Prior Choice for the Variance Parameter in the Multilevel Regression and Poststratification Approach for Highly Selective Data. A Monte Carlo Simulation Study.
DOI:
https://doi.org/10.17713/ajs.v51i4.1361Abstract
The multilevel and poststratification approach is commonly used to draw valid inference from (non-probabilistic) surveys. This Bayesian approach includes varying regression coefficients for which prior distributions of their variance parameter must be specified. The choice of the distribution is far from being trivial and many contradicting recommendations exist in the literature. The prior choice may be even more challenging when data results from a highly selective inclusion mechanism, such as applied by volunteer panels. We conduct a Monte Carlo simulation study to evaluate the effect of different distribution choices on bias in the estimation of a proportion based on a sample that is subject to a highly selective inclusion mechanism.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2022 Christian Bruch, Barbara Felderer
This work is licensed under a Creative Commons Attribution 3.0 Unported License.
The Austrian Journal of Statistics publish open access articles under the terms of the Creative Commons Attribution (CC BY) License.
The Creative Commons Attribution License (CC-BY) allows users to copy, distribute and transmit an article, adapt the article and make commercial use of the article. The CC BY license permits commercial and non-commercial re-use of an open access article, as long as the author is properly attributed.
Copyright on any research article published by the Austrian Journal of Statistics is retained by the author(s). Authors grant the Austrian Journal of Statistics a license to publish the article and identify itself as the original publisher. Authors also grant any third party the right to use the article freely as long as its original authors, citation details and publisher are identified.
Manuscripts should be unpublished and not be under consideration for publication elsewhere. By submitting an article, the author(s) certify that the article is their original work, that they have the right to submit the article for publication, and that they can grant the above license.