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Abstract

In this paper, a new count distribution is introduced. It is a mixture of the Poisson
and generalized Lindley distributions. Statistical properties of the proposed distribution
including the factorial moments, probability generating function, moment generating func-
tion and moments are studies. Maximum likelihood estimators of unknown parameters
are derived. Moreover, an alternative count regression model based on the proposed dis-
tribution is presented. Finally, the proposed model is applied for real data and compared
with other well-known models.

Keywords: count regression, overdispersion, maximum likelihood estimation, mixed Poisson
distribution.

1. Introduction

Count data appear in a wide range of many fields, for example, insurance, medicine and
agriculture. The traditional distribution for analyzing count data is the Poisson distribution
with the restriction its mean and variance relationship, equidispersion. In regression analysis
if a count response variable is equidispersion, the Poisson regression model can be used to
model it. Unfortunately, practical count data exhibit other features, the variance larger than
mean, overdispersion and the variance smaller than mean, underdispersion. Most of count
data present overdispersion; however, the Poisson model cannot be applied for them.

Various techniques are proposed to deal with overdispersed count data, such as weighted
distributions and mixtures of distributions. A well-known and widely technique for allowing
overdispersed in count data is the mixed Poisson distribution. The most popularity of mixed
Poisson distribution is the negative binomial (NB) distribution. It can be derived from a
mixture of the Poisson and gamma distributions (Greenwood and Yule 1920). Some mixed
Poisson distributions are reviewed in this paper. For example, the discrete Poisson-Lindley dis-
tribution (Sankaran 1970), the generalized Poisson-Lindley distribution (Mahmoudi and Za-
kerzadeh 2010), the Poisson-weighed Lindley distribution (Abd El-Monsef and Sohsah 2014),
the two parameter Poisson-Lindley distribution (Shanker and Mishra 2014), the new gener-
alized Poisson-Lindley distribution (Bhati, Sastry, and Qadri 2015), the Poisson-generalised
Lindley distribution (Wongrin and Bodhisuwan 2016) and the new Poisson mixed weigthed
Lindley distribution (Atikankul, Thongteeraparp, and Bodhisuwan 2020) were introduced to
encounter overdispersion phenomena.
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Although many mixed Poisson distributions have been proposed to overcome overdispersion
in count data, a few distributions have been developed for regression models. The NB regres-
sion model and the Poisson-inverse Gaussian regression model (Willmot 1987) are well-known
mixed Poisson regression models. Other mixed Poisson regression models, such as the Poisson-
Weibull regression model (Cheng, Geedipally, and Lord 2013), the Poisson-weighted exponen-
tial regression model (Zamani, Ismail, and Faroughi 2014), the Poisson exponential-inverse
Gaussian regression model (Gómez-Déniz and Caldeŕın-Ojeda 2016), the Poisson-transmuted
exponential regression model (Bhati, Kumawat, and Gómez-Déniz 2017), the generalized
Poisson-Lindley linear model (Wongrin and Bodhisuwan 2017) and the Poisson quasi-Lindley
regression model (Altun 2019) were proposed for modeling count data. However, they may
not be suitable for some situations and some of them are not explicit forms.

Abouammoh, Alshangiti, and Ragab (2015) introduced a new generalized Lindley (GL) dis-
tribution. It is a mixture of gamma distributions. Its probability density function (pdf) with
shape parameter α and scale parameter θ is

g(x) =
θαxα−2

(θ + 1)Γ(α)
(x+ α− 1)e−θx,

for x > 0, α > 1 and θ > 0.

The GL distribution contains the Lindley distribution (Lindley 1958) is a special case. It
has a closed-form expression for the pdf and it provides a good fit for real life data. Several
properties of a mixed Poisson distribution depends on its mixing distribution. In this paper,
the PGL distribution is considered as a mixing distribution.

Here, we propose a new count distribution for overdispersed data. The proposed distribution
is the mixture of the Poisson and GL distributions. Its probability mass function (pmf) is
in explicit form with gamma function. Furthermore, we also present a new count regression
model based on the proposed distribution.

This paper is organized as follows. In Section 2, the new count distribution and its shape are
proposed. Some properties of the proposed distribution are derived in Section 3. Random
variate generation is given in Section 4. Next, parameter estimation is discussed by the method
of maximum likelihood. In Section 6, the count regression model based on the proposed
distribution is presented. In Section 7, applications of the proposed distribution and the
regression model in overdispersed count data are illustrated. Finally, the paper is concluded
in Section 8.

2. The proposed distribution

A random variable Y |λ is said to have the Poisson distribution if its pmf

f(y|λ) =
e−λλy

y!
, (1)

for y = 0, 1, 2, . . ..

Suppose λ follows the GL distribution with pdf

g(λ) =
θαλα−2

(θ + 1)Γ(α)
(λ+ α− 1)e−θλ, (2)

for λ > 0, α > 1 and θ > 0.

Then the unconditional random variable Y has the Poisson generalized Lindley (PGL) distri-
bution. Its pmf is given in Theorem 1.

Theorem 1. If random variable Y follows the PGL distribution, then the pmf of the PGL
distribution is

f(y) =
θαΓ (α+ y − 1) (α(θ + 2)− θ + y − 2)

Γ(α)Γ(y + 1)(θ + 1)α+y+1
,
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for y = 0, 1, 2, ..., α > 1 and θ > 0.

Proof. If Y ∼ PGL(α, θ), then the pmf of Y is given by

f(y) =

∫ ∞
0

f(y|λ)g(λ)dλ. (3)

Substituting Equation (1) and Equation (2) into Equation (3), then

f(y) =

∫ ∞
0

e−λλy

y!

θαλα−2

(θ + 1)Γ(α)
(λ+ α− 1)e−θλdλ

=
θα

(θ + 1)Γ(α)Γ(y + 1)

∫ ∞
0

e−(θ+1)λλy+α−2(λ+ α− 1)dλ

=
θα

(θ + 1)Γ(α)Γ(y + 1)

(
αΓ(α+ y − 1)

(θ + 1)α+y−1
− Γ(α+ y − 1)

(θ + 1)α+y−1
+

Γ(α+ y)

(θ + 1)α+y

)
=

θαΓ (α+ y − 1) (α(θ + 2)− θ + y − 2)

Γ(α)Γ(y + 1)(θ + 1)α+y+1
.
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Figure 1: Pmf plots of the PGL distribution with different parameter values

Since
f(y + 1)

f(y)
=

α+ y − 1

(y + 1)(θ + 1)

(
1 +

1

α(θ + 2)− θ + y − 2

)
and

f(y + 2)f(y)

f2(y + 1)
=

(y + 1)(α+ y)

(y + 2)(α+ y − 1)

(
1 + 1

α(θ+2)−θ+y−1

1 + 1
α(θ+2)−θ+y−2

)
< 1,
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the distribution is log-concave; thus, the PGL distribution has an increasing failure rate (John-
son, Kemp, and Kotz 2005). The PGL distribution is unimodal because the GL distribution
is unimodal (see Holgate 1970). Moreover, some pmf plots of the PGL distribution are shown
in Figure 1. The figure shows that the proposed distribution is unimodal.

Remark. If α = 2, then the PGL distribution can be reduced to the discrete Poisson-Lindley
distribution (Sankaran 1970) with pmf

f(y) =
θ2(y + θ + 2)

(θ + 1)y+3
,

for y = 0, 1, 2, ..., and θ > 0.

3. Properties

This section presents some theoretical properties of the PGL distribution, including the fac-
torial moments, probability generating function, moment generating function and moments.

Proposition 1. Let Y ∼ PGL(α, θ), then the kth factorial moment of Y is given by

µ′[k] =
Γ(α+ k − 1)

(θ + 1)Γ(α)θk
[αθ + α− θ + k − 1] .

Proposition 2. Let Y ∼ PGL(α, θ), then the probability generating function of Y is defined by

G(z) =
θα (θ − z + 2)

(θ + 1)(θ − z + 1)α
,

where |z| < θ + 1.

Proposition 3. Let Y ∼ PGL(α, θ), then the moment generating function of Y is given by

M(t) =
θα
(
θ − et + 2

)
(θ + 1)(θ − et + 1)α

,

where t < log(θ + 1).

Moments are important properties for any distribution and they can be used for parameter
estimation. The kth moment about the origin of Y can be obtained by taking the k derivative
from the moment generating function with respect to t and setting t to zero. Hence, the first
four moments about the origin of Y are

µ =
(α− 1)θ + α

θ(θ + 1)
,

µ′2 =
(α− 1)θ(α+ θ) + α(α+ θ + 1)

θ2(θ + 1)
,

µ′3 =
(α− 1)θ3 + α(3α− 2)θ2 + α(α+ 1)(α+ 2)θ + α(α+ 1)(α+ 2)

θ3(θ + 1)
,

µ′4 =
(α− 1)θ4 + α(7α− 6)θ3 + α(α+ 1)(6α+ 1)θ2 + α(α+ 1)(α+ 2)(α+ 5)θ

θ4(θ + 1)

+
α(α+ 1)(α+ 2)(α+ 3)

θ4(θ + 1)
.

The second moment about the mean or the variance of Y is given by

σ2 =
(α− 1)θ + α

θ(θ + 1)
+

(α− 1)θ2 + 2αθ + α

θ2(θ + 1)2
.
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The index of dispersion (ID) is the ratio of the variance to the mean. It can be given by

ID(Y ) =
σ2

µ
> 1. (4)

Figure 2 shows the mean, variance and ID plots of the proposed distribution. The mean
and variance are increasing as α increases but they are decreasing as θ increases. The ID is
increasing as θ and α decrease. From the Equation (4) and Figure 2, we can see that the ID
is greater than one. Thus, the PGL distribution is overdispersed.
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Figure 2: Mean, variance and ID plots of the PGL distribution

4. Random variate generation

In this section, a PGL random variate generation is presented. We can use the acceptance-
rejection method to generate random variate of the GL(α, θ) distribution. The steps of PGL
random variate generation are as following:

Step1: Generate ui, i = 1, . . . , n from U(0, 1).

Step2: If ui ≤ 1
θ+1 , generate λ from Gamma(α, θ);

otherwise, generate λ from Gamma(α− 1, θ).
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Step3: Generate yi from Poisson(λ).

5. Parameter estimation

The parameter estimators of the PGL distribution are obtained in this section. In this paper,
the maximum likelihood estimation is applied.

Let Y1, Y2, . . . , Yn be a random sample of size n from the PGL distribution with parameters,
α and θ, and y1, y2, . . . , yn be the observed values. The likelihood function of the PGL
distribution is given by

L(α, θ) =
n∏
i=1

θαΓ (α+ yi − 1) (α(θ + 2)− θ + yi − 2)

Γ(α)Γ(yi + 1)(θ + 1)α+yi+1
.

The associated log-likelihood function can be written as

logL(α, θ) = nα log(θ) +
n∑
i=1

log (α(θ + 2)− θ + yi − 2) +
n∑
i=1

log (Γ(α+ yi − 1))

−n log (Γ(α))−
n∑
i=1

log (Γ(yi + 1))−
n∑
i=1

(α+ yi + 1) log (θ + 1) .

The score function is obtained by taking the first partial derivative of the log-likelilhood
function with respect to each parameter, hence

∂ logL(α, θ)

∂α
= n log(θ) +

n∑
i=1

θ + 2

(θ + 2)α+ yi − θ − 2
+

n∑
i=1

(Ψ(α+ yi − 1))

−n (Ψ(α))−
n∑
i=1

log (θ + 1) ,

∂ logL(α, θ)

∂θ
=

nα

θ
+

n∑
i=1

α− 1

α (θ + 2)− θ + yi − 2
−

n∑
i=1

yi + α+ 1

θ + 1
.

The maximum likelihood estimates can be obtained by setting the score functions to zero and
solving them. Although they are complicate, we can get the maximum likelihood estimates
by the numerical methods. In this paper, the optim function for R language (R Core Team
2020) is applied to estimate the parameters of the PGL distribution.

The second partial derivative of the log-likelihood are

∂2 logL(α, θ)

∂α2
= −

n∑
i=1

(θ + 2)2

((θ + 2)α+ yi − θ − 2)2
+

n∑
i=1

Ψ1 (α+ yi − 1)− nΨ1 (α) ,

∂2 logL(α, θ)

∂α∂θ
=

n

θ
+

n∑
i=1

yi

((α− 1) θ + yi + 2α− 2)2
−

n∑
i=1

1

θ + 1
,

∂2 logL(α, θ)

∂θ2
= −nα

θ2
−

n∑
i=1

(α− 1)2

(α (θ + 2)− θ + yi − 2)2
+

n∑
i=1

yi + α+ 1

(θ + 1)2
.

The asymptotic variances-covariances of maximum likelihood estimators are calculated by
the elements of the inverse of the Fisher information matrix. Due to the complexity of the
Fisher information matrix, it can be instead of the observed information matrix. The observed
information matrix of the maximum likelihood estimators of the parameters is

J(α, θ) =

(
J11 J12
J21 J22

)
,
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where J11 = −∂2 logL(α,θ)
∂α2 , J12 = J21 = −∂2 logL(α,θ)

∂α∂θ and J22 = −∂2 logL(α,θ)
∂θ2

.

The standard error (S.E.) of the maximum likelihood estimates can be obtianed by the square
roots of the diagonal elements in the variance-covariance matrix.

6. The proposed regression model

In this section, the PGL regression model for count data is presented. It is developed by the
PGL distribution when yi is count response variable.

Since µ = (α−1)θ+α
θ(θ+1) , we parameterize α = θ(θµ+µ+1)

θ+1 to the pmf of the PGL distribution. Thus

f(y) =
θ
θ(θµ+µ+1)

θ+1 Γ
(
θ(θµ+µ+1)

θ+1 + y − 1
)

( θ(θµ+µ+1)
θ+1 (θ + 2)− θ + y − 2)

Γ( θ(θµ+µ+1)
θ+1 )Γ(y + 1)(θ + 1)

θ(θµ+µ+1)
θ+1

+y+1
.

In order to guarantee that the mean of response variable is positive, the log link function is
used to link the explanatory variable to the mean of the response variable. It can be expressed
as

log(µi) = xTi β,

where xTi is the vector of explanatory variable or covariate, (x1i, x2i, . . . , xpi), and β is the
vector of unknown regression coefficients.

The log-likelihood function of the PGL regression model is

logL(θ,β) = n
θ(θµi + µi + 1)

θ + 1
log(θ) +

n∑
i=1

log

(
θ(θµi + µi + 1)

θ + 1
(θ + 2)− θ + yi − 2

)

+

n∑
i=1

log

(
Γ

(
θ(θµi + µi + 1)

θ + 1
+ yi − 1

))
− n log

(
Γ

(
θ(θµi + µi + 1)

θ + 1

))

−
n∑
i=1

log (Γ(yi + 1))−
n∑
i=1

(
θ(θµi + µi + 1)

θ + 1
+ yi + 1

)
log (θ + 1) .

The numerical methods can be applied to obtain the maximum likelihood estimates. In this
paper, the optim function for R language (R Core Team 2020) is employed.

7. Applications

In this section, applications of the PGL distribution and PGL regression model are applied
for real data sets. Additionally, they are also compared wih classical models.

7.1. Distributions for count data

Two overdispersed data sets are analyzed to show the usefulness of the PGL distribution.
The first data set is the the number of mistakes in copying groups of random digits (Kemp
and Kemp 1965). This data set is overdispersed with the ID 1.605, The second data set
is Pyrausta nublilalis (Beall 1940) with the ID 1.758. The PGL distibution are compared
with the Poisson and NB distributions. The criteria for model selection are the lowest of
the Akaike information criterion (AIC) (Akaike 1974), the lowest of the Bayesian information
criterion (BIC), the highest of the log-likelihood and the highest of p-value based on the dis-
crete Anderson-Darling (AD) goodness of fit test (Arnold and Emerson 2011). The result are
shown in the Table 1 and Table 2.

Observed and expected frequencies of the Poisson, NB and PGL distributions for the number
of mistakes in copying groups of random digits and Pyrausta nublilalis are shown in Table 1
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Table 1: Observed and expected frequencies of the number of mistakes in copying groups of
random digits

Count Observed Expected frequencies

frequencies Poisson NB PGL

0 35 27.4128 33.9511 34.3868
1 11 21.4734 14.4900 13.9063
2 8 8.4104 6.3899 6.3512
3 4 2.1961 2.8481 2.9219
4 2 0.4301 1.2762 1.3359

Estimated parameters
(S.E.)

λ̂ = 0.7833
(0.1143)

r̂ = 0.9376
(0.5089)

θ̂ =1.3878
(0.6340)

p̂ = 0.5448
(0.1432)

α̂ = 1.6705
(0.5589)

log-likelihood −77.5456 −73.3683 −73.2291
AIC 157.0912 150.7366 150.4582
BIC 159.1855 154.9253 154.6469

AD statistic 2.2732 0.1541 0.1139
p-value 0.0494 0.8290 0.8831

Table 2: Observed and expected frequencies of Pyrausta nublilalis

Count Observed Expected frequencies

frequencies Poisson NB PGL
0 33 26.4525 32.6422 32.8219
1 12 19.8394 13.0975 12.7768
2 6 7.4398 5.6731 5.7172
3 3 1.8599 2.5175 2.5864
4 1 0.3487 1.1306 1.1645
5 1 0.0523 0.5113 0.5206

Estimated parameters
(S.E.)

λ̂ = 0.7500
(0.1157)

r̂ = 0.8628
(0.4629)

θ̂ =1.4136
(0.6315)

p̂ = 0.5350
(0.1434)

α̂ = 1.6466
(0.5282)

log-likelihood −71.5824 −66.8893 −66.8307
AIC 145.1647 137.7787 137.6615
BIC 147.1901 141.8294 141.7122

AD statistic 1.7813 0.0179 0.0099
p-value 0.0898 0.9970 0.9992

and Table 2, respectively. We can see that the p-values based on the discrete AD test for the
Poisson distribution are less than the 5% significance level for the first data set. Therefore,
this data set cannot be fitted by the Poisson distribution. The PGL distribution provides the
smallest AIC, the smallest BIC, the largest log-likelihood, and the largest p-value based on
the discrete AD test for both data set.

Figure 3 displays observed and the expected frequencies of the PGL distribution. The figure
shows that the expected frequencies of the PGL distribution close to the observed frequencies
for both data sets. From Table 1, Table 2 and Figrure 3 reveal that the PGL distribution
provides good fit to overdispersed data.
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Figure 3: Plots of the observed and expected frequencies for the PGL distribution

7.2. Count regression models

The PGL regression model with the log link function is applied for the azpro data set (Hilbe
2011). The data frame consist of 3589 cardiovascular patients in 1991 in Arizona, USA. The
variables used are as follows:

• Los, length of stay in hospital

• Procedure, standard cardiovascular procedures (1= CABG; 0 = PTCA)

• Sex, (1 Male; 0 = Female)

• Admit, (1 =Urgent/Emerg; 0 = Elective (type of admission)

• Age, (1 = Age > 75; 0 = < = 75).

The predictor variable is Los and four covariates are Procedure, Sex, Admit and Age. The
PGL regression model is compared with the Poisson and NB regression models. Table 3 shows
the parameter estimates, S.E. and the p-values based on t-test for the PGL and the other
two regression models. The log-likelihood, AIC, and BIC criteria are used to select the best
model.

Table 3: Parameter estimates, S.E. and the p-values for the azpro data set

Variable
Poisson NB PGL

Estimate
(S.E)

p-value
Estimate

(S.E.)
p-value

Estimate
(S.E)

p-value

Intercept
1.4560

(0.0159)
<0.0001

1.4177
(0.0236)

<0.0001
1.4822

(0.0234)
<0.0001

Procedure
0.9603

(0.0122)
<0.0001

0.9811
(0.0183)

<0.0001
0.9423

(0.0181)
<0.0001

Sex
-0.1239
(0.0118)

<0.0001
-0.1264
(0.0191)

<0.0001
-0.1141
(0.0177)

<0.0001

Admit
0.3266

(0.0121)
<0.0001

0.3707
(0.0190)

<0.0001
0.3000

(0.0179)
<0.0001

Age
0.1222

(0.0125)
<0.0001

0.1201
(0.0202)

<0.0001
0.1154

(0.0187)
<0.0001

Dispersion - -
6.246

(0.254)
<0.0001

0.7663
(0.0288)

<0.0001
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Table 4: The measures for model selection

Criterion Poisson NB PGL

log-likelihood −11189.9 −9973.543 −9970.605
AIC 22389.8 19959.09 19953.210
BIC 22420.7 19996.2 19990.32

Table 4 displays log-likelihood, AIC and BIC for the Poisson, NB and PGL regression mod-
els. The PGL regression model provides the highest log-likelihood, the lowest AIC, and the
lowest BIC. Hence, we conclude that the PGL regression model is the best model among the
competing regression models.

8. Conclusion

In this work, we have proposed the Poisson generalize Lindley distribution, called PGL distri-
bution, for overdispersed data. Some statistical properties have been studied, such as the fac-
torial moments, probability generating function, moment generating function and moments.
The parameter estimation has been approached by the method of maximum likelihood. The
PGL distribution has been compared with classical distributions, namely the Poisson and
NB distributions. Some real data sets have been used to illustrate the performance of the
proposed distribution. The results show that the PGL distribution provides great flexibil-
ity in modeling real data. Furthermore, The PGL regression model based on the proposed
distribution has been developed. The proposed regression model is more suitable than some
well-known regression models. Therefore, it can be applied for the count regression model.
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