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Abstract

For the analysis of C' x C' square contingency tables, we usually estimate using a
statistical model an unknown probability distribution with high confidence from obtained
observations. The statistical model that fits the data well and is easy to interpret is
preferred. The anti-sum-symmetry (ASS) and anti-conditional sum-symmetry (ACSS)
models have a structure that the ratio of the probability with which the sum of row and
column levels is ¢, for t = 2,...,C, and the probability with which the sum of row and
column levels is 2(C + 1) —t is always one and constant, respectively. This study proposes
two kinds of models that the ratio of those changes exponentially depending on the sum
of row and column levels. This study also gives the decomposition theorems of the ASS
model using the proposed models. Moreover, we show that the value of the likelihood
ratio chi-squared statistics for the ASS model is asymptotically equivalent to the sum of
those for the decomposed models. We evaluate the advantage of the proposed models by
applying they to a single data set of real-world grip strength data.

Keywords: anti-diagonals cell, asymmetry, exponentially, grip strength data, test statistic.

1. Introduction

Square contingency tables with same row and column ordinal classifications are usually ob-
tained by cross-classifying for matched-pairs data of the ordinal categorical variables. For the
analysis of C' x C' square contingency tables, we usually estimate using a statistical model
an unknown probability distribution with high confidence from an obtained observation. The
statistical model that fits the data well and is easy to interpret is preferred.

The symmetry (S) model (Bowker 1948), is the origin of the statistical model for the square
contingency table. The S model has a structure that the ratio of the probability that observa-
tions will fall in the (4, j)th cell, for i < j, of the table, and the probability that observations
will fall in the (j,7)th is always one. Thereafter, various models have been introduced as an
extension of the S model, for example, the marginal homogeneity (MH) model (Stuart 1955),
the quasi-symmetry (QS) (Caussinus 1965), the conditional symmetry (CS) model (McCul-
lagh 1978), the diagonals-parameter symmetry (DPS) model (Goodman 1979), the linear
diagonals-parameter symmetry (LDPS) model (Agresti 1983), and the two-ratios-parameter


http://www.ajs.or.at
http://www.ajs.or.at/
http://dx.doi.org/10.17713/ajs.v52i1.1390
www.osg.or.at

Austrian Journal of Statistics

symmetry (TRPS) model (Tomizawa 1987). Tahata and Tomizawa (2014) has overviewed
various statistical models including the above models.

Caussinus (1965) gave the origin of decomposition theorem—the S model holds if and only if
both the MH and the QS models hold—for statistical models for square contingency tables.
Moreover, Tomizawa and Tahata (2007) showed that the value of the likelihood ratio chi-
squared statistics for the S model is asymptotically equivalent to the sum of those for the MH
and the QS models. Read (1977) showed the decomposition theorem in which the S model
holds if and only if both the CS and the global symmetry (GS) models hold, and the value of
the likelihood ratio chi-squared statistic for the S model is equal to the sum of those for the CS
and GS models. Tomizawa and Kato (2003) showed the decomposition theorem in which the
S model holds if and only if both the DPS and the marginal diagonal sub-symmetry (MDS)
models hold, and the value of the likelihood ratio chi-squared statistic for the S model is
equal to the sum of those for the DPS and MDS models. Yamamoto, Iwashita, and Tomizawa,
(2007) gave the decomposition theorem in which the S model holds if and only if both the
LDPS and the marginal mean equality (ME) models hold. Moreover, Tahata, Yamamoto, and
Tomizawa (2008) showed that the value of the likelihood ratio chi-squared statistics for the S
model is asymptotically equivalent to the sum of those for the LDPS and ME models. Tahata
and Tomizawa (2009) gave the decomposition theorem in which the S model holds if and only
if all the TRPS, GS, and ME models hold, and showed that the value of the likelihood ratio
chi-squared statistics for the S model is asymptotically equivalent to the sum of those for the
TRPS and GSME models. Note that the GSME model simultaneously satisfies both the GS
and ME models.

Consider the data in Table 1. Tables 1a and 1b are the data sets of grip strength test examined
aged 15—69 for men and women, respectively; source: National Health and Nutrition Examina-
tion Survey 2011-2012 (https://wwwn.cdc.gov/Nchs/Nhanes/2011-2012/MGX_G.htm). The
row and column variables are the right and left hands grip strength level with the cate-
gories ordered from the highest level (1) to the lowest level (5), respectively. These levels are
categorized based on Muscle Strength Procedure Manual of National Health and Nutrition
Examination Survey.

Table 1: The table below is the data of grip strength test examined aged 15-69 for
men and women; source: National Health and Nutrition Examination Survey 2011-2012
(https://wwwn.cdc.gov /Nchs/Nhanes/2011-2012/MGX_G.htm)

Left hand Left hand
Right hand (1) (2) (3) (4) (5) Total (1) (2) (3) ) (b)) Total
(a) For men (b) For women
(1) 215 124 46 14 2 401 380 229 49 17 2 677
(2) 37 143 165 74 16 435 34 204 198 8 23 539
(3) 7 45 156 166 51 425 5 55 189 161 74 454
(4) 2 20 62 226 210 520 1 11 37 106 168 323
(5) 1 2 16 61 495 575 0 2 12 45 256 315

Total 262 334 445 541 774 2356 420 501 455 409 523 2308

Yamamoto, Aizawa, and Tomizawa (2016b) stated that it is natural to evaluate an individual’s
grip strength level as the sum of the levels of both right and left hands for these data of grip
strength test. Yamamoto, Tanaka, and Tomizawa (2013) introduced the sum-symmetry (SS)
and the conditional sum-symmetry (CSS) models that the ratio of the probability with which
the sum of row and column levels is t (¢t = 3,4,...,2C — 1) when the row level is less than
the column level, and the probability with which the sum of those is ¢ when the row level is
greater than the column level is always one and constant, respectively. Moreover, Yamamoto,
Aizawa, and Tomizawa (2016a) introduced the exponential sum-symmetry (ESS) model that
the ratio of those changes exponentially depending on the sum of row and column levels, and
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74 Anti-sum-asymmetry models

the two-parameter sum-symmetry (TPSS) model which includes the CSS and ESS models in
special cases. Note that the SS, CSS, ESS, and TPSS models evaluate whether the structures
of the sum of row and column levels with respect to the main-diagonals cells of the table are
symmetric or asymmetric.

On the other hand, for the data of grip strength test, Ando (2021) mentioned that it may be
more natural to evaluate whether the structures of the sum of row and column levels with
respect to the anti-diagonals cells of the table rather than main-diagonals cells are symmetric
or asymmetric. This is because, many people are right-handed and the grip strength of
dominant hand is usually higher than one of non-dominant hand. Moreover, Ando (2021)
introduced the anti-sum-symmetry (ASS) and anti-conditional sum-symmetry (ACSS) models
that the ratio of the probability with which the sum of row and column levels is t (t =
2,3,...,C), and the probability with which the sum of those is 2(C' + 1) — ¢ is always 1 and
constant, respectively.

Let Fi( (t=2,3,...,C) be the observed frequency with which the sum of row and column
levels is ¢, and Fyq (t = 2,3,...,C) be the observed frequency with which the sum of those
is 2(C + 1) — t. Table 2 shows the ratio of Fy) and Fyy (t = 2,3,4,5) in Table 1. From
Table 2, it is likely that the values of F/Fyq) (t = 2,3,4,5) for men changes exponentially
depending on the sum of row and column levels, and the values of Fy)/Fou (t = 2,3,4,5)
for women are almost constant. In fact, Ando (2021) showed that the ACSS model fits well
for the data set in Table 1b.

Table 2: The ratio of Fy) and Fyq (t =2,3,4,5) in Table 1

t t
2 3 4 5 2 3 4 5

(a) For men (b) For women
Fi 215 161 196 226 380 263 258 271
110) 495 271 293 246 256 213 192 223

Fl(t)/FQ(t) 0.434 0.594 0.723 0.919 1484 1.235 1.344 1.215

This study proposes two kinds of models that the ratio of the probability with which the sum
of row and column levels is ¢ (t = 2,3,...,C), and the probability with which the sum of those
is 2(C' 4 1) — t changes exponentially depending on the sum of row and column levels. This
study gives decomposition theorems of the ASS model using the proposed models. Moreover,
we show that the value of the likelihood ratio chi-squared statistics for the ASS model is
asymptotically equivalent to the sum of those for the decomposed models.

The remainder of this paper is organized as follows. Section 2 introduces two kinds of models
in square contingency tables, and gives decomposition theorems of the ASS model using the
proposed models. Section 3 shows the orthogonality for test statistic of the ASS model using
the proposed models. Section 4 shows the advantage of the proposed models by applied to
the two data sets of real-world grip strength data. Section 5 closes with concluding remarks.

2. Proposed models and decomposition of the ASS model

Let X and Y be row and column variables, respectively. And let

A =Pr(X+Y=tX+Y <C+1) and
B, =Pr(X+Y=2(C+1)—-t,X+Y>C+1) fort=2,...,C.

Ando (2021) proposed the ASS model defined by

At:Bt fOI‘t:2,...,C,
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and the ACSS model defined by
At:FBt fOI‘tZQ,...,C,

where the parameter I is unspecified. The ACSS model with I' = 1 is equivalent to the ASS
model.

We propose the anti-exponential sum-symmetry (AESS) defined by
At = AC+1_tBt for t = 2, ce ,C,

where the parameter A is unspecified. The AESS model with A =1 is equivalent to the ASS
model. Under the AESS model, (i) if A > 1, then Ay > B, for t =2,...,C, and (ii) A < 1,
then A; < By for t = 2,...,C. For the grip strength data such as Table 1, under the AESS
model, we can interpret that (i) when A > 1, the median for the individual’s grip strength
is less than the midpoint C' + 1 in the range [2,2C] of the sum of row and column levels, (ii)
when A < 1, that is greater than the midpoint C' 4+ 1. Moreover, the larger the difference
between the sum of row and column levels and the midpoint C' + 1, the larger the degree of
asymmetry exponentially.

Moreover, as a model which includes the ACSS and AESS models in special cases, we propose
the anti-two-parameters sum-symmetry (ATPSS) defined by

At :FAC+1_tBt for t = 2,...,0.

The ATPSS models with A =1, ' =1, and A =TI = 1 are equivalent to the ACSS, AESS,
and ASS models, respectively. Under the ATPSS model, we can interpret that (i) if I' > 1 and
A > 1, then Ay > By fort =2,...,C, (ii) T <1 and A < 1, then A; < By fort =2,...,C,
and (iii) if ' < 1and A > 1 (or I > 1 and A < 1), then it is likely that A; < B; (or A; > By)
fort =2,...,cand Ay > B; (or Ay < B;) fort=¢,...,C.

The numbers of degrees of freedom for testing goodness-of-fit of the ASS, ACSS, AESS, and
ATPSS models are C' — 1, C' — 2, C'— 2, and C — 3, respectively.

Iki (2016) and Kurakami, Negishi, and Tomizawa (2017) proposed the anti-global symmetry
(AGS) model defined by

PriX+Y <C+1)=Pr(X+Y >C+1).

The AGS model is more parsimonious than the ASS model from the following equalities:

C C
Pr(X +Y <C+1)=) A, and Pr(X+Y>C+1)=> B,
t=2 t=2

The number of degrees of freedom for testing goodness-of-fit of the AGS model is 1. Note
that the number of degrees of freedom for the ASS model is equal to the sum of those for the
AESS and AGS models.

We obtain the following decomposition theorem.

Theorem 1. The ASS model holds if and only if both the AESS and AGS models hold.

Proof. Tt is clear satisfied the necessary condition: If the ASS model holds, then both the
AESS and AGS models hold. We need to show that the sufficient condition also holds: If
both the AESS and AGS models hold, then the ASS model holds. Since the AESS model
holds, the following equality holds:

C C
ZAt — ZAC+1_tBt~
t=2

t=2
Therefore, if A > 1 then thZQ A > Ztczz By, and if A < 1 then ZtCZQ A < EtCZQ B;.

Since the AGS model (i.e., ZtCZQ A = ZtC:Q B;) holds, we obtain A =1 (i.e., A, = By for
t=2,...,C). The proof is complete. O
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Kurakami et al. (2017) introduced the model that the mean of sum of X and Y is equal to the
midpoint C'+ 1. We shall refer to this model as the mean-midpoint equality (MME) model.
The MME model is defined by E(X +Y) = C 4+ 1. The MME model is also expressed as

follows:
DD (i+i)my=(CH+1) Y > m,

i+j#AC+1 i+j#C+1

where m;; (= Pr(X =14,Y = j)) is the probability that an observation will fall in the (7, j)th
cell of the table (i = 1,...,C;j = 1,...,C). The number of degrees of freedom for testing
goodness-of-fit of the MME model is 1. Note that the number of degrees of freedom for the
ASS model is equal to the sum of those for the AESS and MME models.

We obtain the following decomposition theorem.

Theorem 2. The ASS model holds if and only if both the AESS and MME models hold.

Proof. We will first show the necessary condition hold: If the ASS model holds, then both
the AESS and MME models hold. Assume that ASS model holds. Then, the AESS model
obviously holds, because the AESS model with A =1 is equivalent to the ASS model. Since
the ASS model (i.e., Ay = B; for t = 2,...,C) holds, we obtain the following equality:

t t=2
C
— XY n-Y XY -
t=2 i+j<C+1 t=2  i+j>C+1
i+j=t i+j=2(C+1)—t
C
= D) (EH2AC+) -0 > m; _22 Cc+1) Y% m
t=2 iHi<C 1 i+j>C+1
i+j= i+j=2(C+1)—t
C
= Y| XS 6im XY (i
t=2 |i+j<C+1 i+7>C+1
i+j=t i+ j=2(C+1)—t
C
=(C+1) Z ZZWU—F ZZ Tij
t=2 |i+j<C+1 i+5>C+1
i+j=t i+j=2(C+1)—t
= > Y (i+h)m=(C+1)Y >
i+j#C+1 i+j#C+1

Therefore, the necessary condition holds.

We will next show that the sufficient condition also holds: If both the AESS and MME models
hold, then the ASS model holds. Since the MME model holds, the following equality holds:

i+j£C+1 it AC+1
C C

— Z A+ (2(C+1) —t)By] = Z (At + By) (1)
t=2 t=2
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Since the AESS model holds, the equality (1) is expressed as follows:

C C
S AT 4 2(C+1) —t] By = (C+1) Y (AT 1B
t=2 =2
C
— Z [H(AYTT 1) +2(C +1)] Z [(C+1)(A“T — 1) +2(C +1)] B
t=

= t(AC+1 ) =(C+ 1At —1) fort=2,...,C.

Therefore, we obtain A =1 (i.e., Ay = By for t = 2,...,C). The proof is complete. O

Theorems 1 and 2 are useful for searching the cause that the ASS model does not hold for
the presented data.

We obtain the following decomposition theorem of the ASS model using the ATPSS model.
Note that the number of degrees of freedom for the ASS model is equal to the sum of those
for the ATPSS, AGS, and MME models.

Theorem 3. The ASS model holds if and only if all the ATPSS, AGS, and MME models hold.

Proof. From Theorems 1 and 2, it is clear satisfied the necessary condition: If the ASS model
holds, then all the ATPSS, AGS, and MME models hold. We need to show that the sufficient
condition also holds: If both the ATPSS, AGS, and MME models hold, then the ASS model
holds.

Since the ATPSS model holds, the following equality holds:

t=2 t
C
> A
— I'=—_—= (2)
Z AC-‘rl—tB
t=2

Z AC+1—tBt
t=2
On the other hand, since the MME model holds, the following equality holds:

i+jAC+1 itjAC+1
C C

— Z [tA:+ (2(C+ 1) —t)By] = Z (At + By) (4)
t=2 t=2
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Since the ATPSS model holds, the equality (4) is also expressed as follows:

C C
S AT 4 2(C+1) —t] By = (C+ 1)) (TAT '+ 1)B,
t=2 t=2
C
> (-
N A p— : (5)

C
Z t— AC+1 tB
t=2

From the equalities (3) and (5), we obtain the following equality:
C C C C
<Z BS> (Z(t —-C - 1)AC+1—tBt> = (Z AC“—tBt) <Z(s —C - I)Bt>
t=2 s=2
C
(Z(t - s)Bs> ACtI-tp,

~0 (6)

Since ZSCZQ ZtCZQ (t — s)BsB; = 0, the equality (6) is also expressed as follows:

C
> ACTTIBCL =0, (7)

t=2

where D; = 250:2 (t—s)Bs. Since 250:2 ZtC:2 (t—s)BsB; = 0, the equality (7) is also expressed
as follows:

C
Z(BCDC + -+ ByD) AT = .
t=3

Fort=3,...,C,

Mo
M

BeDe+ -+ + BDy = (k — s)BsB;
k=t s=2
C t—1
= > D (k —sBBt+ZZ — 5)B,B;. (8)
k=t s=2 k=t s=t

The first term on the right-hand side of the equality (8) is positive, and the second term is
zero. Thus, we obtain A = 1. Moreover, from the equalities (3) and (5), we obtain I' = 1.
Therefore, we obtain I' = 1 and A = 1 (i.e., 4 = B, for t = 2,...,C). The proof is
complete. O

3. Orthogonality for test statistic of the ASS model

We denote by f;; the observed frequency in the (4,7) cell of the table (i = 1,...,C;j =
1,...,C) with sample size n (= ZZC:1 Zle fij). We assume multinomial sampling over the
cells of the square contingency table; that is, the observed frequencies { f;; } have a multinomial
distribution with parameters that are the cell probabilities {m;;}. The maximum likelihood
estimates (MLEs) of the expected frequencies under the model can be obtained using the
Newton—Raphson method in the log-likelihood equation for example.
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For example, in order to obtain MLEs of the expected frequencies under the AESS model, we
must maximize the Lagrangian,

c c c c c
L=Y> fijlogmj—¢ D> ) m—1 —;wt 3N mip AT NNy

i=1 j=1 i=1 j=1 i+j<C+1 i+i>C+1
i+j=t i+j=2(C+1)—t

with respect to {m;;}, ¢, {1}, and A.

Each model can be tested for the goodness-of-fit by, for example, the likelihood ratio chi-
squared statistic (denoted by G?) with the corresponding degrees of freedom. The test statistic
G? of the model M is given by

c cC f
G2(M):222ﬁjlog<;),

i=1 j=1 J

where é;; is the MLE of the expected frequency e;; under the model M.

Assume that the model M; holds if and only if both the models My and M3 hold, and the
following asymptotic equivalence holds:

G%(M;) ~ G*(M3) + G*(Ms3), (9)

where the number of degrees of freedom for the model M; is equal to the sum of those for
the models My and M3. Darroch and Silvey (1963) mentioned that (i) when the equation
(9) holds, if both the models M and Ms are accepted (at the « significance level) with high
probability, then the model M; would be accepted; however (ii) when the equation (9) does
not hold, such an incompatible situation that both the models My and M3 are accepted with
high probability but the M; model is rejected with high probability is quite possible. In fact,
Darroch and Silvey (1963) and Tahata, Ando, and Tomizawa (2011) showed such interesting
examples.

We point out that Theorem 2 satisfies the equation (9), although Theorem 1 does not. From
the above point, we believe that Theorem 2 is superior to Theorem 1. We obtain the following
theorem.

Theorem 4. The following asymptotic equivalence holds:
G?(ASS) ~ G*(AESS) + G*(MME).

Proof. Let = (711,12, .., T1C - -+, TC1, TC2, - - -, Teo) !, “AT” denote the transpose of ma-
trix (or vector) A. Thus, 7 is an C? x 1 vector. Since A®~! = 711 /7o under the AESS
model, the AESS model is expressed as

hl <7T) - 00—27

where

hl(ﬂ') = <h13(7'l'), h14(7r), ey hlc(ﬂ'))T
with

C+1l—-t C+1—t
hu(m) = (Tec) 7 Zzﬂ'z‘j — (m1) -1 ZZ my; fort=3,...,C,

i+j<C+1 i+5>C+1
i+j=t i+j=2(C+1)—t
and 04 is an d x 1 vector with all components zero.

The MME model is expressed as
h2 (71') = 01,
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where

= ZZ(i+j)ﬂij—(C+l)ZZm‘j.

i+j#C+1 i+j#C+1
From Theorem 2, the ASS model is expressed as
hy(m) = (ha(m)", ho(m)")" = 0c_1.
Let Hs(m) (s = 1,2,3) denote the matrix of partial derivatives of hs(7) with respect to 7
(i.e., Hy(m) = Ohy(m)/0nT). Let B(m) be diag(w) —mww’, where diag(m) is a diagonal matrix
with ith component of 7 as ith diagonal element. We denote p as 7 with {m;;} replaced by

{pij}, where p;; = fij/n. Using the delta method, \/n(h3(p) — hs(w)) has asymptotically a
normal distribution with mean 0c_1 and covariance matrix

H(m)X(m)H (7)) H(7)Z(m)Hy ()"

H3(m)%(m) Ha ()" = Hy(7)S(m)Hy ()T Hy(m)S(m) Hy(m)T

All elements of Hy(m)X(mw)H(w)? is equal to 0 under the ASS model. This is because, we
obtain the following equalities:

Ohy(m) . Oha(m)
ST diag () o

Tah2 ZZ i+7) Tij — (C+1) ZZWU

i+jAC+1 i+j#C+1

=0 fort=3,...,C,

Therefore, we obtain

ha ()" [Hy(7) S () Hy(m) "]~ by ()
= ha(m)" [Hy (7)S(m) Hy (7)) o (70) + ho(m) T [Ha () S(7) Ha () 7]~ ha ().
Since the Wald statistic is asymptotic equivalent to the likelihood ratio statistic, see for

example, Rao (1973, Sec. 6e. 3), Darroch and Silvey (1963), and Aitchison (1962), we obtain
Theorem 4. The proof is complete. O

We need to consider modifying Theorem 3, this is because, Theorem 3 does not satisfy the
equation (9).

We consider a model that simultaneously satisfies both the AGS and MME models defined
by
PriX+Y<C+1)=Pr(X+Y>C+1) and EX+Y)=C+1.

We shall refer to this model as the AGSME model.

From Theorem 3, we obtain the following corollary.

Corollary 1. The ASS model holds if and only if both the ATPSS and AGSME models hold.
We obtain the following theorem.
Theorem 5. The following asymptotic equivalence holds:

G?*(ASS) ~ G*(ATPSS) + G*(AGSME).

Proof. Under the ATPSS model,

c—1 1
A~ 62 B\ -2
FZ(W> < C) and A:<7THC> _
11 B¢ Tcc Ac
The ATPSS model is expressed as
hy(m) = 0c_3,
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where
hy(m) = (haz(7), haa(70), ..., huc—1 ()7,
with

t—C

har(m) = (m11) 62 (Bo) T2 Ay — (roc) 02 (Ac) 2B, fort=3,...,C — 1.

The AGSME model is expressed as

hs(m) = 02,
where
hs () = (hsi (), hsa(m))7,
with
hsy(m) =Y > mi— D> i,
itj<C+1 i+j>C+1
h52 ZZ ’L+] T — C+1)ZZ7T”
174011 i+7£C+1

From Corollary 1, the ASS model is expressed as
he () = (ha(m)", hs(m)")" = 00 1.

Let Hs(m) (s = 4,5,6) denote the matrix of partial derivatives of hs(7m) with respect to 7
(i.e., Hy(m) = Ohg(m)/OnT). Using the delta method, \/n(he(p) —he(m)) has asymptotically

a normal distribution with mean 0~_; and covariance matrix

Hy(m)S(m)Hy(w)T Hy(w)Z(m)Hs(m)"

Ho(m)2(m)H6(m)" = | g 053 ) Hy ()T H () (o) H ()T

All elements of Hy(m)X(mw)Hs(w)" is equal to 0 under the ASS model. This is because, we
obtain the following equalities:

8h4t(7r) . 8h51(71’) - o
ST dlag(ﬂ)T—O fort=3,...,C—1,

8h4t (77)
onT

diag(n)ahg‘;fﬂ) —0 fort=3,...,C—1,

U B SETED 3D S

i+j<C+1 i+i>C+1
oh
T” =2 2 (i+i)m = (C+1) Y > my.
i+j#C+1 i+j£C+1

Therefore, we obtain

he(m)" [He(m)3(m) Hg() "] he ()
= hy(m)" [Hy(m)E(m) Hy(m)" ] " ha(m) + hs(m) T [Hs () () Hs () 7] s ().

Since the Wald statistic is asymptotic equivalent to the likelihood ratio statistic, see for
example, Rao (1973, Sec. 6e. 3), Darroch and Silvey (1963), and Aitchison (1962), we obtain
Theorem 5. The proof is complete. O

4. Application to real-world grip strength data

First, we consider the data set in Table la, which presents a cross-classification of grip
strength levels for right and left hands. This data set is the grip strength test examined
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aged 15-69 for men; source: National Health and Nutrition Examination Survey 2011-2012
(https://wwwn.cdc.gov /Nchs/Nhanes/2011-2012/MGX_G.htm).

Table 3 gives the values of G? for each ASS, ACSS, AESS, ATPSS, AGS, MME, AGSME
model applied to the data set of Table 1a. This table shows that the AESS and ATPSS models
fit well, but the other models fit poorly. The goodness of fit of the AESS model dramatically
improves compared to the ASS and ACSS models. We consider comparing the goodness-of-
fit between the AESS and ATPSS models for this data set. The ATPSS model constantly
holds when the AESS model holds; that is, the AESS and ATPSS models are nested. For
testing that the AESS model holds assuming that ATPSS model holds true, we can use the
likelihood ratio statistic G2(AESS|ATPSS) = G?(AESS) — G2(ATPSS). When the the AESS
model holds, G?(AESS|ATPSS) has an asymptotic chi-squared distribution with 1 degrees of
freedom. The goodness-of-fit of AESS model is superior to the ATPSS model, this is because
G?(AESS|ATPSS) = 1.44. Table 4 shows the MLEs of the expected frequencies under the
AESS and ATPSS models.

Table 3: Values of the likelihood ratio chi-square
statistic G? for each model applied to the data
set of Table 1a

Applied models Degrees of freedom G?

ASS 4 162.02*
ACSS 3 38.57*
AESS 3 2.30
ATPSS 2 0.86

AGS 1 123.44*
MME 1 160.07*

AGSME 2 161.16*

* indicates significance at the 0.05 level.

Under the AESS model, the MLE of A is 0.82. The probability with which the sum of row and
column levels is t, for t = 2, 3,4, 5 is estimated to be 0.825~* times higher than the probability
with which the sum of those is 12 —¢. Moreover, since A < 1, the median for the individual’s
grip strength is estimated to be greater than the midpoint 6. Therefore, it may be necessary
to revise the criteria of the grip strength level, since we can infer that the men’s grip strength
tends lower than the criteria.

Under the ATPSS model, the MLEs of I' and A are 1.14 and 0.79, respectively. The probability
with which the sum of row and column levels is ¢, for ¢ = 2,3,4,5 is estimated to be 1.14 x
0.795~* times higher than the probability with which the sum of those is 12 —¢. All TAS~* for
t =2,3,4,5 are less than 1, although I' < 1 and A > 1. For that reason, we believe that the
goodness-of-fit of AESS model may be superior to the ATPSS model. If Ay < B; (or Ay > By)
fort=2,...,cand A; > By (or A; < B;) for t =¢,...,C, then the goodness-of-fit of ATPSS
model may be superior to the AESS model. This is because the AESS model cannot express
such the structure.

From Theorem 2 (or 1), we can infer that the cause that the ASS model does not hold for the
data set of Table la is the MME (or AGS) model rather than the AESS model. Moreover,
from Corollary 1 (or Theorem 3), we can infer that the cause that the ASS model does not
hold for the data set of Table la is the AGSME model (or AGS and MME models) rather
than the ATPSS model.
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Table 4: Maximum likelihood estimates of expected frequencies under the anti-
exponential sum-symmetry (AESS) and anti-two-parameters sum-symmetry
(ATPSS) models applied to the data set in Table la

Left hand
Right hand (1) (2) (3) (4) (5) Total
Excellent (1) 215 124 46 14 2 401
(222.66) (118.85)  (46.29)  (13.19) (2)
(216.88) (119.20)  (47.60)  (13.85) (2)
Very good (2) 37 143 165 74 16 435
(35.46) (143.89) (155.48) (74)  (16.85)
(35.57) (147.97) (163.20) (74)  (16.16)
Good (3) 7 45 156 166 51 425
(7.04)  (42.40)  (156) (174.79)  (50.79)
(7.24)  (44.51)  (156) (167.67)  (49.81)
Fair (4) 2 20 62 226 210 520
(1.88) (20)  (65.28) (225.06) (215.18)
(1.98) (20)  (62.62) (220.74) (214.82)
Poor (5) 1 2 16 61 495 575
(1)  (211)  (15.93)  (62.50) (487.34)

(1)  (2.02) (15.63) (62.40) (493.12)
Total 262 334 445 541 774 2356

Note: Estimates under the AESS and ATPSS models are shown in paren-
theses in the second and third lines, respectively.

Secondly, we consider the data set in Table 1b, which presents a cross-classification of grip
strength levels for right and left hands. This data set is the grip strength test examined aged
15-69 for women; source: National Health and Nutrition Examination Survey 2011-2012
(https://wwwn.cdc.gov /Nchs/Nhanes/2011-2012/MGX_G.htm).

Table 5 gives the values of G2 for each ASS, ACSS, AESS, ATPSS model applied to the data
set of Table 1b. This table shows that the ACSS, AESS and ATPSS models fit well, but the
ASS model fit poorly. The goodness of fit of the AESS model slightly improves compared to
the ACSS model. The goodness-of-fit of AESS model is superior to the ATPSS model, this
is because G?(AESS|ATPSS) = 1.60.

Table 5: Values of the likelihood ratio chi-square
statistic G? for each model applied to the data
set of Table 1b

Applied models Degrees of freedom G2

ASS 4 43.98*
ACSS 3 3.50
AESS 3 3.05
ATPSS 2 1.45

* indicates significance at the 0.05 level.

Under the AESS model, the MLE of A is 1.10. The probability with which the sum of row and
column levels is ¢, for ¢t = 2,3, 4,5 is estimated to be 1.1057* times higher than the probability
with which the sum of those is 12 —¢. Moreover, since A > 1, the median for the individual’s
grip strength is estimated to be less than the midpoint 6. Therefore, it may be necessary to
revise the criteria of the grip strength level, since we can infer that the women’s grip strength
tends higher than the criteria. Note that the men’s grip strength tends lower than the criteria.

83



84 Anti-sum-asymmetry models

5. Concluding remarks

This study proposed the AESS model that the ratio of the probability with which the sum
of row and column levels is ¢ (¢t = 2,3,...,C), and the probability with which the sum of
those is 2(C' 4 1) — t changes exponentially depending on the sum of row and column levels.
Moreover, as a model which includes the ACSS and AESS models in special cases, we propose
the ATPSS model. The proposed models are useful for applying to the data interested in the
structure of the sum of row and column levels such as grip strength data.

This study also gave the decomposition theorems in which the ASS model holds if and only
if both the AESS and AGS models hold (i.e., Theorem 1), and the ASS model holds if and
only if both the AESS and MME models hold (i.e., Theorem 2). Theorems 1 and 2 are useful
for searching the cause that the ASS model does not hold for the presented data as shown in
Section 4. Moreover, we showed that the value of the likelihood ratio chi-squared statistics
for the ASS model is asymptotically equivalent to the sum of those for the AESS and MME
models (i.e., Theorem 4). From the above point, we believed that Theorem 2 is superior to
Theorem 1.

Moreover, this study gave the decomposition theorems in which the ASS model holds if and
only if all the ATPSS, AGS, and MME models hold (i.e., Theorem 3), and the ASS model
holds if and only if both ATPSS and AGSME models (i.e., Corollary 1). We showed that
the value of the likelihood ratio chi-squared statistics for the ASS model is asymptotically
equivalent to the sum of those for the ATPSS and AGSME models (i.e., Theorem 5). From
the above point, we believed that Corollary 1 is superior to Theorem 3.

On the other hand, Theorem 3 can search the cause that the ASS model does not hold for
the presented data more detail than Corollary 1. This is because, Theorem 3 can see the
structure of the ASS model in details, such that the AGS model holds but the MME model
does not hold for analyzing the data, although Corollary 1 cannot see such structure. The
readers may believe that Theorem 3 is superior to Corollary 1 in the aforementioned reason.
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