99.43 0.05 0.45 0.99 0.00
Unit Weibull(α, β) -112.68 -108.94 0.03 0.20 0.09 0.88
Beta(α, β) -107.14 -103.39 0.10 0.78 1.00 0.00
UG-TII(µ, ν) -111.24 -107.50 0.03 0.23 0.08 0.95
KSWbeta(α, β, λ, κ) -108.71 -101.23 0.04 0.23 0.09 0.81

Table 6: Values of the considered goodness-of-fit measures for data II

Distribution AIC BIC W∗ A∗ K − S p-value

Unit Gompertz (η, b) -28.72 -26.73 0.05 0.30 0.15 0.78
KSW(α, β) -21.73 -19.74 0.16 0.97 0.21 0.34
SBKSW(λ, δ) -22.46 -20.47 0.05 0.30 0.97 0.00
Unit Weibull(α, β) -28.16 -26.17 0.06 0.34 0.14 0.85
Beta(α, β) -24.13 -22.13 0.07 0.44 1.00 0.00
UG-TII(µ, ν) -28.90 -26.91 0.05 0.29 0.12 0.93
KSWbeta(α, β, λ, κ) -24.60 -20.61 0.06 0.34 0.15 0.80



Austrian Journal of Statistics 135

Figure 17: Histograms and fitted densities for data set I and II

Figure 18: Uni-modal profile likelihood functions of parameters of UG-TII(Θ) for data I

Fig. 17 reveals the fitted pdf on histogram of data set I and II. The criteria mentioned
are presented in Tables 2 and 3. As we can observe from Tables 5-6, for the UG-TII(Θ)
distribution, the values of AIC, BIC, W∗, A∗ and K−S are smaller than the Unit Gompertz,
KSW, SBKSW, Beta, Weibull and Kumaraswamybeta distributions understudy for both data
sets. P-Value even has the maximum value. So we infer that the suggested density works
better than other distributions. This result is also verified by Fig. 17. We demonstrate the
adequacy of the models by the use of probability-probability (PP) maps in Fig. 20, for Data
sets I and II, respectively, in attempt to provide another point of view. For Dataset I in
particular, in view of the perfect aligning the scatter plot by the PP line, it is obvious that
comparison to the other distributions, the UG-TII(Θ) distribution has a better match. The
uni-modal profile likelihood functions of parameters of UG-TII(Θ) are mapped in Figs. 18
and 19 for Datasets I and II, respectively, to demonstrate the uniqueness of the MLEs of µ
and ν.

Figure 19: Uni-modal profile likelihood functions of parameters of UG-TII(Θ) for data II
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Figure 20: Fig. 20: Estimated and empirical CDFs of UG-TII(Θ) distribution for data sets I
and II

7. Conclusion

In current article, we presented a novel two-parameter model named the unit Gumbel distri-
bution with various forms of failure rate. We derive many characteristics of the new model
like explicit expressions for the quantile, moments, moment-generating functions and distri-
bution of order statistics. The parameters of the model are estimated by various estimation
methods, including the MLE, LS, WLS, CVM, AD and RTAD estimation approaches. A sim-
ulation analysis is conducted with various samples and different parametric sets considering
µ > ν, and µ < ν, to assess the results of these approaches. Through considering two practi-
cal datasets, the applicability of the unit Gumbel distribution has been demonstrated. The
UG-TII model has been shown to be a serious competitor to other ones. The construction
of various regression models, Bayesian parameter estimation, and new dataset analysis will
be included in future work. Thanks to its particular features, we assume that UG-TII model
can be valuable for the practitioner, for statistical analysis outwith framework of this article.

A. Abbreviations and nomenclature

Abbreviations
PDF probability density function RV Random Variable
UG-TII unit Gumbel type-II QF quantile function
MLE maximum likelihood estimation CHRF cumulative hazard rate function
SF survival function MSE mean square error
i.i.d independently identically distributed ADEs Anderson-Darling estimates
CDF cumulative distribution function LSEs least square estimates
WLSEs weighted least square estimates MGF moment generating function
CVMEs Cramér-von Mises estimates KSW Kumaraswamy
RTADEs right tail Anderson Darling estimates SBKSW size biased Kumaraswamy
HRF hazard rate function FGF factorial generating function
MMEs Method of Moments Estimates SEs standard errors%

Nomenclature
g(Θ) PDF G(Θ) CDF
S(Θ) SF h(Θ) HRF

B. Quantile regression

It is important to point out that neither µ or ν has a direct interpretation in terms of the
observed data. For example, µ is no longer a shape parameter as in the distribution of
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Z. In order to assess the effect of covariates on the quantile of distribution of the response
variable, in this appendix we give some directions on quantile regression model taken UG-
TII distribution as baseline. Following, (for example, Mazucheli, Leiva, Alves, and Menezes
(2021), Mazucheli et al. (2020), Korkmaz, Emrah, Chesneau, and Yousof (2020)), for quantile

regression, ν in (13) must be re-parametrized as ν = g−1(σ) = − log (τ)
(

σ
1−σ

)µ
such that σ

is, for a fixed and known value τ , the τ -th quantile of the distribution of Z.

Considering the re-parameterization in ν the corresponding PDF and CDF are as follow

g(z;µ, σ, τ) =

[
− log (τ)

(
σ

1− σ

)µ]
µ

z−µ−1

(1− z)1−µ exp

{[
log (τ)

(
σ

1− σ

)µ]( z

1− z

)−µ}
(56)

and

G(z;µ, σ, τ) = exp

{[
log (τ)

(
σ

1− σ

)µ]( z

1− z

)−µ}
. (57)
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Figure 21: Plots of the re-parameterized PDF (3) for indicated values of σ, µ and τ

If concomitant with zi, i = 1, . . . , n we also observe covariate vectors xi and yi we may be
interested in evaluating the effects of these covariates on (µ, σ). For ML estimation, observed
z = (z1, . . . , zn) from n independent random variables Z1, . . . , Zn we may assume the following
equations

h1(σi) = ηi = β0 + β1xi1 + · · ·+ βpxip
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and
h2(µi) = ζi = δ0 + δ1yi1 + · · ·+ δpyiq

linking both ηi and ζi with a linear combination of the explanatory variables xi = (1, xi1, . . . , xip)
and yi = (1, yi1, . . . , yiq), respectively. Where h1(·) and h2(·) are strictly monotonic, twice
differentiable functions. Applications of quantile regression using the UGT-II distribution as
baseline are being studied by the authors and further details are not presented here.
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