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Abstract

In this article a generalization of the inverse Rayleigh distribution has been addressed
by using DUS transformation, named as Exponential Transformed Inverse Rayleigh (ETIR)
distribution. Some of the statistical properties of this newly proposed distribution like
mode, quantiles, moment, moment generating function, survival and hazard rate function
have been studied comprehensively. To estimate the parameter of this distribution, four
different estimation procedures, such as maximum likelihood estimation (MLE), max-
imum product spacing method (MPS), least square method (LSE) and weighted least
square method (WLSE) are briefly discussed. Performance of these estimates are com-
pared using extensive simulations. As an application point of view the model superiority
is verified through two real datasets.

Keywords: lifetime distribution, probability distribution, hazard rate function, maximum like-
lihood estimation, maximum product spacing method, simulation.

1. Introduction

Modeling and analyzing lifetime data are vital in the field of applied sciences such as medical,
finance, engineering etc. Several lifetime distributions like Exponential, Weibull, Gamma
and many more play an important role in this context. The consistency and accuracy of
statistical analysis is highly influenced by the undertaken probability model or distribution.
Owing to this fact, in recent decades developing new distributions has been a standard concept
in statistical theory; this is usually accomplished by adding an additional parameter to the
baseline distribution Ali, Khalil, Ijaz, and Saeed (2021).

Gupta, Gupta, and Gupta (1998) proposed the cummulative distribution function(CDF) of
a new distribution by introducing a shape parameter (α > 0) in the CDF of baseline distri-
bution. Gupta and Kundu (2001), Seenoi, Supapakorn, and Bodhisuwan (2014) etc. further
used this generalization techniques to develop more flexibile probability models. Another well
known idea for generalizing baseline distribution is to transmute it by using Quadratic rank
transmutation map(QRTM), described by Shaw and Buckley (2009). On the basis of QRTM,
a number of generalizations have been developed in recent years. For example Transmuted
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extreme value distribution studied by Aryal and Tsokos (2009), Transmuted Rayleigh dis-
tribution by Merovci (2013), Khan and King (2015) developed Transmuted modified inverse
Rayleigh distribution, Transmuted log-logistic distribution by Aryal (2013) and many more.
By adding two more parameters to a continuous distribution, Cordeiro, Ortega, and da Cunha
(2013) suggested a new class of distribution. Kumaraswamy (1980) proposed a different way
to obtain a new distribution by using the baseline distribution. The primary goal of this
modification of baseline distributions is to model real data with non-constant hazard rate
functions.

One thing to keep in mind is that all the generalization method mentioned above incorporates
few extra parameter(s) in the original model. That additional parameter(s) in one sense pro-
vides more flexibility to the existing distribution in analyzing complex data structure but on
the other side, complexity in parameter estimation and others inferential procedure increases.
Taken into account these difficulties, few new transformation techniques are proposed by Ku-
mar et al., where any additional parameter(s) is not introduced other than those involved
in the baseline distribution. For example, DUS transformation Kumar, Singh, and Singh
(2015a), Sine transformation Kumar, Singh, and Singh (2015b), MG transformation Kumar,
Singh, and Singh (2016). In all cases Exponential distribution is the considered baseline dis-
tribution. Using Weibull distribution M transformation Kumar, Singh, Singh, and Mukherjee
(2017) is available in literature.

In the present study, we use DUS transformation to get a new lifetime distribution by incor-
porating Inverse Rayleigh distribution as original continuous distribution. If the PDF and
CDF of a baseline lifetime distribution are g(x) and G(x) respectively, then the PDF of a new
lifetime distribution is defined as:

f(x) =
1

e− 1
g(x)eG(x) (1)

and the corresponding CDF and hazard rate function are as follows:

F (x) =
1

e− 1

[
eG(x) − 1

]
(2)

h(x) =
1

e− eG(x)
g(x)eG(x) (3)

respectively.

The uniqueness of this article stems from the fact that we offer a detailed overview of the
mathematical and statistical properties for new distribution in the hope that it will be use-
ful in lifetime data analysis. The primary objective of this study lies in two ways. The
first is analytical, demonstrating that the studied Exponential Transformed Inverse Rayleigh
distribution outperforms few well known distributions in the context of two real datasets. Sec-
ondly, for various sample sizes and parameter values we compare the performance of different
frequentist estimators of this distribution.

The paper is organized as follows: In section (2), Exponential Transformed Inverse Rayleigh
distribution is derived and graphically presented. Survival function and Hazard function
are discussed in subsequent subsections. Various mathematical and statistical properties of
the new distribution like raw moments, moment generating function, mode, quantiles and
order statistics etc. are derived in section (3). From frequentists view point, four methods
of parameter estimation are discussed in section (4). Comparison of estimators through
simulation procedure has been done in section (5). In section (6), model superiority is studied
through two real datasets. Finally, in section (7) we conclude the paper.
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2. Exponential transformed inverse Rayleigh distribution

A random variable X is said to follow inverse Rayleigh distribution with scale parameter σ > 0
if its probability density function(PDF) is given by:

g(x;σ) =
2σ2

x3
e−(

σ
x
)2 ; x > 0, σ > 0 (4)

and the corresponding cumulative distribution function(CDF) is

G(x;σ) = e−(
σ
x
)2 ; x > 0, σ > 0 (5)

Now considering the inverse Rayleigh as a baseline distribution mentioned in equations (4)
and (5) along with the DUS transformation denoted as in equations (1) and (2), we obtain a
new distribution, named as Exponential Transformed Inverse Rayleigh distribution. In further
sections, we use the abbreviation ETIR for the newly obtained distribution. The expressions
of PDF and the corresponding CDF for ETIR distribution is given below:

F (x;σ) =
1

e− 1

{
ee
−(σx )

2

− 1

}
; x > 0 σ > 0 (6)

f(x;σ) =

(
2σ2

e− 1

)
1

x3
ee
−(σx )

2

e−(σx )
2

; x > 0 σ > 0 (7)

It has to be noted that the ETIR is a extension of the inverse Rayleigh distribution. The
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Figure 1: PDF of ETIR distribution for different
scale parameter

0 5 10 15 20 25 30

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

x

C
D

F

σ = 0.5
σ = 1
σ = 1.5
σ = 3

Figure 2: CDF of ETIR distribution for different
scale parameter

newly obtained model has given more flexibility to analyze complex datasets. Figure 1 and
2 illustrate the possible shape of the PDF and CDF of ETIR distribution respectively. It is
clear from the figures that the ETIR distribution is highly right skewed and useful in modeling
positively skewed datasets.

2.1. Survival function and hazard rate function

Two most important inter-related probability measures for the life time distribution are Sur-
vival function and Hazard function. Both the measures generally used to describe and model
the intrinsic characteristics of several survival data. The survival function is denoted as
S(x) = P (X > x) = 1 − F (x); and defined as the probability that an individual or an item
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is survived at least x unit of time. Similarly, the hazard rate function or failure rate function
of an item or an individual at a time point x is propensity to fail in the next short interval
of time [x, x+ ∆x] given that it has survived upto time x. The hazard rate function, h(x) is
given as:

h(x) = ∆x→0lim
P (x < X < x+ ∆x|X > x)

∆x
=
f(x;σ)

S(x;σ)
; S(x;σ) > 0

The survival and hazard rate function for the ETIR distribution is given by the following
expressions (8) and (9) respectively:

S(x) =
1

e− 1

{
e− ee

−(σx )
2
}

(8)

h(x) =
2σ2

x3
e(−

σ
x )

2

e1−e
−(σx )

2

− 1
(9)

In Figure 3, it is seen that the shape of the hazard function curve first increases and then it
is started to decrease and finally it is converged to some constant value. In survival analysis,
it is well known that those lifetime distributions are very useful whose shape of the hazard
rate first increases and then decreases. For an example, the hazard curve of infant mortality
rate has similarity with this lifetime distribution. Over a time period, the infant mortality
rate increases but after the infants got immunity in their body and also the improvement of
medical treatment, the curve of the mortality rate decreases. Kotz and Nadarajah (2000),
Rao and Mbwambo (2019) is recommended for further details.
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Figure 3: Hazard rate function for differ-
ent scale parameter
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Figure 4: Survival function for different
scale parameter

2.2. Shape of ETIR distribution

The shape of the distribution is important since it provides details about the nature of the
distribution. Glaser (1980) proposed a theorem to find the shape of the hazard rate math-

ematically. According to the theorem, η(t) = −f ′(t)
f(t) ; where f(t) is continuous and twice

differentiable on the interval (0,∞).

If η′(t) > 0 ∀ t > 0, then the hazard rate is increasing and if η′(t) < 0 ∀ t > 0, then the
hazard rate is decreasing. So, we have

η(x) =
3

x
− 2σ2

x3

(
1 + e−(

σ
x
)2
)
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Therefore,

η′(x) = − 3

x2
− 4(σ2)2

x6
e−(

σ
x
)2 +

6σ2

x4

(
1 + e−(

σ
x
)2
)

(10)

The last term of equation (10) attains the minimum value zero as x → ∞. Therefore it is
clearly seen that η′(x) < 0 i.e; the distribution has decreasing hazard rate.

2.3. Random number generation

To generate random numbers from the ETIR distribution, the inversion method or the inverse
transformation method is considered. The algorithm is to first generate a random number
U from Uniform(0, 1) distribution and then the equation x = F−1(U) provides the random
number x from the ETIR distribution. Here we have,

ee
−(σx )2 − 1

e− 1
= U

Therefore,

x =
σ√

−ln [ln (U(e− 1) + 1)]
(11)

By using equation (11), for known values of scale parameter σ, we can easily generate random
numbers of size n from the ETIR distribution.

3. Statistical properties of ETIR distribution

In this section, some basic and significant statistical and mathematical measures of the Expo-
nential Transformed Inverse Rayleigh(ETIR) distribution such as moments, moment generat-
ing function, characteristic function, cumulant generating function, mode, quantile function
and order statistics are derived and discussed.

3.1. Raw moments

The rth order raw moment about origin, µ′r of the proposed distribution with having PDF
(7) is obtained as follows:

µ′r = E(Xr)

µ′r =
σr

e− 1
Γ(1− r

2
)
∞∑
k=0

1

k!
(k + 1)

r
2
−1; for r < 2 (12)

Now in equation (12) if we put r = 1; equation reduces to

µ′1 =
σ
√
π

e− 1

∞∑
k=0

1

k!
(k + 1)−

1
2

So, we have the mean µ′1 of our newly proposed ETIR distribution. From equation (12) it
can be seen that, for r = 2, µ′2 becomes undefined. Hence the variance and the higher order
raw moments of this distribution cannot be derived as the gamma function is defined only for
positive numbers.

3.2. Moment generating function, characteristic function and cumulant generating
function

Many interesting characteristics and features of a distribution can be obtained through study-
ing the generating functions of that distribution.
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The Moment generating function (MGF) of a random variable X having the proposed distri-
bution is given as follows:

MX(t) = E(etX)

MX(t) =
1

e− 1

∞∑
k=0

1

k!

∞∑
m=0

tm

m!
σm(k + 1)

m
2
−1Γ

(
1− m

2

)
Similarly, the Characteristic function of X can be found as,

φX(t) = E(eitX)

φX(t) =
1

e− 1

∞∑
k=0

1

k!

∞∑
m=0

(it)m

m!
σm(k + 1)

m
2
−1Γ

(
1− m

2

)

Where i =
√
−1 denotes imaginary number.

The Cumulant generating function of X is:

KX(t) = ln (MX(t))

KX(t) = ln

[
1

e− 1

∞∑
k=0

1

k!

∞∑
m=0

tm

m!
σm(k + 1)

m
2
−1Γ

(
1− m

2

)]

3.3. Mode

Mode is the value which have maximum probability area for any distribution. So, the mode
for ETIR distribution is the value for which f(x;σ) equation (7) is maximum. Hence, mode
is the solution of f ′(x;σ) = 0; and for which f ′′(x;σ) < 0.

So, differentiating equation (7) with respect to x and equating to zero, we get

2σ2

x3(e− 1)
ee
−(σx )2

e−(
σ
x
)2
[

2σ2

x3
+

2σ2

x3
e−(

σ
x
)2 − 3

x

]
= 0 (13)

Clearly, equation (13) cannot be solved analytically. Therefore, one can solve equation (13)
numerically by using some numerical iteration techniques, particularly here we prefer Newton-
Raphson method.

3.4. Quantile function

To calculate the Quantile function Π(p), 0 < p < 1 of a random variable X associated with a
probability density function (7) we solve the following equation:

F (Π(p)) = P (X ≤ Π(p)) = p (14)

To find the 1st, 2nd and 3rd quartile, we calculate the above equation for p = 0.25, 0.50 and
0.75 respectively.

Hence, the 2nd quartile or the median of the proposed distribution is:

Q2 =
σ√

−ln
[
ln
(
e+1
2

)]
Similarly, by solving the equation (14) for p = 0.25 and 0.75, we get 1st and 3rd quartile
respectively,

Q1 =
σ√

−ln
[
ln
(
e+3
4

)] and Q3 =
σ√

−ln
[
ln
(
3e+1
4

)]
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3.5. Order statistics

In reliability theory and quality control testing, order statistic plays an important role to
predict time to fail of a certain item by considering few early failures Dey, Raheem, and
Mukherjee (2017). Let X1 < X2 < ... < Xn be an ordered sample from a continuous
distribution with CDF FX(x) and PDF fx(x). Then the PDF of rth order statistic X(r) is
given by:

fX(r)
(x) =

n!

(r − 1)!(n− r)!
fX(x)(FX(x))r−1 [1− FX(x)]n−r ; r = 1, 2, ..., n

So, for the ETIR distribution PDF of the rth order statistic is given as:

fX(r)
(x) =

n!

(r − 1)!(n− r)!
2σ2

x3(e− 1)n
ee
−(σx )2

e−(
σ
x
)2
(
ee
−(σx )2

− 1

)r−1 (
e− ee

−(σx )2
)n−r

(15)

Smallest order statistic is always the minimum of the sample, i.e; X(1) = min{X1, X2, ..., Xn}
and the largest order statistic is the maximum of the sample, i.e; X(n) = max {X1, X2, ..., Xn}.
Expressions for the smallest and largest order statistics are obtained by substituting r = 1 and
n in equation (15) respectively. The corresponding CDF of the rth order statistic is obtained
as:

FX(r)
(x) =

n∑
i=r

(
n

i

)
F iX(x)[1− FX(x)]n−i

FX(r)
(x) =

n∑
i=r

(
n

i

)(ee−(σx )2 − 1

)i (
e− ee−(

σ
x )

2
)n−i

(e− 1)n
(16)

4. Estimation of the scale parameter of the ETIR distribution

In Statistics, estimating the unknown parameter(s) for the given sample is an important
step towards understanding the probabilistic model fully. Several estimation procedures un-
der classical as well as Bayesian paradigm are available in literature, for more details see
Louzada, Ramos, and Perdoná (2016), Dey, Dey, and Kundu (2014), Kundu and Raqab
(2005), Mazucheli, Ghitany, and Louzada (2016), Fan (2015) etc. In this study our focus
is to estimate the unknown scale parameter σ of ETIR distribution under frequentists ap-
proaches. Here we briefly describe four estimation procedures namely Maximum likelihood
method (MLE), Maximum product spacings method (MPS), Least square method (LSE) and
Weighted least square method (WLSE) respectively.

4.1. Maximum likelihood estimation method

A number of desirable properties for a good estimator such as consistency, asymptotic ef-
ficiency, invariance property etc. are satisfied by Maximum likelihood estimation method
(MLE). This makes the MLE one of the most frequently used techniques for parameter es-
timation. Let x1, x2, ..., xn be the sample of size n, drawn from the ETIR distribution with
PDF given in equation (7).

The likelihood function for σ is given by:

L(σ;X) =

(
2σ2

e− 1

)n n∏
i=1

(
1

x3i

)
e
∑n

i=1
e
−( σxi )

2

e
−σ2

∑n

i=1
1

x2
i (17)

Taking logarithm on both sides, the log - likelihood function becomes:

lnL(σ;X) = nln

(
2

e− 1

)
+ 2nlnσ +

n∑
i=1

ln

(
1

x3i

)
+

n∑
i=1

e
−
(
σ
xi

)2

− σ2
n∑
i=1

1

x2i
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Therefore for maximizing the equation (17), we differentiate the above log-likelihood function
with respect to σ and equate it to zero and get the following expression:

σ2
n∑
i=1

e
−
(
σ
xi

)2

1

x2i
+ σ2

n∑
i=1

1

x2i
= n (18)

It is obvious that equation (18) is not written explicitly and hence it cannot be solved an-
alytically. So, to obtain σ̂MLE we have to solve the above non-linear equation numerically.
For this purpose some iteratively based procedures such as the Newton-Raphson algorithm is
recommended.

4.2. Maximum product spacing method

Maximum product spacing method(MPS) was introduced by Cheng & Amin(1979, 1983)
in the context of the parameter(s) estimation of continuous univariate distributions as an
alternative to MLE. Further Ranneby (1984), independently developed the method as an
approximation to the Kullback-Leibler measure of information. Invariance property of MPS
estimators have been discussed by Coolen and Newby (1991). In the situation where the MLE
method fails to provide consistent estimator due to the unbounded likelihood function many
authors suggested the use of MPS. A comprehensive study on MPS method has been done by
Shah and Gokhale (1993), Shao and Hahn (1999), Ghosh and Jammalamadaka (2001), Wong
and Li (2006), Singh, Singh, and Singh (2014) etc.

let us suppose that x1 < x2 < ... < xn be an ordered sample from ETIR with CDF given in
equation (6). The spacing D′is is defined as follows:

Di = F (xi|σ)− F (xi−1|σ) ; i = 1, 2, ..., n+ 1

Where, F (x0|σ) = 0 and F (xn+1|σ) = 1 such that
∑n+1
i=1 Di = 1. In MPS method, the

estimate of σ maximizes the logarithm of the geometric mean of sample spacing.

Sn(σ) = ln

(n+1∏
i=1

Di

) 1
n+1


=

1

n+ 1
[lnD1 + lnD2 + ...+ lnDn+1]

=
1

n+ 1

[
lnF (x1) +

n∑
i=2

ln (F (xi)− F (xi−1)) + ln (1− F (xn))

]

=
1

n+ 1

ln
ee−( σ

x1
)
2

− 1

e− 1

+
n∑
i=2

ln

ee
−( σxi )

2

− ee
−
(

σ
xi−1

)2

e− 1

+ ln

e− ee−( σ
xn )

2

e− 1




=
1

n+ 1

ln(ee−( σ
x1

)
2

− 1

)
− ln(e− 1) +

n∑
i=2

ln
ee−( σxi )

2

− ee
−
(

σ
xi−1

)2− ln(e− 1)


+ln

(
e− ee

−( σ
xn )

2
)
− ln(e− 1)

]
(19)

Now differentiating (19) with respect to σ and equating it with zero we get,

ee
−( σ

x1
)
2

e
−
(
σ
x1

)2

1
x21

1− ee
−( σ

x1
)
2 +

n∑
i=2


ee
−
(

σ
xi−1

)2

e
−
(

σ
xi−1

)2

1
x2i−1
− ee

−( σxi )
2

e
−
(
σ
xi

)2

1
x2i

ee
−( σxi )

2

− ee
−
(

σ
xi−1

)2


+
ee
−( σ

xn )
2

e−
(
σ
xn

)2
1
x2n

e− ee
−( σ

xn )
2 = 0

(20)
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Since this is a non-linear equation, not having a closed form solution, it cannot be solved
analytically. We prefer some iterative procedure such as Newton-Raphson method to estimate
the parameter.

4.3. Least square and weighted least square method

Swain, Venkatraman, and Wilson (1988) proposed Least square estimaton (LSE) and Weighted
least square estimaton (WLSE) procedure to estimate the parameters of Beta distributions.
They described the procedures involving a continuous target distribution function FX(.) from

which random sample {Xj : 1 ≤ j ≤ n} with the corresponding order statistics
{
X(j) : 1 ≤ j ≤ n

}
are drawn. let x1 < x2 < ... < xn be an ordered sample then,

E (F (xj)) =
j

n+ 1
; j = 1, 2, ..., n

The LSE of the unknown parameter σ of ETIR distribution is obtained by minimizing S with
respect to σ where,

S =
n∑
j=1

[
F (xj)−

j

n+ 1

]2

=
n∑
j=1

ee
−
(
σ
xj

)2

− 1

e− 1
− j

n+ 1


2

(21)

We differentiate the equation (21) with respect to σ and equate to zero to get the least square
estimator σ̂LSE .

n∑
j=1

ee
−
(
σ
xj

)2

− 1

e− 1
− j

n+ 1

 ee
−
(
σ
xj

)2

e
−
(
σ
xj

)2

1

x2j
= 0 (22)

The above equation is non-linear. Hence we solve it numerically. The weighted least square
estimator (WLSE) of the unknown parameter can be obtained by minimizing

S =
n∑
j=1

wj [F (xj)− E(F (xj))]
2

with respect to σ, where wj be the weight function at the jth point. Therefore, the weighted
least square estimator of σ say σ̂WLSE can be obtained by minimizing

S =
n∑
j=1

(n+ 1)2(n+ 2)

(n− j + 1)

ee
−
(
σ
xj

)2

− 1

e− 1
− j

n+ 1


2

(23)

Differentiating (23) with respect to σ and equating it to zero, we get the weighted least squares
estimate σ̂WLSE .

n∑
j=1

(n+ 1)2(n+ 2)

(n− j + 1)

ee
−
(
σ
xj

)2

− 1

e− 1
− j

n+ 1

 ee
−
(
σ
xj

)2

e
−
(
σ
xj

)2

1

x2j
= 0
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Since the above non-linear equation cannot be solved analytically, using Newton-Raphson
method for its numerical solution is recommended.

5. Numerical illustrations

In this section, to study the performance of the estimator σ̂, we consider four different methods
of parameter estimation MLE, MPS, LSE and WLSE. We choose σ = 1, 1.5, 2, 2.5, 3 and
generate random samples of sizes n = 10, 25, 50, 75, 100 from Exponential Transformed
Inverse Rayleigh distribution (ETIR) by using inverse transformation method and we repeat
this process for K =20000 times. We calculate the estimated value for K times under the
considered estimation methods and the average value of the estimator is obtained by using
the following formula.

σ̂ =
1

K

K∑
i=1

σ̂i

To evaluate the performance of the estimate, we calculate the Mean Square Error (MSE) of
that estimator σ̂ using the formula

MSE (σ̂) =
1

K

K∑
i=1

(σ̂i − σ)2

The MSEs of the estimator under the four different methods of parameter estimation is
tabulated in Table 1 with an increasing order of sample size. It is observed that for σ = 1,
as we increase the sample size, MSEs of the estimator are gradually decreasing and in case
of σ = 1.5, all the MSEs under four different estimation method are decreasing and almost
converge to 0. For σ = 2, the MSEs of the estimator under Least square method(LSE) is not
in a decreasing order with the increment of sample size but for n = 100 it converges to the
almost same value at where the other MSEs of the estimator converges. For the remaining
value of σ, i.e., σ = 2.5 & 3, the least square method does not perform well as the MSEs
are in increasing order as we increase the sample size. Except the LSE, the other methods of
estimation MLE, MPS and WLSE performs quite well as the MSEs converge to almost zero.
Moreover, from the simulation study it is observed that, based on the MSE criterion, both
MLE and MPS method are efficient to estimate the unknown parameter of ETIR distribution
and these methods are always recommended for parameter estimation.

To understand it graphically, we represent two graphs for σ = 1 and 1.5 in Figure (5) displaying
the performance of four estimation methods in term of MSE for an increasing order of sample
size. It is clearly seen that for σ = 1.5, with the increment of sample size all the MSEs under
the four estimation processes are started to decrease and finally meet to the convergence point
zero.

6. Real data applications

In this section, two real datasets are used to access the utility of the proposed ETIR distribu-
tion. Moreover, for comparison purpose Exponentiated inverse Rayleigh(EIR), Transmuted
inverse Rayleigh(TIR), Inverse Rayleigh(IR) and Rayleigh distribution are also fit with the
same datasets. We measure the log-likelihood of the fitted models based on numerically ob-
tained MLE using nlm funcition in R (version 3.6.1) R Core Team (2019) to determine the
efficiency of the candidate distributions that best fit the results. Model selection criteria like
Akaike Information Criterion(AIC), Bayesian Information Criterion(BIC), Corrected Akaike
Information Criterion(AICC) and K - S test values are derived. AIC, BIC andAICC are
defined as follows:

AIC = 2 ∗ k − 2 ∗ lnL̂; BIC = k ∗ ln(n)− 2 ∗ lnL̂ and AICC = AIC + 2k2+2k
n−k−1
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Table 1: Average estimates of σ with the associated MSE (in parenthesis)

Parameter
value

Sample
sizes (n)

σ̂MLE σ̂MPS σ̂LSE σ̂WLSE

10 1.01372 (0.09604) 0.95087 (0.09149) 0.96432 (0.16577) 0.93089 (0.23889)

25 0.98316 (0.08444) 0.98260 (0.01504) 0.95313 (0.13110) 0.95988 (0.11441)

σ = 1 50 0.97301 (0.07731) 0.98686 (0.00651) 0.96240 (0.09210) 0.96757 (0.07839)

75 0.97585 (0.06339) 0.98940 (0.00427) 0.96884 (0.07349) 0.97977 (0.04882)

100 0.98070 (0.04932) 0.99192 (0.00324) 0.97601 (0.06129) 0.98280 (0.04887)

10 1.56187 (0.08824) 1.46831 (0.07569) 1.46803 (0.30712) 1.52016 (0.16608)

25 1.52555 (0.03105) 1.47344 (0.02916) 1.45636 (0.21001) 1.50792 (0.04784)

σ = 1.5 50 1.51394 (0.01510) 1.48173 (0.01463) 1.49006 (0.07171) 1.50394 (0.02223)

75 1.50861 ( 0.00980) 1.48472 (0.00967) 1.50280 (0.01734) 1.50119 (0.01460)

100 1.50686 (0.00726) 1.48756 (0.00721) 1.50400 (0.00921) 1.50183 (0.01086)

10 2.08467 (0.15839) 1.95935 (0.13588) 1.86780 (0.91582) 1.97601 (0.51037)

25 2.03245 (0.05441) 1.96299 (0.05130) 1.49031 (2.17342) 1.99251 (0.15245)

σ = 2 50 2.01738 (0.02618) 1.97449 (0.02551) 1.79166 (0.90069) 1.99904 (0.05788)

75 2.00949 (0.01725) 1.97758 (0.01716) 1.55791 (1.80712) 2.00045 (0.02649)

100 2.00915 (0.01285) 1.98341 (0.01274) 1.98200 (0.12599) 2.00269 (0.02123)

10 2.60501 (0.24869) 2.44839 (0.21337) 2.44392 (0.89479) 2.39587 (1.19262)

25 2.54475 (0.08602) 2.45769 (0.08028) 1.68292 (4.31577) 2.38214 (0.79657)

σ = 2.5 50 2.52098 (0.04084) 2.46728 (0.03987) 1.95616 (2.82495) 2.42709 (0.44462)

75 2.51451 (0.02741) 2.47462 (0.02702) 1.51038 (5.01870) 2.44694 ( 0.31778)

100 2.51006 (0.02000) 2.47794 (0.01981) 1.55876 (4.96483) 2.46992 (0.17900)

10 3.12960 (0.35664) 2.94176 (0.30454) 3.02525 (0.72458) 2.79968 (2.21861)

25 3.05305 (0.12352) 2.94872 (0.11552) 1.97056 (6.49095) 2.84492 (1.20642)

σ = 3 50 3.02607 (0.05879) 2.96172 (0.05724) 1.78378 (7.45189) 2.94086 (0.47513)

75 3.01920 (0.03998) 2.97139 (0.03926) 2.22207 (4.77670) 2.98676 (0.16408)

100 3.01624 (0.02927) 2.97766 (0.02900) 1.72277 (7.64770) 3.00038 (0.07597)
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Figure 5: MSE of σ̂ under the four different estimation methods with the variation of sample
size n
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where n is sample size, k is the number of parameters and L̂ is maximum likelihood for the
considered distribution. AIC, BIC, AICC and the K-S test statistic with lower values indicate
a better fit of distributions.

Dataset 1 The data consists of thirty successive March precipitation (in inches) observations
originally was given by Hinkley (1977).
0.77, 1.74, 0.81, 1.2, 1.95, 1.2, 0.47, 1.43, 3.37, 2.2, 3, 3.09, 1.51, 2.1, 0.52, 1.62, 1.31, 0.32,
0.59, 0.81, 2.81, 1.87, 1.18, 1.35, 4.75, 2.48, 0.96, 1.89, 0.9, 2.05

Table 2: Criterion for model comparison

Distributions Parameter(s) Estimate -2logL AIC BIC AICC K-S test value

ETIR σ̂ = 0.8293 84.0526 86.0526 87.4538 86.1955 0.1560

EIR σ̂ = 0.8287; α̂ = 0.7314 86.4023 90.4023 93.2047 90.8468 0.1650

IR σ̂ = 0.9267 88.2730 90.2730 91.6742 90.4159 0.2063

TIR σ̂ = 0.9267; λ̂ = 0.5000 96.8780 100.8781 103.6805 101.3225 0.3305

Rayleigh σ̂ = 2.0009 91.2660 93.2660 94.6672 93.4089 0.3463

Dataset 2: In this dataset, survival times (in days) of guinea pigs injected with different
doses of tubercle bacilli is given. The dataset is originally reported by Bjebkedal (1960) and
futher Kundu and Howlader (2010) and Singh, Singh, and Kumar (2013) used this dataset in
Bayesian context.

12, 15, 22, 24, 24, 32, 32, 33, 34, 38, 38, 43, 44, 48, 52, 53, 54, 54, 55, 56, 57, 58, 58, 59, 60,
60, 60, 60, 61, 62, 63, 65, 65, 67, 68, 70, 70, 72, 73, 75, 76, 76, 81, 83, 84, 85, 87, 91, 95, 96,
98, 99, 109, 110, 121, 127, 129, 131, 143, 146, 146, 175, 175, 211, 233, 258, 258, 263, 297, 341,
341, 376.

Table 3: Criterion for model comparison

Distributions Parameter(s) Estimate -2logL AIC BIC AICC K-S test value

ETIR σ̂ = 41.8304 800.1490 802.1490 804.4256 802.2061 0.1920

EIR σ̂ = 39.0607; α̂ =0.6162 801.8299 805.8299 810.3833 806.0038 0.1961

IR σ̂ = 46.7748 813.4721 815.4721 817.7488 815.5293 0.2369

TIR σ̂ = 46.7748; λ̂ = 0.5000 837.3260 841.3260 845.8794 841.5000 0.3608

Rayleigh σ̂ = 90.6991 816.5921 818.5921 820.8688 818.6492 0.2873

7. Conclusion

Exponential Transformed Inverse Rayleigh(ETIR) distribution has been introduced in this
study using DUS transformation. Flexibility of this transformed model is greater than that
of the original distribution. Probability density plot along with corresponding distribution
function, hazard function and survival function plot have been sketched for selected values
of parameter. Both the density plot and the hazard plot indicates the distribution is useful
in fitting highly skewed positive datasets. Nature of the hazard function relates with the
real phenomenon also. Some of the basic statistical properties such as moments, moment
generating function, quantile functions, mode, median along with PDF and CDF of rth order
statistic are computed for the proposed distribution. It has been seen that the distribution
posses only first moment.
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The unknown model parameter is estimated using four estimation procedures. To compare
these approaches, we conducted a comprehensive simulation analysis. We have compared es-
timators with respect to mean square error (MSE). The simulation result shows that the max-
imum likelihood estimation (MLE), maximum product spacing method (MPS) and Weighted
least square method (WLSE) are consistent and performs well in terms of MSE. As the sample
size increases the MSE value decreases and almost converges to zero for the three estimation
method except Least square method(LSE). Furthermore, both MLE and MPS method pro-
vide low MSE value and hence these methods are efficient and consistent to estimate the
unknown parameter of ETIR distribution.

The model usefulness is illustrated using two real datasets through maximum likelihood ap-
proach. ETIR distribution is fitted well among other well known distribution in terms of AIC,
BIC, AICC and K-S test value. For modeling survival data as well as positively skewed data
this distribution have a significant importance. It is hoped that, for further research, this
distribution may contribute in the area of reliability and survival analysis.
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