Order Selection in a Finite Mixture of Birnbaum-Saunders Distributions
DOI:
https://doi.org/10.17713/ajs.v51i3.1266Abstract
One of the most significant and difficult problems in a mixture study is the selection of the number of components. In this paper, using a Monte Carlo study, we evaluate and compare the performance of several information criteria for selecting the number of components arising from a mixture of Birnbaum-Saunders distributions. In our comparison, we consider information criteria based on likelihood-based statistics and classification likelihood-based statistics. The performance of information criteria is determined based on the success rate in selecting the number of components. In the simulation study, we investigate the effect of degrees of separation, sample sizes, mixing proportions, and true model complexity on the performance of information criteria. Furthermore, we compare the performance of the proposed information criteria under unpenalized and penalized estimation. Finally, we discuss the performance of the proposed information criteria for a real data set.
Downloads
Published
Issue
Section
License
Copyright (c) 2022 Walaa EL- Sharkawy, Moshira Ismail

This work is licensed under a Creative Commons Attribution 3.0 Unported License.
The Austrian Journal of Statistics publish open access articles under the terms of the Creative Commons Attribution (CC BY) License.
The Creative Commons Attribution License (CC-BY) allows users to copy, distribute and transmit an article, adapt the article and make commercial use of the article. The CC BY license permits commercial and non-commercial re-use of an open access article, as long as the author is properly attributed.
Copyright on any research article published by the Austrian Journal of Statistics is retained by the author(s). Authors grant the Austrian Journal of Statistics a license to publish the article and identify itself as the original publisher. Authors also grant any third party the right to use the article freely as long as its original authors, citation details and publisher are identified.
Manuscripts should be unpublished and not be under consideration for publication elsewhere. By submitting an article, the author(s) certify that the article is their original work, that they have the right to submit the article for publication, and that they can grant the above license.
 
            
         
             
            