High-order Coverage of Smoothed Bayesian Bootstrap Intervals for Population Quantiles
DOI:
https://doi.org/10.17713/ajs.v52i2.1385Abstract
We characterize the high-order coverage accuracy of smoothed and unsmoothed Bayesian bootstrap confidence intervals for population quantiles. Although the original (Rubin 1981) unsmoothed intervals have the same O(n−1/2) coverage error as the standard empirical bootstrap, the smoothed Bayesian bootstrap of Banks (1988) has much smaller O(n−3/2[log(n)]3) coverage error and is exact in special cases, without requiring any smoothing parameter. It automatically removes an error term of order 1/n that other approaches need to explicitly correct for. This motivates further study of the smoothed Bayesian bootstrap in more complex settings and models.Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 David M. Kaplan, Lonnie Hofmann

This work is licensed under a Creative Commons Attribution 3.0 Unported License.
The Austrian Journal of Statistics publish open access articles under the terms of the Creative Commons Attribution (CC BY) License.
The Creative Commons Attribution License (CC-BY) allows users to copy, distribute and transmit an article, adapt the article and make commercial use of the article. The CC BY license permits commercial and non-commercial re-use of an open access article, as long as the author is properly attributed.
Copyright on any research article published by the Austrian Journal of Statistics is retained by the author(s). Authors grant the Austrian Journal of Statistics a license to publish the article and identify itself as the original publisher. Authors also grant any third party the right to use the article freely as long as its original authors, citation details and publisher are identified.
Manuscripts should be unpublished and not be under consideration for publication elsewhere. By submitting an article, the author(s) certify that the article is their original work, that they have the right to submit the article for publication, and that they can grant the above license.