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Abstract

In this paper, the applications of the half logistic-Marshall Olkin X family of distri-
butions are investigated with special emphasis to the half logistic-Marshall Olkin Lomax
distribution. The specific areas we concentrated are time series modeling, acceptance sam-
pling plan and stress- strength analysis. Different autoregressive minification structures
of order one are introduced. The acceptance sampling plan is detailed by considering
life time of products following the half logistic-Marshall Olkin Lomax distribution. The
stress-strength reliability of the half logistic-Marshall Olkin Lomax distribution is derived
and estimated. A simulation study is carried out to examine the bias, mean square error,
average confidence length and coverage probability of the maximum likelihood estimator
of the stress-strength reliability. Finally a real-life data analysis has also been presented.

Keywords: half logistic-Marshall Olkin X family of distribution, half logistic-Marshall Olkin
Lomax distribution, autoregressive minification process, acceptance sampling plan, stress-
strength analysis.

1. Introduction

Many real life phenomena are well described by statistical distributions. Although in case
where existing distributions are found inadequate for a phenomenon, new generated classes
of distributions are defined to meet the requirements. Such extended distributions are proved
to be extremely useful for modeling real life situations by many authors. Several generators
are existing in statistical literature. Two well known generators are, the Marshall-Olkin
generator (MO-G) by Marshall and Olkin (1997) and the transformer (T-X) by Alzaatreh,
Lee, and Famoye (2013).

For the last decades, there has been increasing interest in developing time series models for real
valued observations using non-Gaussian distributions and the reason behind this is that many
naturally occurring time series are non-Gaussian with Markovian structure. The pioneering
work of autoregressive models with minification structure were proposed by Tavares (1980),
and it followed by Sim (1986), Yeh, Arnold, and Robertson (1988), Arnold and Robertson
(1989), Pillai (1991), Jose, Naik, and Ristić (2010) and others .
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The acceptance sampling plan is an important tool in statistical quality control because it
helps manufactures to minimize variability and protect the outgoing quality of their products.
It is a sampling inspection procedure for determining the acceptability of the product. The
acceptance sampling plans have been investigated in the past few decades by many authors, for
instance Rosaiah, Gadde, Kalyani, and Kumar (2018), Rosaiah and Kantam (2005), Gillariose
and Tomy (2018), Jose and Joseph (2018), Jose and Sebastian (2011) and Jose, Tomy, and
Thomas (2018).

When assessing system reliability, a satisfactory performance is done when the strength ap-
plied to the component exceeds stress. Suppose that X represents the strength of a component
with a stress Y, then R=P (X > Y ) can be considered as a measure of reliability of system.
The system becomes out of control if the system stress exceeds its strength. Since R represents
a relation between the stress and strength of a system. The estimation of the stress-strength
reliability R has received considerable attention in the statistical literature. The pioneering
work is given by Birnbaum et al. (1956) and Birnbaum, McCarty et al. (1958) .

Tomy and Jose (2020) introduced a new family of distributions called T-Marshall Olkin X
family of distributions, it having the properties contained in both Marshall-Olkin and T-X
family of distributions. They showed that several families of distributions can be derived from
T-Marshall Olkin X family for different choices of variable T. In this article as a special case,
the half logistic-Marshall Olkin X (HLMO-X) family of distributions is investigated. The
cumulative density function (CDF) of the HLMO-X family of distributions by Tomy and Jose
(2020) is given by

R(x) =

1−
{

c(1−F (x))
c+(1−c)F (x)

}λ
1 +

{
c(1−F (x))
c+(1−c)F (x)

}λ (1)

where F(x) is the CDF of a random variable X. For convenience one special model of this
family, the half logistic-Marshall Olkin Lomax (HLMOL) distribution, is studied in detail.

The Lomax distribution is one of the most commonly used distributions to model lifetime data
and it has applications in several fields such as lifetime and reliability modeling, biological
sciences and actuarial sciences. The CDF of the Lomax distribution is given by.

F (x) = 1− [1 +
x

θ
]−α; x > 0, α, θ > 0

The HLMOL distribution has CDF given by

R(x) =

[
(1 + x

θ )α + c− 1
]λ − cλ[

(1 + x
θ )α + c− 1

]λ
+ cλ

(2)

The corresponding probability density function (PDF) is

r(x; c, λ, α, θ) =
2λαcλ

θ

[
(1 + x

θ )α + c− 1
]λ−1

[1 + x
θ ]α−1[[

(1 + x
θ )α + c− 1

]λ
+ cλ

]2 ; x > 0, c, λ, α, θ > 0 (3)

With this context the main motivation behind this study is to investigate the diverse applica-
tions of the HLMO-X family of distributions in various fields like time series, quality control
and reliability.

The paper unfolds as follows: In Section 2, we consider some applications of the HLMOL
distribution in time series modeling. Section 3 presents the acceptance sampling plan of
HLMOL distribution. In Section 4, The derivation and estimation of stress-strength reliability
parameter R are given. The conclusion of the paper appears in Section 5.
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2. Autoregressive time series modeling

Here, we develop different autoregressive minification processes of order one with HLMOL
distribution as marginal distribution. We call the processes as HLMOL AR(1) Processes.
Now we have the following theorem.

Theorem 2.1. Consider an AR(1) structure given below

Xn =

{
εn with probability c

min(Xn−1, εn) with probability 1-c, 0 ≤ c ≤ 1, n≥ 1
(4)

where {εn} is a sequence of independent and identically distributed (iid) random variables
and is independent of {Xn}. Then the process is stationary AR(1) minification process with
HLMOL(1,α,θ,c) as marginals if and only if εn is distributed as half logistic Lomax(α, θ) and
X0 d HLMOL(1,α,θ,c).

Proof. From (4) it follows that

P (Xn > x) = cP (εn > x) + (1− c)P (Xn−1 > x)P (εn > x)

That is,

R̄Xn(x) = R̄εn(x)[c+ (1− c)R̄Xn−1(x)] (5)

If the process is stationary with HLMOL(1,α,θ,c) marginals, then

R̄εn(x) =
R̄X(x)

c+ (1− c)R̄X(x)

=

2c
(1+x

θ
)α+2c−1

c+ (1− c) 2c
(1+x

θ
)α+2c−1

=
2

(1 + x
θ )α + 1

(6)

Which is the survival function of half logistic Lomax(α, θ) distribution.

Coversely, If εn(x)′s are iid random variables follows half logistic Lomax(α, θ) distribution
with X0 d HLMOL(1,α,θ,c), then from (5), we have

R̄X1(x) = R̄ε1(x)[c+ (1− c)R̄X0(x)]

=
2

(1 + x
θ )α + 1

{
c+ (1− c) 2c

(1 + x
θ )α + 2c− 1

}
=

2

(1 + x
θ )α + 1

{
c(1 + x

θ )α − c+ 2c

(1 + x
θ )α + 2c− 1

}
=

2c

(1 + x
θ )α + 2c− 1

(7)

That is X1 has HLMOL(1,α,θ,c) distribution.
Similarly if Xn−1 has HLMOL(1,α,θ,c) distribution, we get Xn also has HLMOL(1,α,θ,c)
distribution. Hence the process {Xn} is stationary with HLMOL marginals.

The corresponding sample paths are given in Figure 1. The sample path behaviour of the
process seems to be distinct and is adjustable through the parameters c,α and θ.
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Figure 1: Sample path behaviour of HLMOL minification process given in Theorem 2.1

The following theorem gives a first order autoregressive minification process with marginals
following HLMOL(λ, α, θ, β) distribution.

Theorem 2.2. Consider an AR(1) structure given below

Xn =

{
εn with probability c

min(Xn−1, εn) with probability 1-c, 0 ≤ c ≤ 1, n≥ 1
(8)

where {εn} is a sequence of iid distributed random variables and is independent of {Xn}. Then
the process is stationary AR(1) minification process with HLMOL(λ, α, θ, β) as marginals if
and only if εn(x)′s having the survival function,

R̄εn(x) =
2βλ

c[(1 + x
θ )α + β − 1]λ + (2− c)βλ

(9)

and X0 d HLMOL (λ, α, θ, β).

Proof. From (8) it follows that

P (Xn > x) = cP (εn > x) + (1− c)P (Xn−1 > x)P (εn > x)

That is,
R̄Xn(x) = R̄εn(x)[c+ (1− c)R̄Xn−1(x)] (10)

If the process is stationary with HLMOL(λ, α, θ, β) marginals, then

R̄εn(x) =
R̄X(x)

c+ (1− c)R̄X(x)

=

2βλ

[(1+x
θ

)α+β−1]λ+βλ

c+ (1− c) 2βλ

[(1+x
θ

)α+β−1]λ+βλ

=
2βλ

c[(1 + x
θ )α + β − 1]λ + (2− c)βλ

(11)

That is, εn(x)’s are iid random variables having survival function given in (11).

Coversely, If εn(x)′s are iid random variables having survival functions given in (11) with X0

d HLMOL(λ, α, θ, β), then from (10), we have

R̄X1(x) = R̄ε1(x)[c+ (1− c)R̄X0(x)] (12)

=
2βλ

c[(1 + x
θ )α + β − 1]λ + (2− c)βλ

{
c+ (1− c) 2βλ

[(1 + x
θ )α + β − 1]λ + βλ

}
(13)

=
2βλ

[(1 + x
θ )α + β − 1]λ + βλ

(14)
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That is X1 has HLMOL(λ, α, θ, β) distribution.
Similarly if Xn−1 has HLMOL(λ, α, θ, β) distribution, we get Xn also has HLMOL(λ, α, θ,
β) distribution. Hence the process {Xn} is stationary with HLMOL marginals.

The corresponding sample paths are given in Figure 2. The sample path behaviour of the
process seems to be distinct and is adjustable through the parameters c, λ, α, θ and β.
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Figure 2: Sample path behaviour of HLMOL minification process given in Theorem 2.2

Krishnarani and Jayakumar (2008) gives a general class of autoregressive process with the

following monotone transformation φ(x) = logR(x)
R̄(x)

where R(x) is a nondegenerate CDF,

φ(−∞) = −∞, φ(∞) =∞ and R̄(x) = 1−R(x). The corresponding markov process is

Xn =

{
φ−1[φ(Xn−1)− log(c)] with probability c

min[φ−1(φ(Xn−1)− log(c)), εn] with probability 1-c, 0 < c < 1,
(15)

where {εn} is a sequences of iid random variables with CDF R , εn independent of Xi’s, i=0,
1, 2,...n-1 with X0 having distribution function R.
We use this concept in HLMOL(λ, α, θ, c) distribution. Then we get Theorem 2.3.

Theorem 2.3. Consider an AR(1) structure given below

Xn =


θ

{[[ [(1+
Xn−1
θ

)α+c−1]λ+cλ(c−1)

c

]1/λ
+ 1− c

]1/α

− 1

}
with probability c

min

{
θ

{[[ [(1+
Xn−1
θ

)α+c−1]λ+cλ(c−1)

c

]1/λ
+ 1− c

]1/α

− 1

}
, εn

}
with probability 1-c

(16)
where 0 < c < 1, {εn} is a sequence of iid distributed random variables and εnis indepen-
dent of Xi, i=0, 1, 2,..n-1. Then the process is stationary AR(1) minification process with
HLMOL(λ,α,θ,c) as marginals if and only if {εn} is distributed as HLMOL(λ,α,θ,c) and X0

d ε1 .

Proof. From (16) it follows that

P (Xn > x) = cP
{
Xn−1 > θ

{[
[c((1 +

xn−1

θ
)α + c− 1)λ − cλ(c− 1)]1/λ + 1− c

]1/α − 1
}}

+ (1− c)P
{
Xn−1 > θ

{[
[c((1 +

xn−1

θ
)α + c− 1)λ − cλ(c− 1)]1/λ + 1− c

]1/α − 1
}}

P (εn > x) (17)

That is,

R̄Xn(x) = R̄Xn−1

{
θ
{[

[c((1+
xn−1

θ
)α+c−1)λ−cλ(c−1)]1/λ+1−c

]1/α−1
}}[

c+(1−c)R̄εn(x)

]
(18)
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If the process is stationary with HLMOL(λ,α,θ,c) marginals, then[
c+ (1− c)R̄ε(x)

]
=

R̄X(x)

R̄X

{
θ
{[

[c((1 + x
θ )α + c− 1)λ − cλ(c− 1)]1/λ + 1− c

]1/α − 1
}}

=

2cλ

[(1+x
θ

)α+c−1]λ+cλ

2cλ

c[(1+x
θ

)α+c−1]λ−cλ(c−2)

=
c[(1 + x

θ )α + c− 1]λ − cλ(c− 2)

[(1 + x
θ )α + c− 1]λ + cλ

(19)

That is, R̄ε(x) = 2cλ

[(1+x
θ

)α+c−1]λ+cλ
, which is the survival function of HLMOL(λ, α, θ, c) distri-

bution.

Conversely, If εn(x)′s are iid random variables following HLMOL(λ, α, θ, c) distribution with
X0 d HLMOL(λ, α, θ, c), then from (18), we have

R̄X1(x) = R̄X0

{
θ
{[

[c((1 +
xn−1

θ
)α + c− 1)λ − cλ(c− 1)]1/λ + 1− c

]1/α − 1
}}[

c+ (1− c)R̄εn(x)

]
=

2cλ

c[(1 + x
θ )α + c− 1]λ − cλ(c− 2)

{
c+ (1− c) 2cλ

[(1 + x
θ )α + c− 1]λ + cλ

}
=

2cλ

c[(1 + x
θ )α + c− 1]λ − cλ(c− 2)

{
c[(1 + x

θ )α + c− 1]λ + cλ+1 + 2cλ − 2cλ+1

[(1 + x
θ )α + c− 1]λ + cλ

}
=

2cλ

[(1 + x
θ )α + c− 1]λ + cλ

(20)

That is X1 has HLMOL(λ, α, θ, c) distribution.
Similarly if Xn−1 has HLMOL(λ, α, θ, c) distribution, we get Xn also has HLMOL(λ, α, θ, c)
distribution. Hence the process {Xn} is stationary with HLMOL marginals.

The corresponding sample paths are given in Figure 3. The sample path behaviour of the
process seems to be distinct and is adjustable through the parameters c, λ, α and θ.
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Figure 3: Sample path behaviour of HLMOL minification process given in Theorem 2.3

Theorem 2.4 stated below is a particaular case of Theorem 2.3, that is it gives a first order
autoregressive minification process with marginals following HLMOL(1, α, θ, β) distribution.

Theorem 2.4. Consider an AR(1) structure given below

Xn =


θ

{[
(1+

Xn−1
θ

)α+c−1
]1/α

−c1/α

c1/α

}
with probability c

min

{
θ

{[
(1+

Xn−1
θ

)α+c−1
]1/α

−c1/α

c1/α

}
, εn

}
with probability 1-c

(21)
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where 0 < c < 1, {εn} is a sequence of iid distributed random variables and εnis indepen-
dent of Xi, i=0, 1, 2,..n-1. Then the process is stationary AR(1) minification process with
HLMOL(1,α,θ,c) as marginalas if and only if {εn} is distributed as HLMOL(1,α,θ,c) and X0

d ε1 .

Proof. The proof is similar to that of Theorem 2.3.

The corresponding sample paths are given in Figure 4. The sample path behaviour of the
process seems to be distinct and is adjustable through the parameters c, α and θ.
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Figure 4: Sample path behaviour of HLMOL minification process given in Theorem 2.4

3. Acceptance sampling plan

In this section, we provide the acceptance sampling plan (ASP) under the assumption that
lifetime of items follows a four parameter HLMOL(λ, α, θ, c) distribution. The ASP involves
determining the number of items to be inspected (n) and the maximum allowable number of
defective items among the inspected items for acceptance of the item, that is the acceptance
number (C). The test is terminated at a pre-specified time t and note the number of defective
items(D). The decision procedure is to accept the lot if and only if at the end of the fixed time
t, D does not exceed C, with a given probability p?. The test may get terminated before the
time t is reached when D exceed C in which case we reject the lot. Here we are interested in
obtaining the minimum sample size required to reach at the decision. It is assumed that the
distribution parameters λ, α, c are known, while θ is unknown. In this case the average lifetime
depends only on θ. Let θ0 be the required minimum average lifetime, then the following holds:

R(t, λ, α, θ, c) ≤ R(t, λ, α, θ0, c)⇐⇒ θ ≥ θ0

An ASP consists of the following quantities

• The number of units ’n’ on test

• The acceptance number ’ C’

• The ratio t
θ0

, where θ0 is the specified average life and t is the maximum test duration

The probability of accepting a bad lot, that is consumers risk is not to exceed 1 − p?, so
that p? is a minimum confidence level with which a lot of true average life θ below θ0 is
rejected, by the sampling plan. Therefore, for fixed p?, the ASP can be characterized by the
triplet (n,C, tθ0 ). Here we consider sufficiently large lots so that the binomial distribution can
be applied. Then our aim is to find the minimum positive integer n for given values of p?

(0 < p? < 1), θ0 and C such that.

C∑
i=0

(
n

i

)
pi0(1− p0)n−i ≤ 1− p? (22)
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where p0 = R(t, λ, α, θ0, c), indicates the failure probabilities before time ‘t’ which depends
only on the ratio t

θ0
. The minimum values of n satisfying the inequality (22) are obtained

and displayed in Table 1 for p?=0.75, 0.90, 0.95, 0.99 and t
θ0

=0.4, 0.6, 0.8, 1.0, 1.2, 1.4, 1.6,
1.8, 2.0, C=0, 1, 2,...,10, λ = 2, α = 2 and c=2.

If p0 = R(t, λ, α, θ0, c) is small and n is large, the binomial probability may be approximated
by Poisson probability with parameter β = np so that (22) can be written as

C∑
i=0

e−ββi

i!
≤ 1− p? (23)

where β = nR(t; θ0). The minimum values of ’n’ satisfying (23) are obtained for the same
combination of p?, t

θ0
, C, λ, α and c values as those used for (22). The results are given in

Table 2.

The operating characteristic (OC) function is the probability of accepting the lot with:

L(p) =

C∑
i=0

(
n

i

)
pi(1− p)n−i

where p = R(t, λ, α, θ, c), is considered as a function of θ, that is, the true average life of the
lot. For given p?, t

θ0
, the choice of C and n will be made on the basis of OC. Values of OC

as a function of d = θ
θ0

for the sampling plan (n, 2, tθ0 ) with λ = 2, α = 2 and c=2 are given
in Table 3. Figure 5 shows the OC curves for the sampling plan (n,C, 0.6) with p? = 0.75 for
λ = 2, α = 2 and c=2.
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Figure 5: OC curves for C = 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, respectively under p? = 0.75, t
θ0

= 0.6, λ = 2, α = 2 and c = 2, of ASP for HLMOL distribution

The producer’s risk is the probability of rejecting a good lot. For a specified value of the
producer’s risk, say 0.05, one may be interested in knowing what value of the ratio d will
ensure a producer’s risk less than or equal to 0.05 for a given sampling plan. Hence, the value
of d, is the smallest positive number for which p = R

(
t
θ0
θ0
θ

)
holds the following inequality

n∑
i=C+1

(
n

i

)
pi(1− p)n−i ≤ 0.05
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Table 1: Minimum sample size for the specified ratio t
θ0

, confidence level p?, acceptance
number C, λ = 2, α = 2 c = 2 using the binomial approximation

p? C
t
θ0

0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

0.75 0 3 2 2 2 1 1 1 1 1
1 7 5 4 3 3 3 2 2 2
2 10 7 6 5 4 4 4 4 3
3 13 9 7 6 6 5 5 5 5
4 16 11 9 8 7 6 6 6 6
5 19 13 11 9 8 8 7 7 7
6 22 16 12 11 10 9 9 8 8
7 25 18 14 12 11 10 10 9 9
8 28 20 16 14 12 12 11 11 10
9 31 22 18 15 14 13 12 12 11
10 34 24 19 17 15 14 13 13 12

0.9 0 5 4 3 2 2 2 2 1 1
1 9 6 5 4 4 3 3 3 3
2 13 9 7 6 5 5 4 4 4
3 16 11 9 7 7 6 6 5 5
4 20 14 11 9 8 7 7 7 6
5 23 16 13 11 9 9 8 8 7
6 26 18 14 12 11 10 9 9 9
7 29 20 16 14 12 11 11 10 10
8 33 23 18 15 14 13 12 11 11
9 36 25 20 17 15 14 13 13 12
10 39 27 21 18 16 15 14 14 13

0.95 0 7 5 3 3 2 2 2 2 2
1 11 8 6 5 4 4 3 3 3
2 15 10 8 7 6 5 5 4 4
3 19 13 10 8 7 7 6 6 6
4 22 15 12 10 9 8 7 7 7
5 26 18 14 12 10 9 9 8 8
6 29 20 16 13 12 11 10 9 9
7 32 22 17 15 13 12 11 11 10
8 36 25 19 16 15 13 13 12 11
9 39 27 21 18 16 15 14 13 13
10 42 29 23 20 17 16 15 14 14

0.99 0 10 7 5 4 3 3 3 2 2
1 15 10 8 6 5 5 4 4 4
2 20 13 10 8 7 6 6 5 5
3 24 16 12 10 9 8 7 7 6
4 27 18 14 12 10 9 9 8 8
5 31 21 16 14 12 11 10 9 9
6 35 24 18 15 13 12 11 11 10
7 38 26 20 17 15 14 13 12 11
8 42 29 22 19 16 15 14 13 13
9 45 31 24 20 18 16 15 14 14
10 49 33 26 22 19 18 16 16 15
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Table 2: Minimum sample size for the specified ratio t
θ0

, confidence level p?, acceptance
number C, λ = 2, α = 2 c = 2 using the Poisson approximation

p? C
t
θ0

0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

0.75 0 4 3 3 2 2 2 2 2 2
1 8 6 5 4 4 4 4 3 3
2 11 8 7 6 5 5 5 5 5
3 14 10 9 8 7 7 6 6 6
4 17 13 10 9 8 8 8 7 7
5 20 15 12 11 10 9 9 9 9
6 23 17 14 12 11v 11 10 10 10
7 26 19 16 14 13 12 12 11 11
8 29 21 17 15 14 13 13 12 12
9 32 23 19 17 16 15 14 14 13
10 35 26 21 18 17 16 15 15 15

0.9 0 7 5 4 4 3 3 3 3 3
1 11 8 7 6 5 5 5 5 5
2 15 11 9 8 7 7 7 6 6
3 18 13 11 10 9 8 8 8 8
4 22 13 13 12 11 10 10 9 9
5 25 18 15 13 12 12 11 11 11
6 29 21 17 15 14 13 13 12 12
7 32 23 19 17 15 15 14 14 13
8 35 25 21 18 17 16 15 15 15
9 39 28 23 20 18 17 17 16 16
10 42 30 25 22 20 19 18 18 17

0.95 0 9 6 5 5 4 4 4 4 3
1 13 10 8 7 7 6 6 6 6
2 17 13 10 9 8 8 8 7 7
3 21 15 13 11 10 10 9 9 9
4 25 18 15 13 12 11 11 11 10
5 29 21 17 15 14 13 13 12 12
6 32 23 19 17 15 15 14 14 13
7 37 26 21 19 17 16 16 15 15
8 39 28 23 20 19 18 17 16 16
9 43 31 25 22 20 19 18 18 18
10 46 33 27 24 22 21 20 19 19

0.99 0 13 9 8 7 6 6 6 6 5
1 18 13 11 10 9 8 8 8 8
2 23 17 14 12 11 11 10 10 10
3 27 20 16 14 13 12 12 12 11
4 32 23 19 17 15 14 14 13 13
5 36 26 21 19 17 16 15 15 15
6 40 29 23 21 19 18 17 17 16
7 43 31 26 23 21 20 19 18 18
8 47 34 28 25 23 21 20 20 19
9 51 37 30 26 24 23 22 21 21
10 54 39 32 28 26 25 24 23 22
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Table 3: OC values for the ASP (n,C, tθ0 ) for given confidence level p?, acceptance number
C=2, λ = 2, α = 2 c = 2

p? n t
θ0

d
2 4 6 8 10 12

0.75 10 0.4 0.6890 0.9306 0.9752 0.9885 0.9938 0.9963
7 0.6 0.6741 0.9282 0.9746 0.9883 0.9937 0.9963
6 0.8 0.5999 0.9056 0.9661 0.9844 0.9916 0.9949
5 1 0.5919 0.9038 0.9657 0.9843 0.9915 0.9950
4 1.2 0.6566 0.9251 0.9742 0.9884 0.9938 0.9964
4 1.4 0.5559 0.8905 0.96093 0.9821 0.9904 0.9943
4 1.6 0.4618 0.8504 0.9445 0.9742 0.9861 0.9917
4 1.8 0.3780 0.8057 0.92518 0.9645 0.9807 0.9884
3 2 0.6203 0.9085 0.9681 0.9857 0.9924 0.9956

0.9 13 0.4 0.5155 0.8676 0.9491 0.9756 0.9865 0.9918
9 0.6 0.4952 0.8626 0.9477 0.9751 0.9863 0.9917
7 0.8 0.4796 0.8583 0.9465 0.9746 0.9861 0.9916
6 1 0.4402 0.8417 0.9398 0.9714 0.9844 0.9905
5 1.2 0.4622 0.8524 0.9449 0.9742 0.9859 0.9916
5 1.4 0.3492 0.7929 0.9188 0.9611 0.9786 0.9870
4 1.6 0.4618 0.8504 0.9445 0.9742 0.9861 0.9917
4 1.8 0.3780 0.8057 0.9251 0.9645 0.9807 0.9884
4 2 0.3060 0.7577 0.9027 0.9531 0.9742 0.9844

0.95 15 0.4 0.4121 0.8178 0.9266 0.9639 0.9797 0.9875
10 0.6 0.4154 0.8244 0.9306 0.9663 0.9813 0.9885
8 0.8 0.3740 0.8051 0.9226 0.9624 0.9791 0.9872
7 1 0.3152 0.7710 0.9073 0.9546 0.9746 0.9845
6 1.2 0.3067 0.7662 0.9056 0.9540 0.9744 0.9844
5 1.4 0.3492 0.7929 0.9188 0.9611 0.9786 0.9870
5 1.6 0.2573 0.7279 0.8878 0.9449 0.9693 0.9812
4 1.8 0.3780 0.8057 0.9251 0.9645 0.9807 0.9884
4 2 0.3061 0.7577 0.9027 0.9531 0.9742 0.9844

0.99 20 0.4 0.2178 0.6797 0.8556 0.9247 0.9562 0.9724
13 0.6 0.2298 0.6981 0.8676 0.9321 0.9610 0.9756
10 0.8 0.2146 0.6890 0.8641 0.9306 0.9602 0.9752
8 1 0.2190 0.6962 0.8692 0.9339 0.9624 0.9767
7 1.2 0.1948 0.6741 0.8583 0.9282 0.9591 0.9746
6 1.4 0.2052 0.6841 0.8645 0.9320 0.9615 0.9762
6 1.6 0.1332 0.5999 0.8175 0.9056 0.9457 0.9661
5 1.8 0.1860 0.6601 0.8524 0.9258 0.9581 0.9742
5 2 0.1326 0.5919 0.8135 0.9038 0.9449 0.9657
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that is,

C∑
i=0

(
n

i

)
pi(1− p)n−i ≥ 0.95 (24)

For some sampling plan (n, C, t
θ0

) and values of p?, minimum values of θθ0 satisfying (24) are
given in Table 4.

3.1. Description of the tables and example

Assume that the lifetime distribution is HLMOL distribution with λ = 2, α = 2 c = 2. Sup-
pose that the experimenter is wants to establishing that the true unknown average life is at
least 1000 hours with confidence p? = 0.75. It is desired to stop the experiment at t = 600
hours. Then, for an acceptance number c = 2, the required n in Table 1 corresponding to
the values of p? = 0.75, t

θ0
=0.6 and C=2 is 7. If, during 600 hours, no more than 2 failures

out of 7 are observed, then the experimenter can assert, with a confidence level of 0.75 that
the average life is at least 1000 hours. If the Poisson approximation to binomial probability
is used, the value of n = 8 is obtained from Table 2 for the same situation.
Figure 6 shows that all the values of n tabulated by us corresponding to the sampling plan
(n,C,1) with the confidence p? = 0.75 are found to be less than the corresponding values of
n tabulated in Rosaiah et al. (2018) for Odds Exponential Log-Logistic (OELL) Distribu-
tion, Rosaiah and Kantam (2005)) for Inverse Rayleigh (IR) distribution, Jose and Sebastian
(2011) for Marshall–Olkin Gumbel-maximum (MOGM) distribution, and Jose et al. (2018)
for Harris extended Weibull (HEW) distribution. This improvement makes the new ASP
more advantageous and helps in making optimal decisions.
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Figure 6: Comparisons between the sample sizes obtained by ASP for different distributions

For the sampling plan (n = 7, C = 2, t
θ0

= 0.6) and confidence level p? = 0.75 under HLMOL
distribution with λ = 2, α = 2, c = 2, the values of the OC function from Table 3 are as given
in Table 5.
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Table 4: Minimum ratio of true average life to specified average life for the acceptability of a
lot with producer’s risk of 0.05

p? C
t
θ0

0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

0.75 0 28.569 28.565 38.087 47.609 27.247 31.788 36.329 40.870 45.411
1 7.990 8.430 8.755 7.812 9.374 10.937 7.457 8.389 9.321
2 4.689 4.965 5.461 5.629 5.084 5.931 6.779 7.626 5.555
3 3.685 3.657 3.638 3.706 4.447 4.020 4.594 5.168 5.742
4 3.125 3.108 3.171 3.436 3.445 3.182 3.637 4.092 4.546
5 2.789 2.715 2.940 2.824 2.851 3.326 3.079 3.463 3.848
6 2.550 2.663 2.505 2.777 2.920 2.883 3.295 3.001 3.335
7 2.392 2.452 2.418 2.448 2.591 2.568 2.935 2.749 3.054
8 2.265 2.328 2.336 2.448 2.309 2.694 2.668 3.001 2.766
9 2.187 2.187 2.297 2.241 2.404 2.489 2.474 2.783 2.601
10 2.080 2.102 2.090 2.241 2.231 2.305 2.296 2.583 2.415

0.9 0 45.453 54.542 55.167 45.444 54.532 63.621 72.710 40.870 45.411
1 10.519 10.328 11.401 11.067 13.280 10.937 12.499 14.062 15.624
2 6.545 6.640 6.620 6.923 6.755 7.881 6.779 7.626 8.473
3 4.581 4.577 4.875 4.525 5.430 5.188 5.929 5.168 5.742
4 3.980 4.039 4.137 3.963 4.124 4.020 4.594 5.168 4.546
5 3.456 3.480 3.620 3.675 3.388 3.953 3.801 4.276 3.848
6 3.051 3.020 3.039 3.132 3.333 3.407 3.295 3.706 4.118
7 2.830 2.796 2.859 3.023 2.938 3.023 3.454 3.302 3.670
8 2.730 2.728 2.697 2.688 2.938 3.048 3.078 3.001 3.335
9 2.550 2.542 2.598 2.646 2.689 2.805 2.849 3.200 3.092
10 2.422 2.430 2.377 2.433 2.437 2.602 2.634 2.964 2.870

0.95 0 63.491 68.179 55.167 68.020 54.532 63.621 72.710 81.798 90.887
1 12.897 13.941 13.770 14.251 13.280 15.494 12.499 14.062 15.624
2 7.537 7.293 7.727 8.275 8.368 7.881 9.007 7.626 8.473
3 5.541 5.524 5.461 5.316 5.457 6.366 5.929 6.670 7.411
4 4.427 4.339 4.503 4.547 4.756 4.811 4.594 5.168 5.742
5 3.901 3.956 3.922 4.142 3.970 3.953 4.518 4.276 4.751
6 3.456 3.418 3.551 3.436 3.758 3.888 3.893 3.706 4.118
7 3.051 3.103 3.103 3.308 3.2787 3.427 3.454 3.886 3.669
8 2.981 3.020 2.882 2.920 3.226 3.048 3.484 3.463 3.335
9 2.789 2.796 2.739 2.871 2.920 3.137 3.206 3.200 3.556
10 2.637 2.601 2.647 2.77 2.650 2.843 2.974 2.964 3.293

0.99 0 90.908 92.306 88.885 90.904 79.991 93.323 106.655 81.798 90.887
1 18.177 17.637 18.588 17.213 16.859 19.395 17.707 19.920 22.134
2 10.249 9.818 9.968 9.754 9.930 9.7624 11.157 10.133 11.259
3 7.006 6.951 6.733 6.826 7.407 7.442 7.275 8.185 7.411
4 5.465 5.324 5.423 5.629 5.457 2 5.549 6.341 6.186 6.873
5 4.689 4.650 4.640 4.903 4.970 5.166 5.196 5.082 5.647
6 4.192 4.244 4.092 4.142 4.124 4.384 4.445 4.999 4.867
7 3.789 3.703 3.728 3.798 3.970 4.159 4.371 4.406 4.318
8 3.518 3.544 3.421 3.602 3.504 3.764 3.917 3.919 4.355
9 3.255 3.244 3.212 3.248 3.445 3.407 3.585 3.606 4.007
10 3.125 3.020 3.103 3.132 3.125 3.376 3.250 3.656 3.718
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Table 5: OC values for the ASP (n = 7, C = 2, tθ0 = 0.6) for given confidence level p? = 0.75,
acceptance number C=2, λ = 2, α = 2 c = 2

θ
θ0

2 4 6 8 10 12

OC 0.6741 0.9282 0.9746 0.9883 0.9937 0.9963

Table 5 shows that if the true average life is twice the required mean lifetime ( θθ0 = 2) the
producer’s risk is approximately 0.3259. The producer’s risk is almost equal to 0.0063 when
the true true average life is greater than or equal to 10 times the specified average life.

From Table 4, we can get the values of the ratio θ
θ0

for different choices of C and t
θ0

in order

to assert that the producer’s risk was less than 0.05. For example if p? = 0.75, t
θ0

= 0.8, C=2,
Table 4 gives a reading of 5.461. This means the product can have an average life of 5.461
times the specified average lifetime in order that under the above acceptance sampling plan
the product is accepted with probability of at least 0.95.

Practical example: Consider the following ordered failure times of the release of a software
given in terms of hours(T) from the starting of the execution of the software denoting the
times at which the failure of the software is experienced, it was presented by Wood (1996).
This data can be regarded as an ordered sample of size 10 with observations (ti; i = 1, 2, ..., 10):
519, 968, 1430, 1893, 2490, 3058, 3625, 4422, 5218, 5823. Let the specified average life be 1000
hours and the testing time be 600 hrs, this leads to ratio of t

θ0
= 0.6 with corresponding n and

C as 10, 2 from Table 1 for p? = 0.95. Therefore, the sampling plan for the above sample data
is (n=10,C=2, tθ0 =0.6). Based on the 10 observations, we have to decide whether to accept
the product or reject it. We accept the product only, if the number of failures before 600
hrs is less than or equal to 2. However, the confidence level is assured by the sampling plan
only if the given life times follow HLMOL distribution. In order to confirm that the given
sample is generated by lifetimes following at least approximately the HLMOL distribution, we
have compared the sample quantiles and the corresponding population quantiles and found a
satisfactory agreement. Thus, the adoption of the decision rule of the sampling plan seems to
be justified. In the sample of 10 units, there is a 1 failure at 519 hours before t = 600 hours.
Therefore we accept the product.

In the above example there is only one failure at 519 corresponding to the ASP for HLMOL
(n=10,C=2, tθ0 =0.6) with confidence p?=0.95. If we compare it to the sampling plans sug-
gested by Kantam, Rosaiah, and Rao (2001), Jose and Joseph (2018), Jose and Sebastian
(2011), Rosaiah and Kantam (2005), Ravikumar, Kantam, and Durgamamba (2016) and Al-
Nasser, Al-Omari, Bani-Mustafa, and Jaber (2018) correspnding to n=10, C=3, and p?=0.95.
We can see that the termination time t in HLMOL sampling plan is smaller than the others.

4. Stress-strength reliability and its estimation

In this section, we derive and estimate the stress-strength reliability R = P (X > Y ). Let X
and Y be two independent random variables with HLMO-X distribution with parameters c1

and λ = 1, and HLMO-Y distribution parameters c2 and λ = 1, that is, X ∼ HLMO-X(1, C1)
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and Y ∼ HLMO-Y (1, C2). Then, the stress strength reliability R is given by

R = P (X > Y ) =

∞∫
0

P (X > Y |Y = y) r(y) dy

=

∞∫
0

2c1F̄ (y)

1 + (2c1 − 1)F̄ (y)

2c2f(y)

[1 + (2c2 − 1)F̄ (y)]2
dy

=

1∫
0

4c1c2v

[1 + (2c1 − 1)v][1 + (2c2 − 1)v]2
dv

=
c1c2

(c2 − c1)2

1∫
0

1− 2c1

1− (1− 2c1)v
− 1− 2c2

1− (1− 2c2)v
− 2c2 − 2c1

[1− (1− 2c2)v]2
dv

=
c1c2

(c2 − c1)2

[
− ln(2c1) + ln(2c2)− (2c2 − 2c1)

1− 2c2

2c2[1− 2c2]

]
=

c1/c2

(1− c1/c2)2

[
− ln

(
c1

c2

)
+
c1

c2
− 1

]
(25)

4.1. Maximum likelihood estimation of R

The stress strength reliability R is the function of the parameters c1 and c2, respectively.
Therefore, for maximum likelihood estimate (MLE) of R, we need to obtain the MLE of the
parameters c1 and c2.

Suppose x1, x2, ..., xm is a random sample of size m from the HLMOL distribution with
parameters λ = 1, α, θ and c1, and y1, y2, ..., yn is a random sample of size n from the
HLMOL distribution with parameters λ = 1, α, θ and c2, and let α and θ be known.

Therefore, the log-likelihood function of the observed samples is given by

`(c1, c2) ∝ m ln

(
2α

θ

)
+m ln(c1) + (α− 1)

m∑
i=1

ln

(
1 +

xi
θ

)
− 2

m∑
i=1

ln

[(
1 +

xi
θ

)α
+ 2c1 − 1

]

+ n ln

(
2α

θ

)
+ n ln(c2) + (α− 1)

n∑
j=1

ln

(
1 +

yj
θ

)
− 2

n∑
j=1

ln

[(
1 +

yi
θ

)α
+ 2c2 − 1

]
(26)

So, the MLEs of c1 and c2, say ĉ1 and ĉ2, respectively, can be obtained as the solutions of the
nonlinear equations

∂`

∂c1
=
m

c1
−

m∑
i=1

4(
1 + xi

θ

)α
+ 2c1 − 1

= 0 (27)

∂`

∂c2
=
n

c2
−

n∑
j=1

4(
1 +

yj
θ

)α
+ 2c2 − 1

= 0 (28)

Then the MLE of R is

R =
ĉ1/ĉ2

(1− ĉ1/ĉ2)2

[
− ln

(
ĉ1

ĉ2

)
+
ĉ1

ĉ2
− 1

]
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The elements of Fishers information matrix are

I11 = −E
(
∂2`

∂c21

)
=
m

c2
1

− 8mE

(
1(

1 + X
θ

)α
+ 2c1 − 1

)
= m

(
1

c2
1

− 16c1

∫ ∞
2c1

1

u4
du

)
= m

(
1

c2
1

− 2

3c2
1

)
=

m

3c2
1

(29)

I12 = I21 = −E
(

∂2`

∂C1c2

)
= 0 (30)

I22 = −E
(
∂2`

∂c22

)
=
n

c2
2

− 8mE

(
1(

1 + Y
θ

)α
+ 2c2 − 1

)
=

n

3c2
2

(31)

Theorem 4.1. As m → ∞ and n → ∞, then [
√
m(ĉ1−c1),

√
n(ĉ2−c2)]

d−→ N2

(
0, A−1(c1, c2)

)
where,

A =

(
a11 0
0 a22

)
and

a11 = lim
m,n→∞

I11

m
=

1

3c2
1

, a22 = lim
m,n→∞

I22

m
=

1

3c2
2

Proof. We can use the asymptotics properties of MLEs to prove it.

To obtain the asymptotic 100(1-α) % confidence interval for R, we proceed as follows

b1(c1, c2) =
∂R

∂c1
=

c2

(c2 − c1)3

[
− 2(c2 − c1)− (c1 + c2) ln

(c1

c2

)]
,

b2(c1, c2) =
∂R

∂c2
=

c1

(c2 − c1)3

[
2(c2 − c1) + (c1 + c2) ln

(c1

c2

)]
= −c1

c2
b1(c1, c2)

.

Then,

V (R̂) = V (ĉ1) b21(c1, c2) + V (ĉ2) b22(c1, c2)

= c2
1 b

2
1(c1, c2)

(
3

m
+

3

n

)
.

Thus we have the following result.

As m → ∞, n → ∞, R̂−R
c1 b1(c1,c2)

√
3
m

+ 3
n

d−→ N(0, 1) and the asymptotic 100(1-α) %

confidence interval for R is given by

R̂± Z(α/2) ĉ1 b1(ĉ1, ĉ2)

√
3

m
+

3

n

where Z(α/2) is the (1− α/2)th percentiles of the standard normal distribution.
Hence, the asymptotic 95% confidence interval for R is given by

R̂± 1.96 ĉ1 b1(ĉ1, ĉ2)

√
3

m
+

3

n
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4.2. Simulation study for R

Here, we mainly present some simulation experimentes to study the performance of the MLE
estimator and confidence interval for R. The simulation experiment was repeated N=10000
times each with different sample sizes, (m,n)=(15,15), (20,20), (25,20), (25,25), (25,30),
(30,20),(30,25), (30,30). The values of c1 and c2 were combinations of c1=0.2, 0.5, 0.6 and
c2=0.4, 0.8, 0.5. We fixed the values of α and θ as, α = 4 and θ = 1. In this simulation
study, we computed four measures: the average bias (Bias), average mean square error(MSE),
average length of the asymptotic 95% confidence intervals and coverage probability of R.

Table 6: Bias and MSE of the simulated estimates of R for α = 4 and θ = 1

(c1, c2)

Bias MSE

(m,n) (0.2, 0.4) (0.5, 0.8) (0.6, 0.5) (0.2, 0.4) (0.5, 0.8) (0.6, 0.5)

(15,15) 0.0394 0.0356 -0.0141 0.0085 0.0077 0.0068
(20,20) 0.0383 0.0355 -0.0140 0.0067 0.0066 0.0055
(25,20) 0.0398 0.0379 -0.0103 0.0062 0.0063 0.0052
(25,25) 0.0370 0.0353 -0.0129 0.0055 0.0059 0.0049
(25,30) 0.0354 0.0348 -0.0160 0.0051 0.0058 0.0047
(30,20) 0.0416 0.0411 -0.0075 0.0059 0.0064 0.0049
(30,25) 0.0386 0.0381 -0.0109 0.0053 0.0059 0.0046
(30,30) 0.0346 0.0345 -0.0125 0.0048 0.0056 0.0044

Table 7: Average confidence length and coverage probability of the simulated estimates of R
for α = 4 and θ = 1

(c1, c2)

Average confidence length Coverage probability

(m,n) (0.2, 0.4) (0.5, 0.8) (0.6, 0.5) (0.2, 0.4) (0.5, 0.8) (0.6, 0.5)

(15,15) 0.3945 0.4010 0.4029 0.9593 0.9773 0.9791
(20,20) 0.3437 0.3487 0.3506 0.9624 0.9688 0.9795
(25,20) 0.3272 0.3315 0.3327 0.9622 0.9635 0.9747
(25,25) 0.3085 0.3125 0.3142 0.9621 0.9591 0.9715
(25,30) 0.2954 0.2994 0.3013 0.9605 0.9571 0.9701
(30,20) 0.3156 0.3195 0.3204 0.9612 0.9556 0.9741
(30,25) 0.2960 0.2998 0.3011 0.9590 0.9526 0.9717
(30,30) 0.2818 0.2855 0.2862 0.9576 0.9485 0.9666

The Bias and MSE of are presented in Table 6. The average confidence lengths and cover-
age probabilities are reported for 95% confidence intervals using exact MLE and asymptotic
distribution of R in Table 7. When c1 < c2, the bias is positive and when c1 > c2, the
bias is negative. The equal (m=n) and unequal (m6= n) choices of sample sizes are taken to
evaluate the estimates of R. From this extensive study, it has been observed that the Bias
decreases with increasing sample size n and fixed sample size m, also Bias increases with in-
crease sample size m and fixed n. In general, Bias, MSE and length of the confidence interval
decreases as the sample size increases. It verifies the consistency property of the MLE of R.
For small sample sizes (m,n), the coverage probabilities for the MLE’s are slight less than
nominal value, with the increase of sample sizes (m,n), they more close to the nominal value.
We also observe that there is no substantial difference in the Bias, MSE, average confidence
lengths and coverage probabilities of R for different choices of the parameters.

4.3. Practical data example for R

In this subsection, We consider the real-life data sets of the waiting times (in minutes) before
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service of the customers of two diffrent banks A and B, given by Ghitany, Atieh, and Nadarajah
(2008). We are interested in estimating the stress-strength reliability R = P (X > Y ) where
X (Y ) denotes the customer service time in Bank A (B). The data sets are given below
Bank A: X(m=100)
0.8, 0.8, 1.3, 1.5, 1.8, 1.9, 1.9, 2.1, 2.6, 2.7, 2.9, 3.1, 3.2,3.3, 3.5, 3.6,4.0, 4.1, 4.2, 4.2, 4.3, 4.3,
4.4, 4.4, 4.6, 4.7, 4.7, 4.8, 4.9, 4.9, 5.0, 5.3, 5.5, 5.7, 5.7, 6.1, 6.2, 6.2, 6.2, 6.3, 6.7, 6.9, 7.1,
7.1, 7.1, 7.1, 7.4, 7.6, 7.7, 8.0, 8.2, 8.6, 8.6, 8.6, 8.8, 8.8, 8.9, 8.9, 9.5, 9.6, 9.7, 9.8, 10.7, 10.9,
11.0, 11.0, 11.1, 11.2, 11.2, 11.5, 11.9, 12.4, 12.5, 12.9, 13.0, 13.1, 13.3, 13.6, 13.7, 13.9, 14.1,
15.4, 15.4, 17.3, 17.3, 18.1, 18.2, 18.4, 18.9, 19.0, 19.9, 20.6, 21.3, 21.4, 21.9, 23.0, 27.0, 31.6,
33.1, 38.5.
Bank B: Y (n=60)
0.1, 0.2, 0.3, 0.7, 0.9, 1.1, 1.2, 1.8, 1.9, 2.0, 2.2, 2.3, 2.3, 2.3, 2.5, 2.6, 2.7, 2.7, 2.9, 3.1, 3.1,
3.2, 3.4, 3.4, 3.5, 3.9, 4.0, 4.2, 4.5, 4.7, 5.3, 5.6, 5.6, 6.2, 6.3, 6.6, 6.8, 7.3, 7.5, 7.7, 7.7, 8.0,
8.0, 8.5, 8.5, 8.7, 9.5, 10.7, 10.9, 11.0, 12.1, 12.3, 12.8, 12.9, 13.2, 13.7, 14.5, 16.0, 16.5, 28.0.

We fitted the HLMOL distribution for each dataset. Let us first assume thatX ∼HLMOL(λ =
1, α = 4, θ = 7, c1) and Y ∼ HLMOL( λ = 1, α = 4, θ = 7, c2). We used the Anderson-Darling
(A-D), Cramer-von Mises and Kolmogorov-Smirnov (K-S) statistics to test the goodness-of-fit
and found that the HLMOL distribution is good fitted. The values of A-D, Cramer-von Mises
and K-S statistics along P-value are given in Table 8

Table 8: Statistic(P-value) of different goodness-of-fit tests for the data sets

A-D Cramer-von Mises K-S

Bank A(X) 0.2466(0.9721) 0.0311(0.9729) 0.0451(0.987)

Bank B(Y) 0.3349(0.9095) 0.0542( 0.852) 0.0748(0.89)

The MLEs of the unknown parameters are ĉ1=10.5963, ĉ2=3.9109. Replacing the parameters
by the estimates we get the MLE of the stress-strength reliability R as 0.6608 and the 95%
confidence interval of R is (0.5771, 0.7445).

5. Conclusion

The paper considers the applications of HLMOL distribution in the fields of time series mod-
eling, ASP and stress-strength analysis. In time series modeling, different autoregressive
minification processes of order one are developed. These can be used for modelling time se-
ries data from different contexts. We developed a ASP for HLMOL distribution by assuming
the lifetime of products following HLMOL distribution. For fixed confidence level, the mini-
mum sample size to assert the ratio of specified mean life and the maximum test duration are
calculated. The OC values with OC curves and minimum ratio of mean life to the specified
life are tabulated. The results are illustrated using a data set. It is shown that the suggested
ASP is useful in minimizing the producer’s risk. Also, the proposed ASP is more economical
than some of the existing ASPs.

In stress-strength analysis, we derive and estimate the stress-strength reliability parameter R
based on two independent samples from HLMOL distribution with different parameters. The
results for estimation of R by MLE is reported. From the simulation results, it is observed
that as the sample size (m,n) increases the Bias, MSE and average confidence length decreases
and, the performance of the coverage probability is satisfactory. Also, a real-life data analysis
is presented for illustrative purpose.
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