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Abstract

The Laplace distribution is one of the earliest distributions in probability theory and
is a frequently used distribution in many fields. Consequently, various goodness-of-fit
tests for the Laplace distribution have been thoroughly derived in the literature. The
purpose of this paper is to carry out a comparative study of these tests as well as a
new one we develop. Power comparisons of all such tests are performed via Monte Carlo
simulations of sample data generated from twenty seven alternatives distributions. Despite
the fact that no single test was found to be most powerful in all situations, several useful
recommendations however are made.
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1. Introduction

The Laplace or the double exponential distribution introduced by Laplace (1774) is one of the
earliest distribution discussed in probability theory. It is a symmetric distribution which has
been used as an alternative to the normal distribution in robustness studies and in modeling
phenomena with heavier than normal tails (see Kozubowski and Nadarajah (2010), Cordeiro
and Lemonte (2011) and references therein). The areas in which the Laplace distribution has
been used are rather wide. A detailed list of these areas along with some references can be
found in Kotz, Kozubowski, and Podgorski (2001), Johnson, Kotz, and Balakrishnan (1995),
Kozubowski and Nadarajah (2010) and Cordeiro and Lemonte (2011).

Due to its importance in modeling real data, validating the assumption of Laplace distribution
has been of great concern. Indeed, numerous studies have been devoted to testing methods
for detecting a departure from Laplace. The existing tests can be classified into five classes,
namely (i) tests based on the empirical distribution function (c.f. Yen and Moore 1988; Rubĺık
1997; Puig and Stephens 2000a; Chen 2002, and references cited therein); (ii) tests based on
the empirical characteristic function (c.f. Meintanis 2005); (iii) moment based tests, i.e.,
tests based on sample moments, skewness and kurtosis (González-Estrada and Villaseñor
2016; Gel 2010; Rayner and Best 1989; Langholz and Kronmal 1991; Li and Papadopoulos
2002); (iv) entropy and divergence based tests (Choi and Kim 2006; Rizzo and Haman 2016;
Alizadeh Noughabi and Balakrishnan 2016; Alizadeh Noughabi 2019; Alizadeh Noughabi and
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Park 2016) (v) other tests (Gulati 2011).

The main goal of this paper is to present a detailed comparison of the various testing pro-
cedures for detecting departures from the Laplace distribution. In this context, the rest of
the paper is organized as follows. In Section 2 we present some preliminaries on the Laplace
distribution. In Section 3 the existing goodness-of fit tests for the Laplace distribution are
briefly presented and classified into one of the five classes mentioned above. Moreover, a new
modification of the moment structure based test presented in Li and Papadopoulos (2002,
p.74) for testing departure from Laplace is presented and studied in detail. Section 4 is de-
voted to executing Monte Carlo simulations for comparing the goodness-of fit tests for the
Laplace distribution described in Section 3. Such a comparison includes 22 tests available
in the literature with 27 possible distributions (symmetric or asymmetric) presented as al-
ternatives to the Laplace distribution. To our best knowledge this study is the first attempt
made in the literature to compare so many goodness-of-fit tests for the Laplace distribution
and alternative distributions (c.f., Best, Rayner, and Thas (2008) and Gel (2010)). Section 5
presents a summary of the results of the paper and some practical relevant conclusions. All
proofs related to the new goodness-of fit test for the Laplace distribution introduced in Sec-
tion 3 appear in an Appendix. R codes used to showing and demonstrating the computational
and numerical parts of this paper along with their implementation are also presented in the
Appendix.

2. Background

In this section we present some preliminaries and notation related to the Laplace distribution.
The classical Laplace distribution CL(δ, c) has a two-parameter probability density function
(p.d.f) and cumulative distribution function (c.d.f) given by

f0 (x; δ, c) =
1

2c
e−
|x−δ|
c , with δ ∈ R, c > 0, x ∈ R, (1)

and
F0 (x; δ, c) = 0.5 + 0.5sgn(x− δ)

(
1− e−

|x−δ|
c

)
, (2)

where sgn(x− δ) equals −1, 0, or 1, depending on whether x− δ is negative, zero, or positive,
respectively. The case CL(0, 1) with δ = 0 and c = 1 is called the classical standard Laplace
distribution.

In the sequel we denote, respectively, by µl = E(X l) =
∫
xldF (x) and kl = E[(X − µ1)l] =∫

(x − µ1)ldF (x), l ∈ N, the l-th moment and l-th central moment of a r.v. X with c.d.f.

F , while
√
β1 = k3/k

3/2
2 and β2 = k4/k

2
2 are used to denote the corresponding skewness and

kurtosis. For the CL(δ, c), the mean, median and mode are all equal to δ, the variance to 2c2,
while the skewness and kurtosis are 0 and 6, respectively.

Let (X1, ..., Xn) be a random sample of size n and X(1) ≤ X(2) ≤ ... ≤ X(n) denote its order
statistic arrangement. If this sample is taken from a CL(δ, c) population then the maximum
likelihood estimators (mle) of δ and c are

δ̂n := δ̂n(X1, ..., Xn) = Median(X1, ..., Xn) =


X(n+1)/2, if n is odd

X(n/2)+X(n/2+1)

2 , if n is even

, (3)

and

ĉn := ĉn(X1, ..., Xn) =
1

n

n∑
i=1

|Xi − δ̂n|. (4)

By using the fact that E(X) = δ and V ar(X) = 2c2 then the corresponding method of
moments estimators (mom) of δ and c are

δ̃n := δ̃n(X1, ..., Xn) = X̄n (5)
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and

c̃n := c̃n(X1, ..., Xn) =

√
S2
n

2
, (6)

where

S2
n =

1

n

n∑
i=1

(
Xi − X̄n

)2
. (7)

The mle δ̂n and the mom estimator δ̃n of δ are affine equivariant, i.e., for any real d and β > 0

δ̂n (βX1 + d, ..., βXn + d) = βδ̂n (X1, ..., Xn) + d,

and

δ̃n (βX1 + d, ..., βXn + d) = βδ̃n (X1, ..., Xn) + d.

Moreover, the mle ĉn and the mom estimator c̃n of c are, respectively, location invariant and
scale equivariant, i.e., for any real d and β > 0

ĉn (βX1 + d, ..., βXn + d) = βĉn (X1, ..., Xn) ,

and

ĉn (βX1 + d, ..., βXn + d) = βĉn (X1, ..., Xn) .

In the rest of the paper we shall use the following notation:

Zi = F0

(
Xi; δ̂n, ĉn

)
, Z(i) = F0

(
X(i); δ̂n, ĉn

)
, Yi =

Xi − δ
c

,

Ŷi =
Xi − δ̂n
ĉn

, Ỹi =
Xi − δ̃n
c̃n

, Û(i) = |Ŷ(i)|, and V̂i = Xi − δ̂n for i = 1, ..., n.

3. Goodness-of-fit tests for the Laplace distribution

Let (X1, ..., Xn) be a random sample of size n taken from a c.d.f. F (x) and p.d.f f(x). At
a significance level α we consider testing the null hypothesis that the parent distribution is
Laplace vs any other alternative, i.e.,

H0 : F (·) = F0 (·; δ, c) , for some δ ∈ R and c > 0,

vs.

H1 : F is not CL(δ, c).

As if X ∼ CL(δ, c) then βX+d ∼ CL(βδ+d, βc) for any d ∈ R and β ∈ R+ it follows that the
family of Laplace distributions is invariant under affine transformations X → βX + d. Thus
any test statistic, say Hn(X1, ..., Xn), used for testing departure from the Laplace distribution
should also be affine invariant (see Meintanis (2005), p.927). Accordingly, if (X1, ..., Xn) is a
random sample from CL(δ, c) then the following relation should hold

Hn (βX1 + d, ..., βXn + d) = Hn(X1, ..., Xn). (8)

In the sequel, the existing goodness-of fit tests for the Laplace distribution are briefly pre-
sented. Moreover, a new modification of the moment structure based test presented in Li
and Papadopoulos (2002, p.74) for testing departure from the Laplace distribution is pre-
sented and studied in detail. The modification is required as the test proposed by Li and
Papadopoulos (2002) is not affine invariant.

As we previously indicated all existing tests are classified into five classes.
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3.1. Tests based on the empirical distribution function

The key idea of the empirical distribution function (e.d.f.) tests is to compare the data
estimated c.d.f. with the hypothesized c.d.f. Thus e.d.f. tests are based on discrepancy
measures between the c.d.f. of the Laplace distribution given in (2) with δ and c being
estimated appropriately and the e.d.f. defined by

Fn(x) =

∑n
i=1 I(Xi ≤ x)

n
=

# of observations ≤ x
n

,−∞ < x <∞, (9)

where I(·) is the indicator function. In this frame, five different e.d.f. tests have been presented
and studied in the literature, namely the Cramer-von Mises (W 2), the Watson (U2), the
Anderson-Darling (A2), the Kolmogorov-Smirnov (

√
nD) and the Kuiper (V ) tests (c.f. Yen

and Moore 1988; Puig and Stephens 2000a; Chen 2002, and references cited therein). The
test statistics W 2, U2 and A2 belong to the Cramer von Mises family, while the other two to
the Kolmogorov-Smirnov family of tests. These test statistics have the form

W 2 =
1

12n
+

n∑
i=1

(
Z(i) − (2i− 1)/(2n)

)2
, (10)

U2 = W 2 − n
(
Z̄n − 0.5

)2
, (11)

A2 = −n− 1

n

n∑
i=1

(
(2i− 1) log(Z(i)) + (2(n− i) + 1) log(1− Z(i))

)
, (12)

D = max
{
D+, D−

}
and V = D+ +D−, (13)

where

D+ = max
i=1,..,n

(
i

n
− Z(i)

)
and D− = max

i=1,..,n

(
Z(i) −

i− 1

n

)
(14)

with the Z(i) being defined in Section 2.

All of the above tests are right tailed, i.e., the null hypothesis is rejected for large values.
Therefore the critical values are the 100(1 − α)-th percentiles of the empirical distribution
of the respective test statistic. Asymptotic critical values are also available for the tests
belonging to the Cramer von Mises family (see Puig and Stephens (2000a)). A more detailed
discussion, asymptotic results on the e.d.f. tests and tables of critical values based on 50, 000
Monte Carlo samples of size n for specific values of n can be found in Puig and Stephens
(2000a).

3.2. Tests based on the empirical characteristic function

The characteristic function (c.f.) of X ∼ CL(δ, c) is

φ0(t; δ, c) =
exp(iδt)

1 + c2t2
, t ∈ R.

Meintanis (2005) proposed a class of goodness-of-fit tests for the Laplace distribution based
on its c.f. More specifically, the key idea behind his proposal is related to the fact that the
c.f. of the Laplace distribution satisfies the relation

(1 + c2t2)φ(t)− exp(iδt) = 0, t ∈ R. (15)

Under the null hypothesis of Laplace distribution then for large n the transformed data Ŷi or
Ỹi are approximately CL(0, 1). By using these transformed data, Meintanis (2005) proposed a
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weighted integral of the squared of an empirical counterpart of the equation (15) for c = 1 and
δ = 0. To be more specific, Meintanis (2005) proposed the following classes of test statistics

T jn = n

∫ ∞
−∞
|(1 + t2)φjn(t)− 1|2w(t)dt, j = ML,MO, (16)

where w(t) denotes an appropriate weight function, φML
n (t) and φMO

n (t) are the empirical
characteristic functions (e.c.f.) of the transformed data Ŷi and Ỹi, respectively, defined by

φML
n (t) =

∑n
i=1 exp(itŶi)

n
and φMO

n (t) =

∑n
i=1 exp(itỸi)

n
.

For computational purposes Meintanis (2005) focused on two parametric classes of weight
functions for which both TML

n and TMO
n take simple forms. In this frame, the test statistics

corresponding to w(t) = exp(−a|t|), a > 0 are denoted by T
(1,MO)
n,a or T

(1,ML)
n,a . Similarly,

the test statistics corresponding to w(t) = exp(−at2), a > 0, are denoted by T
(2,MO)
n,a or

T
(2,ML)
n,a . For simple forms of these statistics and further computational details we refer to p.

928 in Meintanis (2005). Based on the simulation study performed by Meintanis (2005) it is

recommended to use T
(1,MO)
n,2 , T

(1,ML)
n,2 , T

(1,MO)
n,0.5 and T

(2,ML)
n,0.5 . Indeed, for this reason we use

these statistics in our simulation study.

All the above tests are again right tailed. The appropriate critical values which are the
100(1 − α)-th percentiles of the empirical distribution of the respective test statistics are
given in Meintanis (2005). A further detailed discussion, asymptotic results on the e.c.f. tests
and tables of critical values based on 100, 000 Monte Carlo samples of size n = 20, 50 can be
found in Meintanis (2005).

3.3. Sample moments based procedures

Moment-based procedures are widely common for testing departures from a hypothesized
distribution. In this section some existing tests are briefly presented, while a new modification
of the moment structure based test presented in Li and Papadopoulos (2002, p.74) for testing
a departure from the Laplace distribution is presented and studied in detail.

Best et al. tests

Smooth tests of goodness of fit, described in Rayner and Best (1989), seek to assess the fit of
the data to a given p.d.f. f(x; θ) within the following class of alternatives of order k given by

gk(x; θ, β) = C(θ, β) exp

(
k∑
i=1

βihi(x; θ)

)
f(x; θ).

Here, θ is a vector of unknown parameters, C(θ, β) is a normalizing constant and hi(x; θ), i =
1, ..., k, is a set of functions which are orthonormal on the hypothesized distribution f(x; θ). If
E0 denotes the expectation when the model that generates the data is f(x; θ) then orthonor-
mality means that E0[hr(X; θ)hs(X; θ)] = δrs for r, s = 0, 1, ..., where δrs = 1 if r = s and
δrs = 0 if r 6= s. It is obvious that the alternatives are characterized by their order, i.e., the
greater the order k the richer is the class of alternatives.

In this frame, based on a sample X1,...,Xn, if θ̃n(X1, ..., Xn) is either the mle or the moment
based estimator of the unknown parameters θ of the hypothesized distribution, Rayner and
Best (1989) proposed a goodness-of-fit test of a hypothesized distribution using

Vr =
n∑
i=1

hr

(
Xi; θ̃n(X1, ..., Xn)

)
/
√
n.
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Motivated by Rayner and Best (1989) and under the moment estimation method when utiliz-
ing the complete orthonormal functions for r = 3, 4, Best et al. (2008) proposed the following
two smooth goodness-of fit tests for the Laplace distribution:

V3 =
√
nb1/54 and V4 = (b2 − 6)

√
n/1072.8 (17)

where √
b1 =

∑n
i=1

(
Xi − X̄n

)3
nS3

n

and b2 =

∑n
i=1

(
Xi − X̄n

)4
nS4

n

(18)

and Sn is defined in (7). Here,
√
b1 and b2 are estimators of the population skewness and

kurtosis, respectively, based on method of moments.

Asymptotically, both statistics follow a normal distribution with mean zero and variance 7/6
and 165/149, respectively (see Best et al. (2008)). However Best et al. (2008) concluded that in
practice the use of the asymptotic critical values is not recommended as the the convergence
is slow. Taking into account that the null hypothesis of Laplace for both tests is rejected
for large absolute values (two-tailed tests), then the critical values are the 100(α/2)-th and
100(1− α/2)-th percentiles of the empirical distribution of the test statistics.

Gel tests

Gel (2010) proposed goodness-of-fit procedures for the Laplace distribution based on alter-
native estimates of population skewness and kurtosis obtained by utilizing the mle of the
unknown variance in the denominator of the population skewness and kurtosis. Specifically,
the K test by Gel (2010) is defined as

K =
n

C1
(
√
u1)

2 +
n

C2
(u2 − 6)2 , C1, C2 > 0, (19)

where
√
u1 =

n−1
∑n

i=1(Xi − X̄n)3

(
√

2ĉn)3
and u2 =

n−1
∑n

i=1(Xi − X̄n)4

(
√

2ĉn)4
,

with ĉn being the mle of c given in (4) while C1 and C2 are the asymptotic variances of
√
nu1

and
√
nu2, respectively. Gel (2010) proved that under the Laplace distribution, then K follows

asymptotically a chi-square distribution with two degrees of freedom. Here the null hypothesis
of Laplace distribution is rejected if K ≥ χ2

1−α,2 where χ2
1−α,2 is the upper a percentile of

the chi-square distribution with two degrees of freedom. The constants C1 and C2 can be
obtained using the multivariate Taylor-expansions. However, as these calculations are rather
cumbersome, Gel (2010) recommended for small or moderate samples to use C1 = 60 and
C2 = 1200 or to approximate them based on functions given in p. 960 by Gel (2010). Also,
based on a Monte Carlo study by Gel (2010), the use of asymptotic critical values for small
to moderately large samples is not recommended. Instead the use of the empirical critical
values is recommended in which case the choice of C1 and C2 does not play any role. In this
frame, taking into account that the null hypothesis of Laplace distribution is rejected for large
values of K - implying a right tailed test - the critical values are taken to be 100(1 − α)-th
percentiles of the empirical distribution of the respective test statistic. For more details on
the K tests as well as to individual tests based on

√
u1 and u2 see Gel (2010).

A ratio gof tests

González-Estrada and Villaseñor (2016) proposed two tests based on ratio of estimators for
the scale parameter of the Laplace distribution. To be more specific, the first test statistic
denoted by Rn is defined as the ratio of the sample mean absolute deviation around the
sample mean to the moment estimator of c, while the second test denoted by R

′
n is defined

as the ratio of the sample mean absolute deviation around the sample mean to the mle of c,
i.e.,

Rn =

√
2
∑n

i=1 |Xi − X̄n|
nSn

and R
′
n =

∑n
i=1 |Xi − X̄n|∑n
i=1 |Xi − δ̂n|

, (20)
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where S2
n is defined in (7) and δ̂n is the mle of δ given in (3).

The idea behind the two tests is that under the null hypothesis of Laplace distribution the
test statistics are expected to take values close to one. Thus both test are two-tailed tests.
González-Estrada and Villaseñor (2016) proved that under the hypothesis of Laplace distri-
bution

√
4n(Rn − 1) follows asymptotically a standard normal distribution. Thus the null

hypothesis is rejected if |
√

4n(Rn − 1)| ≥ zα/2, where zα/2 = Φ−1 (1− α/2), Φ−1 (·) is the
quantile function of the N(0, 1) distribution. In the simulation study of the next section we
use the 100(α/2)-th and the 100(1 − a/2)-th percentiles of the empirical distribution of the
test statistics. For more details on Rn and R

′
n tests see González-Estrada and Villaseñor

(2016).

Langholz and Kronmal test

Goodness-of-fit tests for the Laplace distribution can obtained as a special case of the class
of tests proposed by Langholz and Kronmal (1991). The key idea behind their method is
motivated by the fact that when the hypothesized distribution F is completely specified then
X ∼ F if and only if F (X) ∼ U(0, 1). Their approach compares then the estimated Fourier
coefficients to those of the U(0, 1) density. For the special case of Laplace, their test statistic
based on the first Fourier coefficient in the density estimation procedure of Fellner (1974) can
be written in the following form

K1 = 2.26n
(
Ĉ2 + Ŝ2

)
(21)

where

Ĉ = n−1
n∑
i=1

cos
(

2πZ
′
i

)
and Ŝ = n−1

n∑
i=1

sin
(

2πZ
′
i

)
are the estimated first trigonometric moments, with Z

′
i = F0

(
Xi; δ̃n, c̃n

)
. Under the hy-

pothesis of Laplace, K1 follows asymptotically a chi-square distribution with two degrees of
freedom. Since the appropriate test is right-tailed we shall use in our simulation section the
empirical critical values being the 100(1−α)-th percentiles of the empirical distribution. For
more details on the K1 test see Langholz and Kronmal (1991).

A modification of a test based on moment structure

A general and interesting method for testing a departure from a given parametric family of
distributions was proposed by Li and Papadopoulos (2002). Their idea is mainly simple as
it is based on some moment structure relation holding among the members of the respective
parametric family of distributions under the null hypothesis. Then based on such a relation, a
test statistic is proposed for testing departures from the relevant family. Li and Papadopoulos
(2002) demonstrated their approach for some common parametric families of distributions.
Among them is the Laplace family for which a test was proposed but was not studied in
details. In the sequel, we present a modification of such a test by requiring that it will be
affine invariant and study it in details.

If F is CL(δ, c) then it can be simply seen that

g(µ1, µ2, µ3)
.
= µ3 − 3µ1µ2 + 2µ31 = 0, for any δ and c. (22)

This would imply that if the relation in (22) does not hold then the sample is not taken
from CL(δ, c). The reverse statement is obviously incorrect as there might exist some other
distributions for which (22) holds. Such a test is termed in the literature (c.f. Fang, Zhu, and
Bentler 1993; Liang, Fang, and Hickernell 2008; Batsidis and Zografos 2013) as a ’necessary’
(but not sufficient). Necessary tests imply that small p-values (say, less than 5%) of the tests
indicate evidence for departure from the family of distributions under the null hypothesis
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whereas larger p-values imply that no sufficient evidence is available for drawing any other
statistical conclusion.

Indeed, a necessary test based on (22) for testing H0 vs. H1 was proposed by Li and Pa-
padopoulos (2002) and involved with the empirical estimator of g(µ1, µ2, µ3). In the sequel,
however, we will modify their test by imposing the property of affine invariance - a desired
property for any goodness-of fit test for the Laplace distribution.

More specifically, the proposed test will be based on the transformed data Ŷi = (Xi − δ̂n)/ĉn
and an empirical estimator Tn of g(µ1, µ2, µ3) based on them. The asymptotic distribution of
Tn is derived under the null hypothesis of Laplace in the following theorem.

Theorem 3.1. Let (X1, X2, ..., Xn) be a random sample from CL(δ, c) and Ŷi = (Xi − δ̂n)/ĉn,
i = 1, ..., n, be the transformed data. Let

Tn =
1

n

n∑
i=1

Ŷ 3
i − 3

1

n2

n∑
i=1

Ŷi

n∑
i=1

Ŷ 2
i + 2

(
1

n

n∑
i=1

Ŷi

)3

, (23)

where

Ŷi =
Xi − δ̂n(X1, ..., Xn)

ĉn(X1, ..., Xn)
, (24)

δ̂n = δ̂n(X1, ..., Xn) and ĉn = ĉn(X1, ..., Xn) are the mle’s of the parameters δ and c, re-
spectively. Then the statistic

√
nTn converges in distribution, as n −→ ∞, to the normal

distribution N(0, 504).

The proof of the Theorem 3.1 is relegated to Appendix A. The results of Theorem 3.1 can
be used to construct a necessary test for testing the hypothesis of Laplace. Indeed by the
previous theorem it follows that if the null hypothesis H0 is true then it is also true that the
statistic Zn =

√
n
504Tn is asymptotically N(0, 1). Consequently, in view of Theorem 3.1, H0

should be rejected at a significance level α if | Zn |≥ zα/2, which implies departure from the
Laplace distribution. On the contrary, failing to reject the null hypothesis implies that no
sufficient information is available for drawing any statistical conclusion on the null hypothesis.

However in order to use the asymptotic critical values one should examine the convergence of
the percentiles of Zn to those of the N(0, 1) distribution subject to the assumption that the
data are stemming from a Laplace distribution. To achieve this, a total of l = 100.000 samples
of different sample sizes (n = 20, 30, 50, 60, 70, 100, 200, 500, 1000, 5000) were generated from
CL(0, 1). Note that one can confine the study to the case of CL(0, 1) since the asymptotic
distribution of Tn is independent of the parameters δ and c and Tn is affine invariant. For
each sample, the value of Zn was computed. Then, based on all l values of Zn, Monte
Carlo percentiles were computed and compared with the theoretical limiting percentiles. The
simulation was carried out by using R (R Core Team 2020). The R code used is presented in
the Appendix B.

The results are displayed in Table 1. The last row of the table displays the corresponding
percentiles of the N(0, 1) distribution. The results indicate a slow convergence of the critical
values to their limiting values. This suggests that the limiting critical values may not provide
a good approximation. Hence, for small and moderate sample sizes one can use a parametric
bootstrap for computing the p-values instead of using the asymptotic distribution. A Monte
Carlo study was carried out on the type I error rates in order to examine the performance of
the test based on these latter two options. The empirical type I error rates appear in Table
2. They are computed by the relation

Empirical Type I error rate = Number of rejections
Number of replications

at significance levels α = 0.05 and 0.1.

From Table 2 it is clear that for small and moderate sample sizes the use of the parametric
bootstrap is recommended. This is not a disadvantage of the test since as Gel (2010) already
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Table 1: Simulated lower and upper critical values of Zn indicated for α and n as shown and
100000 simulated samples from CL(0, 1)

α = 0.01 α = 0.05 α = 0.1

n Z ln Zun Z ln Zun Z ln Zun
20 -2.49739 2.40483 -1.35659 1.32971 -0.95007 0.95038
30 -2.75772 2.74174 -1.50211 1.50553 -1.08818 1.09160
50 -2.96832 2.99391 -1.65895 1.69383 -1.22410 1.23730
60 -2.98985 3.07540 -1.71866 1.72124 -1.27531 1.27553
70 -3.07916 3.09744 -1.76075 1.75607 -1.30965 1.29881
100 -3.06851 3.14049 -1.82853 1.83216 -1.37432 1.37556
200 -3.03301 3.03401 -1.89422 1.91534 -1.46851 1.48683
500 -2.91472 2.88816 -1.94998 1.95911 -1.56223 1.57465
1000 -2.79985 2.83282 -1.95724 1.97529 -1.59362 1.60403
5000 -2.64775 2.66607 -1.96253 1.97677 -1.63014 1.63365

N(0, 1) -2.57583 2.57583 -1.95996 1.95996 -1.64485 1.64485

Table 2: Simulated type I rate: percentage of samples with p-value smaller that α. CL(0, 1),
number of simulated samples: 10,000, p-value: 1) asymptotic and 2) bootstrap p-value: num-
ber of bootstrap samples: 1000

α = 0.01 α = 0.05 α = 0.1

n asymptotic bootstrap asymptotic bootstrap asymptotic bootstrap

20 0.01 0.0116 0.0218 0.0508 0.0325 0.1002
30 0.0125 0.0096 0.0281 0.0533 0.0443 0.0998
50 0.0157 0.0093 0.0307 0.0482 0.0502 0.0944
60 0.0172 0.0095 0.0363 0.0494 0.0555 0.101
70 0.0155 0.0081 0.0346 0.0467 0.0578 0.0947
100 0.0185 0.01 0.0417 0.0521 0.0695 0.1024
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pointed out critical values of other available tests detecting departures from the Laplace
distribution can be obtained either from special tables or from a Monte Carlo study.

The R function for the proposed goodness-of-fit test with options for bootstrap p-value and
p-value based on the asymptotic standard normal distribution is displayed in Appendix B. In
the simulation study of the next section as well as in practice someone can utilize - taking
into account that the test based on Zn is a two-tailed - the 100(α/2)-th and 100(1− a/2)-th
percentiles of the empirical distribution of the test statistic.

3.4. Entropy and divergence based tests

Entropy and divergence based tests are widely common for testing departures from a hypoth-
esized distribution. In this section some existing tests are briefly presented.

Maximum entropy test

Choi and Kim (2006) presented three goodness-of-fit tests for the Laplace distribution based
on its maximum entropy characterization result. However, based on a Monte Carlo study
they recommended the use of only one of these tests. Accordingly we briefly discuss in the
sequel only this recommended test.

Let X be a r.v. with density function fX(x). The Shannon’s entropy (see Shannon (1948))
of X is defined by H(fX) = E (− log(fX(x))). Choi and Kim (2006) proved that under the
restriction that E|X| = c the distribution of X maximizing the Shannon’s entropy is the
CL(0, c) and its entropy is H(fX). Utilizing this maximum entropy characterization result,
Choi and Kim (2006) proposed a test statistic for testing departures from the Laplace distribu-
tion based on an estimation of the entropy difference between the data-generating distribution
and the hypothetical distribution. In this frame, a parametric procedure for estimating the
entropy of the hypothetical distribution and a nonparametric one for estimating the entropy of
the data-generating distribution were used. Following this estimation procedure, the entropy
based gof test statistic is given by

T Vm,n =
n

2mĉn

{
n∏
i=1

(
V̂(i+m) − V̂(i−m)

)}
, (25)

where m, denoting the window size, is a positive integer smaller than n/2 while V̂(i−m) = V̂(1)
for i ≤ m and V̂(i+m) = V̂(n) for i ≥ n−m. According to Choi and Kim (2006), m is selected
in advance and its optimal choice corresponding to a given sample size n was studied for
various sample sizes up to 100. In Table 4 by Choi and Kim (2006) the results of this study is
given for n ≤ 50, while the rest of the results are available upon request from the authors. In
the simulation study the values m = 3 for n = 20, m = 6 for n = 50 and m = 13 for n = 100
were used.

Based on the asymptotic results obtained by Choi and Kim (2006) the null hypothesis of
Laplace is rejected when the test statistic is less than the corresponding critical value at a
designated significance level α (left-tailed). T Vm,n is approximately normally distributed under
the null hypothesis. Its asymptotic variance however is not easy to be derived. Consequently,
we use the empirical critical values which are the 100a-th percentiles of the empirical distri-
bution. For more details on the T Vm,n tests and a table of critical values for selected values of
m and n see Choi and Kim (2006).

Energy distance test

The idea behind the class of energy distance goodness-of-fit test is based on the following
characterization of equality of distributions: if X1 and Y1 are independent random variables
such that E | X1 |< ∞ and E | Y1 |< ∞, with cumulative distribution functions F1 and G1,
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respectively then

D2(F1, G1) = 2E | X1 − Y1 | − | X1 −X
′
1 | − | Y1 − Y

′
1 |≥ 0

with equality to zero if and only if X1 and Y1 are identically distributed, where X
′
1 and Y

′
1

are i.i.d. copies of the random variable X1 and Y1, respectively; that is, X1 and X
′
1 are i.i.d.,

and Y1 and Y
′
1 are i.i.d. Note that energy distance between the distributions F1 and G1 is

defined to be the square root of D2(F1, G1).

As pointed out by Rizzo and Szekely (2016), energy distance is a metric that measures the
distance between the distributions of random variables or vectors and is zero if and only if
the distributions are identical. Thus energy distance characterizes equality of distributions
and provides a theoretical foundation for statistical inference and goodness-of-fit tests. For a
review and implementation of the energy goodness-of-fit test we refer to Rizzo and Szekely
(2016).

In the frame of goodness-of-fit test the distributions to be compared are the hypothesized
distribution given in the null hypothesis and the sample distribution. Rizzo and Haman (2016)
presented the results related with the expected distance of a random variable X which follows
asymmetric Laplace distribution from an arbitrary point and with the expected distance
E | X−X ′ | when X and X

′
are independent and identically asymmetric Laplace distributed.

Taking into account that symmetric Laplace distribution is a special case of the asymmetric
one and the previous mentioned results, the test statistic proposed by Rizzo and Haman
(2016) is given by the following relation:

En = 2
n∑
i=1

(
| Ŷi | +exp

(
− | Ŷi |

))
− 1.5n− 2

n

n∑
k=1

(2k − 1− n)Ŷ(k), (26)

where Ŷi, i = 1, ..., n were defined in Section 2. The null hypothesis of Laplace distribution
is rejected for large values of En- implying a right tailed test- the critical values are taken to
be the 100(1− α)-th percentiles of the empirical distribution of En.

Alizadeh Noughabi and Balakrishnan tests

Divergence measures are indices of similarity or dissimilarity between populations and are used
for the development of statistical methods in order to formulate and solve a great variety of
statistical problems (see the monograph by Pardo (2006)). One of the widely used and studied
divergence measure which includes many others as special cases is the family of divergence
measures which is known as φ-divergence and were defined simultaneously by Csiszar (1963)
and Ali and Silvey (1966). Let P and Q denote two probability measures over a measurable
space M such that P is absolutely continuous with respect to Q, then the φ-divergence is
defined as

Dφ(P,Q) =

∫
M
φ

(
dP

dQ

)
dQ (27)

where φ : [0,+∞)→ (−∞,∞) is a convex and continuous function such that φ(1) = φ′(1) = 0,

0φ(00) = 0 and 0φ(p0) = p limu→+∞
φ(u)
u . Well-known divergence measures are constructed by

suitable choices of φ. For instance the Kullback-Leibler (Kullback and Leibler (1951)) is
obtained when φ(t) = t log(t). Notice that for all probability measures Dφ(P,Q) ≥ 0, while
Dφ(P,Q) = 0 if P = Q.

As a consequence of this last property, a goodness-of-fit test can be constructed based on an
estimate of the φ-divergence between the true density of the observations X1,...,Xn and the hy-
pothesized distribution under the null hypothesis. Based on this idea Alizadeh Noughabi and
Balakrishnan (2016) introduced a general goodness-of-fit test based on an estimate through
kernel density estimation of this divergence. In their study Alizadeh Noughabi and Balakr-
ishnan (2016) considered five different choices for the function φ function and applied them
to the goodness-of-fit test for the normal, exponential, uniform and Laplace distributions.
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Based on a Monte Carlo study Alizadeh Noughabi and Balakrishnan (2016) concluded that
for the Laplace distribution, the test based on Kullback-Leibler divergence performs quite well
as compared to the EDF tests and the other four tests proposed by them by using different
member of the φ-divergence. For this reason, we only consider this test in our simulation
study which is defined as follows:

TKL =
1

n

n∑
i=1

log

(
f̂(Xi)

f0(Xi; δ̂n, ĉn)

)
(28)

where f0(x; δ, c) is the p.d.f. of the classical Laplace distribution CL(δ, c) given in (1), while f̂ is
a kernel density estimator of the unknown true density. Alizadeh Noughabi and Balakrishnan
(2016) proposed (see p. 414) to use the following kernel density estimator

f̂(Xi) =
1

ns1.06n−1/5

n∑
j=1

f

(
Xi −Xj

1.06Snn−1/5

)
, (29)

where Sn denotes the sample standard deviation which is obtained from relation (7), while f
is the p.d.f. of the standard normal distribution. The null hypothesis of Laplace distribution
is rejected for large values of TKL- implying a right tailed test- the critical values are taken to
be the 100(1− α)-th percentiles of the empirical distribution of TKL. For more details about
this class of tests we refer to Alizadeh Noughabi and Balakrishnan (2016), while for more
details about φ-divergence measures see Pardo (2006).

Alizadeh Noughabi test

Let X1,...,Xn be a sample of size n from a population with unknown true density say g(x)
and suppose that we interest to test the null hypothesis H0 : g(x) = f(x; θ), for some θ ∈ Θ
with f(x; θ) the p.d.f. of a parametric family of distributions. Then, as mentioned in the
previous subsection, a goodness-of-fit test can be constructed based on an estimator of a
divergence measure between g(x) and f(x; θ). Motivated by this idea, Alizadeh Noughabi
(2019) proposed recently a general statistic for the goodness-of-fit test of statistical distribu-
tion which is constructed based on an estimate of Kullback-Leibler divergence. Recall that
Kullback-Leibler is a special case of the φ divergence given in (27) with φ(t) = tlogt. Thus
the Kullback-Leibler between g(x) and f(x; θ) is given by:

DKL(g, f) =

∫
g(x) log

(
g(x)

f(x; θ)

)
dx (30)

=Eg (log g(X))− Eg (log f(X; θ))

=−H(gX)− Eg (log f(X; θ))

where H(gX) is Shannon’s entropy. In this frame, Alizadeh Noughabi (2019) proposed to
estimate the entropy term by Vasicek’s estimate and the term Eg (log f(X; θ)) by a semi-
parametric estimate. In this frame the proposed test statistic for testing departures from
Laplace distribution is the following:

DA = − 1

n

n∑
i=1

log
( n

2m

(
Z(i+m) − Z(i−m)

))
(31)

where m denoting the window size is a positive integer smaller than n/2, while Z(i−m) = Z(1)

for i ≤ m and Z(i+m) = Z(n) for i ≥ n −m. Alizadeh Noughabi (2019) mentioned that the
optimal choice of m equals 4 for n = 10, m = 7 for n = 20, m = 15 for n = 100 and that
it increases with n while the ration m/n tends to zero. In our simulation study the value
m = 10 for n = 50 was also used. The null hypothesis of Laplace distribution is rejected
for large values of DA- implying a right tailed test- the critical values are taken to be the



Austrian Journal of Statistics 103

100(1−α)-th percentiles of the empirical distribution of DA. For more details about this test
we refer to Alizadeh Noughabi (2019).

Alizadeh Noughabi and Park tests

Alizadeh Noughabi and Park (2016) proposed several test statistics for testing departures
from the Laplace distribution. Their idea is also motivated by the Kullback-Leibler diver-
gence between the unknown true density g(x) and the hypothesized density under the null
hypothesis, i.e. the density of the Laplace distribution. From relation (30) it is easily obtained
that in the case of Laplace distribution

DKL(g, f0) = −H(gX) + log(2c)Eg (| X − δ |) . (32)

In this frame, Alizadeh Noughabi and Park (2016) proposed to use the minimum discriminant
information loss estimator for the unknown parameters instead of the maximum likelihood
(see Alizadeh Noughabi and Park (2016) for further details). On the other hand since the
problem of estimation of H(gX) has been considered by several authors, Alizadeh Noughabi
and Park (2016) obtained five different test statistics based on five different estimators of
Shannon’s entropy and the moments of nonparametric distribution functions of the afore-
mentioned estimators. Based on a Monte Carlo study Alizadeh Noughabi and Park (2016)
concluded that the statistic which uses the Vasicek entropy estimator and the minimum dis-
criminant information loss estimator has a good performance against symmetric alternatives
and better performance against asymmetric alternatives. According we only consider this last
test in our simulation study which is defined as follows:

TVmn = log(2ĉu) + 1−HVmn, (33)

where

HVmn =
1

n

n∑
i=1

log
( n

2m

(
X(i+m) −X(i−m)

))
, (34)

where m denoting the window size is a positive integer smaller than n/2, while ĉu is defined
(see Lemma 3 in Alizadeh Noughabi and Park (2016))

ĉu =


− 1
n

∑n/2
i=1

ξi+ξi+1

2 + 1
n

∑n
i=n/2+1

ξi+ξi+1

2 if n is even

- 1n
∑(n−1)/2

i=1
ξi+ξi+1

2 +
ξ(n+1)/2+1−ξ(n+1)/2

4n +

1
n

∑n
i=(n+1)/2+1

ξi+ξi+1

2 if n is odd

, (35)

where

ξi =
X(i−m) + ...+X(i+m−1)

2m
(36)

with X(i−m) = X(1) for i ≤ m and X(i+m) = X(n) for i ≥ n − m. The proposed values of
m for different values of sample size n are given in Table 6 by Alizadeh Noughabi and Park
(2016). In our simulation study the values m = 4 for n = 20, m = 6 for n = 50 and m = 8
for n = 100 were used. The null hypothesis of Laplace distribution is rejected for large values
of TVmn- implying a right tailed test- the critical values are taken to be the 100(1 − α)-th
percentiles of the empirical distribution of TVmn. For more details about this class of tests
we refer to Alizadeh Noughabi and Park (2016).

3.5. Other tests

In this section a goodness-of fit test for the Laplace distribution which cannot be classified in
either one of the previous classes is briefly presented.
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Gulati test

It is well known that if X ∼ CL(δ, c) then Y = |X − δ| ∼ Exp(c) where Exp(c) stands for
the exponential distribution with mean c. Based on this property Gulati (2011) proposed
a goodness-of fit test for the Laplace distribution based on the regression test of Brain and
Shapiro (1983) for exponentiality. In this frame, let

Wi = (n− i+ 1)
(
Û(i) − Û(i−1)

)
, i = 1, ..., n, (37)

with Û(0) = 0 and Û(i), i = 1, ..., n as defined in Section 2. Also let li =
∑i
j=1Wj∑n
j=1Wj

, for

i = 1, ..., n − 1 and l̄ =
∑n−1
i=1 li
n−1 . Then the test statistic proposed by Gulati (2011) is defined

by

Z = Z2
1 + Z2

2 (38)

where

Z1 =
√

12(n− 1)(l̄ − 0.5) and Z2 =

√
5(n− 1)

(n+ 1)(n− 2)

(
n− 2 + 6nl̄ − 12

n−1∑
i=1

ili
n− 1

)
.

Based on Gulati (2011) under the null hypothesis this test statistic is asymptotically a chi-
square variate with 2 degrees of freedom so that the null hypothesis is rejected if Z ≥ χ2

1−α,2.
Based on a Monte Carlo study Gulati (2011) concluded that the empirical percentiles were
fairly close to the theoretical percentiles of the chi-square distribution. Since the test is right-
tailed we use in our simulation section the empirical critical values which are the 100(1−α)-th
percentiles of the empirical distribution. For more details on Z test see Gulati (2011).

4. Monte Carlo study

Our purpose is to present a detailed comparison of the existing procedures for departure from
the Laplace distribution. To assess the performance of the above tests we apply them to alter-
natives distributions (symmetric and asymmetric) which were previously considered in other
studies of testing departures from the Laplace distribution (c.f. Puig and Stephens 2000b;
Best et al. 2008; González-Estrada and Villaseñor 2016). In this context, the performance of
the power of all the tests is investigated using Monte Carlo simulations by generating samples
for the following alternatives:

• Symmetric alternatives: normal N(0, 1), Logistic L(0, 0.551), Cauchy, Uniform (−1.732,
1.732), Beta(2, 2), t with 10, 6 and 3 degrees of freedom (d.f.’s), Tukey, contaminated
normal CN3.2,0.2 and CN3.5,0.1, two special cases of the normal inverse Gaussian (NIG)
distribution denoted by NIG1 and NIG2 by Gel (2010), i.e., these are NIG distribu-
tions with common skewness and location parameters 0 and 1, respectively, but with a
combination of shape and scale parameters (0.4, 0.6) and (0.7, 0.2), respectively.

• Asymmetric alternatives: Exp(1), Gamma(2, 1), standard Gumbel, skew-normal with
slant parameter 3, skew-t with slant parameter 3 and 10 d.f., Log-Normal, Weibull
(2, 1), Weibull (3, 1), χ2 with 2 degrees of freedom (d.f.’s), Extreme Value (0, 1), Inverse
Gaussian IG(4), two special cases of Normal Inverse Gaussian distribution denoted by
NIG3 and NIG4 by Gel (2010), i.e., NIG distributions with common location parameter
1, but with a combination of shape, skewness and scale parameters (1, 0.5, 0.43) and
(0.5, 0.2, 0.5), respectively.

Only the exact simulated critical values are utilized for the power analysis in order to ensure
that the correct size of the test is preserved. For this purpose we initially use the many.crit
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function of the PoweR package (see Lafaye de Micheaux and Tran (2016)) for the determination
of the critical values based on l = 100, 000 samples from CL(0, 1). Then by employing the
function powcomp.fast of the PoweR package (see Lafaye de Micheaux and Tran (2016)), the
empirical power of the tests are obtained by using the above set of critical values. Note that
for implementing the existing gof tests for the Laplace distribution we have used the functions
of the PoweR package with the exception for the K test by Gel (2010), the two tests Rn and
R
′
n proposed by González-Estrada and Villaseñor (2016), the modified test based on moment

structure studied in this paper in details and the tests presented in the subsection 3.4, i.e.
the entropy and divergence based tests, denoted by T Vm,n, En, TKL, DA and TVmn, proposed
by Choi and Kim (2006) Rizzo and Haman (2016), Alizadeh Noughabi and Balakrishnan
(2016), Alizadeh Noughabi (2019) and Alizadeh Noughabi and Park (2016), respectively.
The empirical power is then obtained by calculating the proportion of times in l = 100, 000
Monte Carlo simulations for which the false null hypothesis is rejected. For all of the latter
we take into account the specified significance level for which l = 100, 000 samples of size n
(n = 20, 50, 100) are simulated from the previous distributions. A relevant R code is presented
in the Appendix.

Based on the results given in Tables 3 and 4 we conclude the following:

a) For symmetric alternatives it is observed that Rn and R
′
n proposed by González-Estrada

and Villaseñor (2016) produce similar results, while Rn outperforms R
′
n in the majority

of the asymmetric alternatives. Accordingly, the rest of the conclusions is restricted to
Rn only. Despite the fact that the Rn test is very simple and is based on a ratio of two
estimators for the scale parameter of the Laplace distribution, it is found to be rather
competitive for the symmetric alternatives.

b) Between the five e.d.f. gof tests, i.e., W 2, U2, A2,
√
nD and V , the Watson (U2) is

found to be the best versus symmetric alternatives. For non-symmetric alternatives
the Anderson-Darling (A2) is found to be the best (in 10 out 14 alternatives), though
the U2 is rather good and the best for 4 out 14 non-symmetric alternatives. These
conclusions coincide with that reached by Puig and Stephens (2000a) and with that by
Choi and Kim (2006) based on simulation studies with lesser alternatives distributions
and simulation runs. Consequently, for the rest of our conclusions, the U2 and A2 are
reported, respectively, for symmetric and asymmetric alternatives.

c) When comparing the e.c.f. tests proposed by Meintanis (2005) it is concluded that for
the symmetric alternatives considered with population kurtosis less or equal to 6, i.e., for
the alternatives U(0, 1), Tukey (0.5), Beta(2, 2), Normal, t with 10 d.f., Logistic, t with

6 d.f., T
(2,ML)
n,0.5 has the best power. On the other hand for the symmetric alternatives

considered with population kurtosis greater than 6 (see CN3.2,0.2, CN3.5,0.1, NIG1 and
NIG2) or with undefined or non finite population kurtosis (see Cauchy and t with 3 d.f.),

it seems that T
(1,MO)
n,2 is a good choice among them. Finally, the MO-based tests are

slightly more powerful for all asymmetric alternatives considered with the exception of

the Weibull. The performance of T
(1,MO)
n,2 and T

(2,MO)
n,0.5 is almost similar. Consequently,

we restrict the rest of the analysis to T
(2,ML)
n,0.5 for symmetric alternatives with population

kurtosis less or equal to 6 and to T
(1,MO)
n,2 for any other alternatives.

d) When comparing for symmetric alternatives the performance of e.c.f. based test pre-
viously recommended with the Watson e.d.f. test, we conclude that e.c.f. based tests
outperforms U2 (with the exception when testing against the Cauchy and the contam-

inated normal distributions). For asymmetric alternatives, the performance of T
(1,MO)
n,2

is better in almost all cases than the Anderson Darling test. Thus in a manner similar
to that in Meintanis (2005) we conclude that for the majority of the cases considered
the e.c.f. based tests either outperform or remain competitive with the best e.d.f. test.
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e) For all the alternatives considered En has less power than the respective of the e.d.f.
and e.c.f. based tests previously recommended. Thus this test cannot be recommended.
Accordingly the rest of the conclusions is restricted to the rest of the tests belonging to
the class of entropy and divergence based tests.

f) When comparing the rest of the entropy and divergence based tests with the e.d.f. and
e.c.f. tests previously recommended it is concluded that for symmetric alternatives
T Vm,n performs better than them under symmetric alternatives with population kurtosis
less than or equal to 6. For this type of alternatives TKL, DA and TVmn behave
also similar in almost all cases in comparison with the recommended e.d.f and e.c.f.
tests. It seems that for such alternatives TVmn and T Vm,n stand out as the best ones,

for moderate and large sample sizes, i.e. for n = 50, 100, while for n = 20 T Vm,n and
TKL are good choices among the entropy and divergence based tests. For the rest of
the symmetric alternatives we have that the entropy and divergence based tests have
less power than the respective of the e.d.f. and e.c.f. previously recommended for the
NIG1, NIG2 and Cauchy distributions, with DA being the best among them. On
the other hand TKL outperforms the e.d.f. and e.c.f. tests previously recommended
for contaminated normal and t with 3 d.f. Moreover, for asymmetric alternatives the
entropy and divergence based tests have in almost all cases better performance than
the recommended e.c.f. and e.d.f. tests with the exception of the NIG distributions.
Note that for such alternatives these tests, namely T Vm,n, TKL, TVmn and DA, have the
better performance among the tests considered. Specifically, for asymmetric alternatives
with the exception of NIG distributions, TVmn is recommended for moderate and large
sample sizes for, while DA is recommended for n = 20.

However at this point we have to note that there are two points that make the use of the
four previously mentioned entropy and divergence based tests difficult or even impossible
in some cases in practical applications. The first point is related to the fact that T Vm,n,
DA and TVmn depend on the optimal choice of window sizes m. These choices are
available for the TVmn for several sample sizes in Table 6 by Alizadeh Noughabi and Park
(2016), while for the other two tests are available for specific choices of n. Nonetheless,
this problem can be tackled by noticing, based on the available information, that for
T Vm,n it seems that the optimal choice of m is about 13%− 15% of the size of n. On the
other hand, DA was constructed based on specific choice of kernel density estimator.
The second point is that for instance T Vm,n is based on the geometric mean of a suitable
transformation of the data which involves differences related to their median, while
the rest of the tests involve the logarithm of some differences. As a result, whenever
we tackle with data points having identical numerical values with that of the median
or with differences which are equal to zero, the tests cannot be executed and are not
recommended. Note that such a situation is not rare in real data sets due to the rounding
up to a certain number of decimal points.

g) As previously noted, the main idea behind the Zn test is that for the Laplace distribu-
tion the third central moment equals zero which implies that the population skewness
is also zero. This means that its difference with the test based on sample skewness
proposed by Rayner and Best (1989), denoted by V3, is that only the numerator is used
and this does not estimate the standard deviation as V3 does. The Zn test has similar or
superior performance against some symmetrical distributions (Cauchy, NIGi, i = 1, 2
distributions) since estimating the standard deviation in such cases add an extra layer
of doubt in the estimation. On the other hand the Zn test has inferior or similar perfor-
mance for non symmetric alternatives since the presence of an estimator of the standard
deviation allows the existence of a skewed distribution to be more easily spotted.

h) The K test by Gel (2010) which is based on a combination of the sample skewness
and kurtosis; the smooth V3 test by Rayner and Best (1989) which is related to sample
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skewness; and the modified moment based gof Zn test do not perform well and are not
competitive under symmetric alternatives with population kurtosis less than or equal to
6. On the other hand these tests are competitive for symmetric alternatives such as the
Cauchy, t with 3 d.f.’s, NIG1, NIG2 and contaminated normal distributions, where in
some cases they attain the maximum power. Note also that these tests outperforms the
popular edf tests for t with 3 d.f.’s, contaminated normal and normal inverse Gaussian
distributions. Furthermore, they do not perform well and are not competitive in com-
parison with the popular edf tests under the asymmetric alternative distributions that
are considered (with the exception of the asymmetric normal inverse Gaussian distribu-
tion). For the latter alternative distribution their performance is found to be the best
among all tests considered and thus is recommended for possible applications. Note
that for the asymmetric alternatives considered, V3 is better than Zn which is better
than K with the exception of the NIG4 distribution.

i) Based on the results given in Table 3, we note that for symmetric alternatives, with
the exception of uniform distribution, the Z test by Gulati (2011) outperforms the K1

test by Langholz and Kronmal (1991). However, based on the results of Table 4, the
situation is reversed in favor of the K1 test. Moreover, the smooth test V4 by Rayner
and Best (1989) which is related to sample kurtosis is better than the Z and the K1

tests for symmetric alternatives with the exception of the Cauchy and the two normal
inverse Gaussian distributions.

Based on the previous results and comments it is concluded that for the majority of the
considered asymmetric alternatives there is a power advantage in using the DA and TVmn
tests, while for symmetric alternatives a single recommendation is not that clear, since, as
expected, there is no test that can detect all types of symmetric alternatives. There are several
tests including TVmn, TKL, TVmn, Z, V4 and K that present the highest power under different
alternatives. Although, it is for note, that TVmn present a robust, acceptable behavior under
the symmetric alternatives used with tails not heavier than that of the standard Laplace
distribution. On the other hand, despite the fact that in general some tests, for instance the
Zn or V3, are not useful for detecting several alternatives, they are quite competitive when
alternatives with tails heavier than that of the standard Laplace distribution as the Cauchy, t
with 3 d.f.’s, contaminated normals and normal inverse Gaussian distributions are considered.
These tests may not present the highest power but have a competitive behavior to that of
the tests with the highest power under such alternatives. The same holds for these two tests
and for asymmetric alternatives with heavy tailness of large degree. Finally, for symmetric
alternatives the simple Rn test could be also recommended.

5. Conclusions

The main contribution of the paper is linked to the fact that twenty two different goodness-of-
fit tests for the Laplace distribution, included a new one, have been compared with 27 possible
alternative distributions (symmetric and asymmetric). As has been initially expected there
is no test which outperforms the others in all cases. However if a particular alternative is
suspected like the ones mentioned in the simulation study of the previous section, one can
utilize the recommended test based on the conclusions of the simulation study. Moreover,
extremely practical and important R codes are provided in the appendix for implementing the
comparison study of the various tests for detecting a departure from the Laplace distribution
while taking into account a numerous alternative distributions.
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Appendices

Appendix A

Proof of Theorem 3.1. Consider Tn as a function of θ̂n and expand it into a Taylor series
around the true value of θ = (δ, c)T , where T denotes the transpose of a vector or matrix. We
will obtain that

√
nTn =

√
nTn +

√
n

(
∂Tn
∂δ

,
∂Tn
∂c

) ∣∣∣∣∣
θ=θ?n,

(
θ̂n − θ

)
, (39)

where

Tn =
1

n

n∑
i=1

Y 3
i − 3

1

n2

n∑
i=1

Yi

n∑
i=1

Y 2
i + 2

(
1

n

n∑
i=1

Yi

)3

, (40)

Yi = Xi−δ
c and θ?n = aθ̂n + (1− a)θ, for some a ∈ (0, 1) (note that θ?n

P−→ θ).

We first determine the asymptotic joint distribution of
1

n

n∑
i=1

Yi,
1

n

n∑
i=1

Y 2
i and

1

n

n∑
i=1

Y 3
i , under

the hypothesis that Xi ∼ CL(δ, c), i = 1, ..., n, or equivalently, that Yi ∼ CL(0, 1), i = 1, ..., n.

From the multivariate Central Limit Theorem we easily obtain that under the null hypothesis
of Laplace distribution

√
n

 1
n

∑n
i=1 Yi − 0

1
n

∑n
i=1 Y

2
i − 2

1
n

∑n
i=1 Y

3
i − 0

 L−→ N3 (03,Σ) , (41)

where 03 is a 3-dimensional column vector with zero elements and Σ = (σlk)3×3 with σlk =
EY k+l − EY lEY k. As under the null hypothesis EY r = 0 if r is odd and EY r = r! if r is
even, we obtain that

Σ =

 2 0 24
0 20 0
24 0 720

 .

In order to find the asymptotic distribution of Tn we note that

Tn = g

(
1

n

n∑
i=1

Yi,
1

n

n∑
i=1

Y 2
i ,

1

n

n∑
i=1

Y 3
i

)
,

where g (x, y, z) = z − 3xy + 2x3 and ġ (x, y, z) =
(
∂
∂xg,

∂
∂yg,

∂
∂zg
)

=
(
−3y + 6x2,−3x, 1

)
.

Then by the Cramér’s Theorem (see Theorem 7, p. 45, in Ferguson, 1996), we find that
under H0 √

n (Tn − g (0, 2, 0))
L−→ N

(
0, σ2

)
,

where

σ2 = ġ (0, 2, 0) ΣġT (0, 2, 0) .

As g (0, 2, 0) = 0 and ġ (0, 2, 0) = (−6, 0, 1) it follows that σ2 = 504. Therefore, under the null
hypothesis, the first term

√
nTn in the right side of (39) converges in distribution to N(0, 504).

For the second term we first note that the quantity
√
n
(
θ̂n − θ

)
is bounded in probability.

Then by evaluating the derivative of Tn given in (40) with respect to θ at the point θ = θ?n it
follows that

∂Tn
∂δ

= 0
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and
∂Tn
∂c

= − 3

nc3

n∑
i=1

Yi +
9

n2c

n∑
i=1

Yi

n∑
i=1

Y 2
i −

3

n3c

n∑
i=1

Y 3
i .

Since under the null hypothesis Xi ∼ CL(δ, c) one obtains that

∂Tn(Y )

∂θ

∣∣∣∣∣
θ=θ?n

P−→ 0 as n→∞,

and thus the second term on the right side of (39) converges in probability to zero. This
completes the proof.

Appendix B

Next the R code used to obtain the results appearing in the Tables is presented. Note that
the following versions of R packages were loaded during the preparation of the revised version
of the current paper:

• PoweR, version 1.0.7 published on August 28, 2018

• univariateML, version 1.1.0 published on August 5, 2020

• MuMIn, version 1.43.17 published on April 15, 2020

• psych, version 1.0.7 published on December 16, 2020

• skewt, version 0.1 published on October 10, 2012

• statmod, version 1.4.35 published on October 19, 2020

• teachingApps, version 1.0.8 published on May 13, 2020

• rmutil, version 1.1.5 published on June 9, 2020

1 #−−−−−−−−−−−−−−−−−Main func t i on for−−−−−−−−−−−−−−−−−−−#
2 #−−−−−−−−−−−−−−−the proposed go f t e s t−−−−−−−−−−−−−−−−−#
3

4 # load the f o l l ow i ng packages
5

6 l i b r a r y (PoweR)
7 l i b r a r y ( univariateML )
8 l i b r a r y (MuMIn)
9

10

11 gofMomentsLaplace <− f unc t i on ( data , l e v e l s , boot ) {
12 # Arguments
13 # data : a l i s t o f data po in t s
14 # l e v e l s : vec to r o f s i g n i f i c a n c e l e v e l s f o r the t e s t .
15 # se t l e v e l s=NA i f only the value o f the t e s t
16 # s t a t i s t i c i s r equ i r ed
17 # boot : number o f boots t rap samples to generate
18 # se t boot=0 i f only the asymptotic
19 # d i s t r i b u t i o n i s to be used
20

21 # Value − output
22 # s t a t i s t i c : the value o f the t e s t s t a t i s t i c
23 # pvalue : the asymptotic pvalue
24 # pvalueboot : the boots t rap pvalue (NA i f boot=0)
25 # l e v e l s : vec to r o f s i g n i f i c a n c e l e v e l s f o r the t e s t .
26 # dec i s i o n asymp : the vec to r o f d e c i s i o n s based on the
27 # asymptotic d i s t r i b u t i o n same length as l e v e l s
28 # 1 i f we r e j e c t the nul l , 0 o therwi se



114 A Comparative Study of Goodness-of-Fit Tests for the Laplace Distribution

29 # dec i s i o n boot : the vec to r o f d e c i s i o n s based on bootst rap
30 # same length as l e v e l s
31 # 1 i f we r e j e c t the nul l , 0 o therwi se
32 # NA i f boot=0
33 # sta t . pars : A vector o f the MLE of the Laplace parameters .
34 # boot c r i t : A vec tor o f boots t rap c r i t i c a l va lue s at .
35 # so r t ( c ( l e v e l s , l e v e l s /2,1− l e v e l s /2,1− l e v e l s ) )
36 # NA i f boot=0
37

38 n <− l ength ( data )
39

40 mledata=ml lap lace ( data )
41 hatde l ta=mledata [ 1 ]
42 hatc=mledata [ 2 ]
43 data t r an s f=s t d i z e ( data , c en te r = hatde l ta , s c a l e = hatc )
44

45 mtr=mean( da ta t r an s f )
46 tn=mean( da ta t r an s f ˆ3)−3∗ mtr∗mean( da ta t r an s f ˆ2)+2∗ (mtr ) ˆ3
47 zn=sq r t (n/ 504) ∗ tn
48

49 pvalue=2∗(1−pnorm( abs ( zn ) , 0 , 1 ) )
50

51 de c i s i o n asymp <− as . numeric ( pvalue< l e v e l s )
52 s t a t . pars = mledata
53

54 i f ( boot>0){
55 znboot=rep (0 , boot )
56 countmc<−0
57 f o r ( kk in 1 : boot ) {
58 datamc=gensample ( law . index=1,n , law . pars=c ( hatde l ta , hatc ) ) $ sample
59 mledatamc=ml lap lace ( datamc )
60 hatdeltamc=mledatamc [ 1 ]
61 hatcmc=mledatamc [ 2 ]
62 datatransfmc=s t d i z e ( datamc , c ente r = hatdeltamc , s c a l e = hatcmc )
63 mtrmc=mean( datatransfmc )
64 tnmc=mean( datatransfmc ˆ3)−3∗mtrmc∗mean( datatransfmc ˆ2)+2∗ (mtrmc) ˆ3
65 znboot [ kk]= sq r t (n/ 504) ∗tnmc
66 i f ( abs ( sq r t (n/ 504) ∗tnmc )>abs ( zn ) ) {countmc<−countmc+1}
67

68 }
69 pvalueboot=countmc/boot
70

71 de c i s i o n boot <− as . numeric ( pvalueboot< l e v e l s )
72 } e l s e {
73 pvalueboot=NA
74 de c i s i o n boot=NA
75 }
76

77 i f ( boot>0){
78 quant=so r t ( c ( l e v e l s , l e v e l s /2,1− l e v e l s /2,1− l e v e l s ) )
79 boot c r i t=quan t i l e ( znboot , probs =quant )
80 } e l s e {
81 boot c r i t=NA
82 }
83

84 re turn ( l i s t ( s t a t i s t i c = zn , pvalue = pvalue , pvalueboot=pvalueboot , l e v e l s=
l e v e l s ,

85 de c i s i o n asymp = de c i s i o n asymp , d e c i s i o n boot=de c i s i o n boot , s t a t
. pars = s t a t . pars [ 1 : 2 ] , boot c r i t=boot c r i t

86 ) )
87 }

1 #−−−−−−−−−−−−−−−−−−−code f o r Table 1−−−−−−−−−−−−−−−−−−−#
2

3 # standard Laplace
4 law . index<−1
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5 mu<− 0
6 b<− 1
7

8 # simula t i on setup
9 nsim<−100000

10 na l l<− c (20 ,30 ,50 ,60 ,70 ,100 ,200 ,500 ,1000 ,5000)
11 quant=c ( c ( 0 . 0 0 5 , 0 . 0 2 5 , 0 . 0 5 ) , s o r t (1−c ( 0 . 0 0 5 , 0 . 0 2 5 , 0 . 0 5 ) ) )
12 typeI c r i t<−matrix ( rep ( NA, ( l ength ( quant )+1)∗ l ength ( n a l l ) ) , nrow = length (

n a l l ) )
13 ns imtota l=nsim∗ l ength ( n a l l )
14

15 # se t t i n g p rog r e s s bar
16 pb <− winProgressBar ( t i t l e = ”prog r e s s bar ” , min = 1 , max = nsimtota l , width =

500)
17 simrunning=0
18 f o r ( j j in 1 : l ength ( n a l l ) ) {
19 c r i t <− rep (NA, l ength = nsim )
20

21 # se t seed f o r r e p r o d u c i b i l i t y purposes
22 s e t . seed (0 )
23

24 f o r ( i i in 1 : nsim ) {
25 n=na l l [ j j ]
26 data=gensample ( law . index=1,n , law . pars=c (mu, b) ) $ sample
27 LapM<−gofMomentsLaplace ( data , l e v e l s=NA, boot=0) #compute only the t e s t

s t a t i s t i c
28 c r i t [ i i ]=LapM$ s t a t i s t i c
29 simrunning=simrunning+1
30 setWinProgressBar (pb , simrunning , t i t l e=paste ( round ( simrunning / ns imtota l ∗

100 , 4) , ”% done ” , n) )
31 }
32 typeI c r i t [ j j , ]= c (n , quan t i l e ( c r i t , probs =quant ) )
33

34 }
35 # ca l c u l a t i n g asymptotic c r i t i c a l va lue s
36 typeI c r i t<−rbind ( typeI c r i t , c (NA, qnorm( quant ) ) )
37

38 # Formating r e s u l t s to obta in Table 1
39 typeI c r i t t ab l e<−cbind ( typeI c r i t [ , 1 ] , typeI c r i t [ , 2 ] , typeI c r i t [ , 7 ] , typeI c r i t

[ , 3 ] , typeI c r i t [ , 6 ] , typeI c r i t [ , 4 ] , typeI c r i t [ , 5 ] )
40 c l o s e (pb)
41

42 #−−−−−−−−−−−−−−−−−code end f o r Table 1−−−−−−−−−−−−−−−−−#

1 #−−−−−−−−−−−−−−−−−−−code f o r Table 2−−−−−−−−−−−−−−−−−−−#
2 law . index<−1
3 mu<− 0
4 b<− 1
5

6 nsim<−10000
7 nboot=1000
8 na l l<− c (20 ,30 ,50 ,60 ,70 ,100)
9 alpha=c ( 0 . 0 1 , 0 . 0 5 , 0 . 1 )

10

11

12 typeI boot<−matrix ( rep ( NA, (2 ∗ l ength ( alpha )+1)∗ l ength ( n a l l ) ) , nrow = length (
n a l l ) )

13 ns imtota l=nsim∗ l ength ( n a l l )
14

15 pb <− winProgressBar ( t i t l e = ”prog r e s s bar ” , min = 1 , max = nsimtota l , width =
500)

16 simrunning=0
17 f o r ( j j in 1 : l ength ( n a l l ) ) {
18 c r i t <− matrix ( rep (NA, l ength = 2∗nsim ) , nrow = nsim )
19

20 s e t . seed (0 )
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21

22 f o r ( i i in 1 : nsim ) {
23 n=na l l [ j j ]
24 data=gensample ( law . index=1,n , law . pars=c (mu, b) ) $ sample
25 LapM<−gofMomentsLaplace ( data , l e v e l s=NA, boot=nboot , r e turn boot c r i t i c a l =0)
26 c r i t [ i i , ]<−c (LapM$pvalue ,LapM$pvalueboot )
27 simrunning=simrunning+1
28 setWinProgressBar (pb , simrunning , t i t l e=paste ( round ( simrunning / ns imtota l ∗

100 , 4) , ”% done ” , n) )
29 }
30 typeI boot [ j j , ]= c (n∗nsim , sum( as . numeric ( c r i t [ ,1 ]< alpha [ 1 ] ) ) , sum( as . numeric (

c r i t [ ,2 ]< alpha [ 1 ] ) ) , sum( as . numeric ( c r i t [ ,1 ]< alpha [ 2 ] ) ) , sum( as . numeric ( c r i t
[ ,2 ]< alpha [ 2 ] ) ) , sum( as . numeric ( c r i t [ ,1 ]< alpha [ 3 ] ) ) , sum( as . numeric ( c r i t
[ ,2 ]< alpha [ 3 ] ) ) ) /nsim

31

32 }
33 c l o s e (pb)
34 #−−−−−−−−−−−−−−−−−code end f o r Table 2−−−−−−−−−−−−−−−−−#

1 #−−−−−−−−−−−−−−−−code f o r Tables 3 and 4−−−−−−−−−−−−−−−#
2

3 # load the f o l l ow i ng packages
4 l i b r a r y ( ”psych ”)
5 l i b r a r y ( skewt )
6 l i b r a r y ( statmod )
7 l i b r a r y ( teachingApps )
8 l i b r a r y (PoweR)
9 l i b r a r y ( univariateML )

10 l i b r a r y ( rmut i l )
11

12

13 # proper ly de f ined func t i on f o r the proposed t e s t
14 # in order to be used in many . c r i t and powcomp . f a s t
15 # commands o f PowerR package
16 gofMomentsLaplace PowerR <− f unc t i on ( data , l e v e l s , u s e c r i t =0, c r i t v a l L =0,

c r i t va lR=0){
17

18 n <− l ength ( data )
19 mledata=ml lap lace ( data )
20 hatde l ta=mledata [ 1 ]
21 hatc=mledata [ 2 ]
22 data t r an s f=(data−hatde l ta ) /hatc
23

24 mtr=mean( da ta t r an s f )
25 tn=mean( da ta t r an s f ˆ3)−3∗ mtr∗mean( da ta t r an s f ˆ2)+2∗ (mtr ) ˆ3
26 zn=sq r t (n/ 504) ∗ tn
27

28 pvalue=2∗(1−pnorm( abs ( zn ) , 0 , 1 ) )
29

30 d e c i s i o n s <− rep (0 , l ength ( l e v e l s ) )
31 f o r ( i in 1 : l ength ( l e v e l s ) ) {
32 i f ( u s e c r i t == 0) {
33 d e c i s i o n s [ i ] <− i f ( pvalue < l e v e l s [ i ] ) 1 e l s e 0
34 } e l s e {
35 d e c i s i o n s [ i ] <− i f ( zn < c r i t v a l L [ i ] | zn > c r i t va lR [ i ] ) 1 e l s e 0
36 }
37 }
38 s t a t . pars = NULL
39 re turn ( l i s t ( s t a t i s t i c = zn , pvalue = pvalue , d e c i s i o n= dec i s i on s , a l t e r =0, s t a t

. pars = NULL, pvalcomp=1L , nbparstat=0) )
40 }
41

42

43 # gof51Laplace i s the t e s t $T {m, n}ˆ{V}$ proposed by Choi and Kim (2006)
44 gof51Laplace <− f unc t i on ( data , l e v e l s , u s e c r i t =0, c r i t v a l L =0, c r i t va lR=0){
45
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46 n <− l ength ( data )
47 muhat <− median ( data )
48 t i ldaY sor t ed <− s o r t ( data−muhat )
49 thetahat <− mean( abs ( data−muhat ) )
50

51 i f (n==20){
52 m<−3
53 } e l s e i f (n==50){
54 m<−6
55 } e l s e i f (n==100){
56 m<−13
57 } e l s e {
58 m<−round (0 . 13 ∗n) # se t by no t i c i n g that the best m i s c l o s e to the 0 .13 ∗n
59 }
60

61 newd<−rep (NA, n)
62 f o r ( i in 1 : n) {
63 i f ( i<=m) {
64 x<−t i ldaY sor t ed [ 1 ]
65 } e l s e {
66 x<−t i ldaY sor t ed [ i−m]
67 }
68 i f ( i>=n−m) {
69 y<−t i ldaY sor t ed [ n ]
70 } e l s e {
71 y<−t i ldaY sor t ed [ i+m]
72 }
73 newd [ i ]<−y−x
74 }
75 GM <− geometr ic .mean(newd)
76 rn s t a r=n/ (2 ∗m∗ thetahat ) ∗GM
77 pvalue <−0
78 s t a t . pars = NULL
79 d e c i s i o n s <− rep (0 , l ength ( l e v e l s ) )
80 f o r ( i in 1 : l ength ( l e v e l s ) ) {
81 i f ( u s e c r i t == 0) {
82 d e c i s i o n s [ i ] <− 0
83 } e l s e {
84 d e c i s i o n s [ i ] <− i f ( r n s t a r < c r i t v a l L [ i ] ) 1 e l s e 0
85 }
86 }
87 re turn ( l i s t ( s t a t i s t i c = rnstar , pvalue = pvalue , d e c i s i o n= dec i s i on s , a l t e r =4,

s t a t . pars = NULL, pvalcomp=0L , nbparstat=0) )
88 }
89

90 # gof60Laplace i s the t e s t proposed by Gel (2010) .
91 gof60Laplace <− f unc t i on ( data , l e v e l s , u s e c r i t =0, c r i t v a l L =0, c r i t va lR=0){
92

93 n <− l ength ( data )
94 mledata=ml lap lace ( data )
95 hatde l ta=mledata [ 1 ]
96 hatc=mledata [ 2 ]
97 datanew3=(data−mean( data ) ) ˆ3
98 datanew4=(data−mean( data ) ) ˆ4
99 u1sqrt=mean( datanew3 ) / ( ( sq r t (2 ) ∗hatc ) ˆ3)

100 u2=mean( datanew4 ) / ( ( sq r t (2 ) ∗hatc ) ˆ4)
101

102 c1=60
103 c2=1200
104

105 k=n/c1∗ ( u1sqrt )ˆ2+n/c2∗ (u2−6)ˆ2
106 pvalue=1−pchi sq (k , 2 )
107

108 d e c i s i o n s <− rep (0 , l ength ( l e v e l s ) )
109 f o r ( i in 1 : l ength ( l e v e l s ) ) {
110 i f ( u s e c r i t == 0) {
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111 d e c i s i o n s [ i ] <− i f ( pvalue < l e v e l s [ i ] ) 1 e l s e 0
112 } e l s e {
113 d e c i s i o n s [ i ] <− i f ( k > c r i t va lR [ i ] ) 1 e l s e 0
114 }
115 }
116 s t a t . pars = NULL
117 re turn ( l i s t ( s t a t i s t i c = k , pvalue = pvalue , d e c i s i o n= dec i s i on s , a l t e r =3, s t a t .

pars = NULL, pvalcomp=1L , nbparstat=0) )
118 }
119

120

121 # gof91Laplace i s the 1 s t r a t i o t e s t proposed by Gonzalez−Estrada and
V i l l a s e no r (2016)

122 gof91Laplace <− f unc t i on ( data , l e v e l s , u s e c r i t =0, c r i t v a l L =0, c r i t va lR=0){
123

124 n <− l ength ( data )
125 mledata=ml lap lace ( data )
126 hatde l ta=mledata [ 1 ]
127 hatc=mledata [ 2 ]
128

129 samplevar iance=(n−1)/n∗var ( data )
130 datanew=abs ( ( data−mean( data ) ) )
131

132 bnre l a t i on3=mean( datanew )
133 bnre la t i onunder=sq r t ( samplevar iance / 2)
134 rn s t a r=sq r t (4 ∗n) ∗ ( bnre la t i onunder / bnr e l a t i on3 −1)
135

136 pvalue=2∗(1−pnorm( abs ( rn s t a r ) , 0 , 1 ) )
137

138 d e c i s i o n s <− rep (0 , l ength ( l e v e l s ) )
139 f o r ( i in 1 : l ength ( l e v e l s ) ) {
140 i f ( u s e c r i t == 0) {
141 d e c i s i o n s [ i ] <− i f ( pvalue < l e v e l s [ i ] ) 1 e l s e 0
142 } e l s e {
143 d e c i s i o n s [ i ] <− i f ( r n s t a r < c r i t v a l L [ i ] | rn s t a r > c r i t va lR [ i ] ) 1 e l s e 0
144 }
145 }
146

147 s t a t . pars = NULL
148

149 re turn ( l i s t ( s t a t i s t i c = rnstar , pvalue = pvalue , d e c i s i o n= dec i s i on s , a l t e r =0,
s t a t . pars = NULL, pvalcomp=1L , nbparstat=0) )

150 }
151

152

153 # gof92Laplace i s the 2nd r a t i o t e s t proposed by Gonzalez−Estrada and
V i l l a s e no r (2016)

154 gof92Laplace <− f unc t i on ( data , l e v e l s , u s e c r i t =0, c r i t v a l L =0, c r i t va lR=0){
155

156 n <− l ength ( data )
157

158 mledata=ml lap lace ( data )
159 hatde l ta=mledata [ 1 ]
160 hatc=mledata [ 2 ]
161

162 samplevar iance=(n−1)/n∗var ( data )
163 bnre la t i onunder=sq r t ( samplevar iance / 2)
164 rn s t a r=sq r t (4 ∗n) ∗ ( bnre la t i onunder / hatc−1)
165

166 pvalue=2∗(1−pnorm( abs ( rn s t a r ) , 0 , 1 ) )
167

168 d e c i s i o n s <− rep (0 , l ength ( l e v e l s ) )
169 f o r ( i in 1 : l ength ( l e v e l s ) ) {
170 i f ( u s e c r i t == 0) {
171 d e c i s i o n s [ i ] <− i f ( pvalue < l e v e l s [ i ] ) 1 e l s e 0
172 } e l s e {
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173 d e c i s i o n s [ i ] <− i f ( r n s t a r < c r i t v a l L [ i ] | rn s t a r > c r i t va lR [ i ] ) 1 e l s e 0
174 }
175 }
176 s t a t . pars = NULL
177 re turn ( l i s t ( s t a t i s t i c = rnstar , pvalue = pvalue , d e c i s i o n= dec i s i on s , a l t e r =0,

s t a t . pars = NULL, pvalcomp=1L , nbparstat=0) )
178 }
179

180 # gof97Laplace i s the t e s t proposed by Rizzo and Haman (2016)
181 gof97Laplace <− f unc t i on ( data , l e v e l s , u s e c r i t =0, c r i t v a l L =0, c r i t va lR=0){
182

183 n <− l ength ( data )
184

185 mledata=ml lap lace ( data )
186 hatde l ta=mledata [ 1 ]
187 hatc=mledata [ 2 ]
188

189 data t r an s f=(data−hatde l ta ) /hatc
190 y <− s o r t ( da ta t r an s f )
191

192 vo i t <− rep (0 , n)
193 f o r ( k in 1 : n) {
194 vo i t [ k ]<−(2 ∗k−1−n) ∗y [ k ]
195 }
196

197 En=2∗sum( abs (y )+exp(−abs (y ) ) )−1.5∗n−2/n ∗sum( vo i t )
198

199 pvalue<−0
200

201 d e c i s i o n s <− rep (0 , l ength ( l e v e l s ) )
202 f o r ( i in 1 : l ength ( l e v e l s ) ) {
203 i f ( u s e c r i t == 0) {
204 d e c i s i o n s [ i ] <− i f ( pvalue < l e v e l s [ i ] ) 1 e l s e 0
205 } e l s e {
206 d e c i s i o n s [ i ] <− i f (En > c r i t va lR [ i ] ) 1 e l s e 0
207 }
208 }
209 s t a t . pars = NULL
210 re turn ( l i s t ( s t a t i s t i c = En , pvalue = pvalue , d e c i s i o n= dec i s i on s , a l t e r =3, s t a t

. pars = NULL, pvalcomp=1L , nbparstat=0) )
211 }
212

213

214 # go f t e s t 1Lap l a c e i s the t e s t proposed by Hadi Al izadeh Noughabi &
Narayanaswamy Balakr ishnan (2016) Tests

215 # DOI : 10 .1080 / 02664763.2015.1063116
216 go f t e s t 1Lap l a c e <− f unc t i on ( data , l e v e l s , u s e c r i t =0, c r i t v a l L =0, c r i t va lR=0){
217

218 n <− l ength ( data )
219 mledata=ml lap lace ( data )
220 hatde l ta=mledata [ 1 ]
221 hatc=mledata [ 2 ]
222 w<−1/ (2 ∗hatc ) ∗ ( exp(−abs ( data−hatde l ta ) /hatc ) )
223

224 s<−sd ( data ) ∗ s q r t ( ( n−1)/n)
225 h<−1 .06 ∗ s ∗nˆ(−1/ 5)
226

227 f ha t <− rep (0 , n)
228

229 f o r ( i in 1 : n) {
230 f ha t [ i ]<−sum(dnorm ( ( data [ i ]−data ) /h ,mean = 0 , sd = 1 , l og = FALSE) ) / (n∗h)
231 }
232

233 TkL<−sum( log ( fhat /w) ) /n
234

235 pvalue<−0
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236

237 d e c i s i o n s <− rep (0 , l ength ( l e v e l s ) )
238 f o r ( i in 1 : l ength ( l e v e l s ) ) {
239 i f ( u s e c r i t == 0) {
240 d e c i s i o n s [ i ] <− i f ( pvalue < l e v e l s [ i ] ) 1 e l s e 0
241 } e l s e {
242 d e c i s i o n s [ i ] <− i f (TkL > c r i t va lR [ i ] ) 1 e l s e 0
243 }
244 }
245 s t a t . pars = NULL
246 re turn ( l i s t ( s t a t i s t i c = TkL, pvalue = pvalue , d e c i s i o n= dec i s i on s , a l t e r =3,

s t a t . pars = NULL, pvalcomp=1L , nbparstat=0) )
247 }
248

249

250

251

252

253

254

255

256 # gof t e s2Lap lac e i s the t e s t proposed by Hadi Al izadeh Noughabi & Sangun Park
(2016)

257 # DOI : 10.1080 / 00949655.2015 .1104685
258 go f t e s t 2Lap l a c e <− f unc t i on ( data , l e v e l s , u s e c r i t =0, c r i t v a l L =0, c r i t va lR=0){
259

260 n <− l ength ( data )
261 mledata=ml lap lace ( data )
262 hatde l ta=mledata [ 1 ]
263 hatc=mledata [ 2 ]
264

265

266 i f (n==20){
267 m<−4
268 } e l s e i f (n==50){
269 m<−6
270 } e l s e i f (n==100){
271 m<−8
272 } e l s e {
273 m<−round (3 .22449 +0.04898∗n) # by f i t t i n g the l i n e a r model lm( c (4 , 6 , 8 ) ˜c

(20 ,50 ,100) )
274 }
275 data so r t ed <− s o r t ( data )
276

277

278 x i i <− rep (0 , n+1)
279 f o r ( i i in 1 : ( n+1) ) {
280 i f ( i i−m<1){
281 rdused<−l ength ( data so r t ed [ 1 : ( i i+m−1) ] )
282 augdata<−2∗m−rdused
283 x i i [ i i ]=mean( c ( rep ( data so r t ed [ 1 ] , augdata ) , data so r t ed [ 1 : ( i i+m−1) ] ) )
284 } e l s e i f ( i i−m>=1 & i i+m−1<=n) {
285 x i i [ i i ]=mean( data so r t ed [ ( i i−m) : ( i i+m−1) ] )
286 } e l s e {
287 rdused<−l ength ( data so r t ed [ ( i i−m) : n ] )
288 augdata<−2∗m−rdused
289 x i i [ i i ]=mean( c ( data so r t ed [ ( i i−m) : n ] , rep ( data so r t ed [ n ] , augdata ) ) )
290 }
291 }
292

293 i f ( ( n %% 2) == 0) {
294 cuhat<− −1/n ∗ sum( ( x i i [ 1 : ( n/ 2) ]+ x i i [ (1+1) : ( n/2+1) ] ) / 2)+
295 1/n∗sum( ( x i i [ ( n/2+1) : n]+ x i i [ ( n/2+1+1) : ( n+1) ] ) / 2)
296 } e l s e {
297 cuhat<− −1/n∗sum( ( x i i [ 1 : ( ( n−1)/ 2) ]+ x i i [ (1+1) : ( ( n−1)/2+1) ] ) / 2)+
298 1/ (4 ∗n) ∗ ( x i i [ ( n+1)/2+1]− x i i [ ( n+1)/ 2 ] )+
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299 1/n∗sum( ( x i i [ ( ( n+1)/2+1) : n]+ x i i [ ( ( n+1)/2+1+1) : ( n+1) ] ) / 2)
300 }
301

302 difxm<−rep (0 , n)
303 f o r ( i i in 1 : n) {
304 i f ( i i−m<=1){
305 difxm [ i i ]=data so r t ed [ i i+m]−data so r t ed [ 1 ]
306 } e l s e i f ( i i−m>1 & i i+m<=n) {
307 difxm [ i i ]=data so r t ed [ i i+m]−data so r t ed [ i i−m]
308 } e l s e {
309 difxm [ i i ]=data so r t ed [ n]−data so r t ed [ i i−m]
310 }
311 }
312 HVmn<−sum( log ( difxm∗n/ (2 ∗m) ) ) /n
313

314 TVmn<−l og (2 ∗ cuhat )+1−HVmn
315

316

317 pvalue<−0
318

319 d e c i s i o n s <− rep (0 , l ength ( l e v e l s ) )
320 f o r ( i in 1 : l ength ( l e v e l s ) ) {
321 i f ( u s e c r i t == 0) {
322 d e c i s i o n s [ i ] <− i f ( pvalue < l e v e l s [ i ] ) 1 e l s e 0
323 } e l s e {
324 d e c i s i o n s [ i ] <− i f (TVmn > c r i t va lR [ i ] ) 1 e l s e 0
325 }
326 }
327 s t a t . pars = NULL
328 re turn ( l i s t ( s t a t i s t i c = TVmn, pvalue = pvalue , d e c i s i o n= dec i s i on s , a l t e r =3,

s t a t . pars = NULL, pvalcomp=1L , nbparstat=0) )
329 }
330

331

332

333

334 # go f t e s t 3Lap l a c e i s the t e s t proposed by Hadi Al izadeh Noughabi (2019)
335 # DOI : 10.1080 / 00949655.2019 .1602870
336 go f t e s t 3Lap l a c e <− f unc t i on ( data , l e v e l s , u s e c r i t =0, c r i t v a l L =0, c r i t va lR=0){
337

338 n <− l ength ( data )
339 mledata=ml lap lace ( data )
340 hatde l ta=mledata [ 1 ]
341 hatc=mledata [ 2 ]
342

343

344 i f (n==10){
345 m<−4
346 } e l s e i f (n==20){
347 m<−7
348 } e l s e i f (n==33){
349 m<−7
350 } e l s e i f (n==45){
351 m<−10
352 } e l s e i f (n==100){
353 m<−15
354 } e l s e {
355 m<−round (3.8021+0.1153 ∗n ) # by f i t t i n g the l i n e a r model lm( c (4 , 7 , 7 , 15 ) ˜c

(10 , 20 ,33 ,100) )
356 }
357 data so r t ed <− s o r t ( data )
358

359 z=p lap l a c e ( data sorted , m=hatde l ta , s=hatc )
360

361 difzm<−rep (0 , n)
362 f o r ( i i in 1 : n) {
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363 i f ( i i−m<=1){
364 difzm [ i i ]=z [ i i+m]−z [ 1 ]
365 } e l s e i f ( i i−m>1 & i i+m−1<n) {
366 difzm [ i i ]=z [ i i+m]−z [ i i−m]
367 } e l s e {
368 difzm [ i i ]=z [ n]−z [ i i−m]
369 }
370 }
371 DA<− −sum( log ( difzm∗n/ (2 ∗m) ) ) /n
372

373

374

375 pvalue<−0
376

377 d e c i s i o n s <− rep (0 , l ength ( l e v e l s ) )
378 f o r ( i in 1 : l ength ( l e v e l s ) ) {
379 i f ( u s e c r i t == 0) {
380 d e c i s i o n s [ i ] <− i f ( pvalue < l e v e l s [ i ] ) 1 e l s e 0
381 } e l s e {
382 d e c i s i o n s [ i ] <− i f (DA > c r i t va lR [ i ] ) 1 e l s e 0
383 }
384 }
385 s t a t . pars = NULL
386 re turn ( l i s t ( s t a t i s t i c = DA, pvalue = pvalue , d e c i s i o n= dec i s i on s , a l t e r =3, s t a t

. pars = NULL, pvalcomp=1L , nbparstat=0) )
387 }
388

389

390

391

392

393

394

395

396

397

398

399

400

401 # simula t i on setup
402 law . index<−1
403 M<−10ˆ5
404 vectn<− c (20 ,50 ,100)
405 l e v e l s<− 0 .05
406

407

408 s t i nd<−c (43 ,44 ,42 ,45 ,46 ,47 ,48 ,49 ,50 , 0 , 0 , 0 , 0 , 0 , 59 , 57 , 55 , 56 , 0 , 0 , 0 , 0 )
409

410 a l t e r <− l i s t ( s ta t43 = 3 , s ta t44 = 3 , s ta t42 = 3 , s ta t45 = 3 , s ta t46 = 3 , s ta t47 =
3 , s ta t48 = 3 , s ta t49 = 3 , s ta t50 = 3 , s t a t0 =4, s t a t 0 =3, s t a t 0 =3, s t a t0 =3, s t a t0 =3,
s ta t59 = 3 , s ta t57 = 3 , s ta t55 = 0 , s ta t56 = 0 , s t a t0 =3, s t a t 0 =0, s t a t 0 =0, s t a t0=0)

411

412 s e t . seed (0 )
413

414 c r i t v a l<−many . c r i t ( law . index , s t a t . i n d i c e s=st ind ,M, vectn , l e v e l s , a l t e r , law . pars=c
(0 , 1 ) , Rstats=l i s t (NULL,NULL,NULL,NULL,NULL,NULL,NULL,NULL,NULL, gof51Laplace ,
gof97Laplace , go f t e s t1Lap lace , go f t e s t2Lap lace , go f t e s t3Lap lace , NULL,NULL,NULL
,NULL, gof60Laplace , gof91Laplace , gof92Laplace , gofMomentsLaplace PowerR)

415 )
416

417 pr in t ( c r i t v a l )
418

419 # law i nd i c e s f o r Table 3
420 law . i n d i c e s<−c (1 , 2 , 4 , 3 , 7 , 6 , 8 , 8 , 8 , 18 , 31 , 31 , 37 , 37 )
421 parlaws=l i s t ( law1=c (0 , 1 ) , law2 = c (0 , 1) , law4=c (0 , s q r t (3 ) / p i ) , law3=c (0 , 1 ) , law7=c

(− s q r t (12) / 2 , s q r t (12) / 2) , law6=c (2 , 2 ) , law8=3, law8=6, law8=10, law18=0.5 , law31=c
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( 0 . 1 , 0 , 3 . 5 ) , law31=c ( 0 . 2 , 0 , 3 . 2 ) , law37=c ( 0 . 4 , 0 , 0 . 6 , 1 ) , law37=c ( 0 . 7 , 0 , 0 . 2 , 1 ) )
422

423 tab l e3<−powcomp . f a s t ( law . i nd i c e s , s t ind , vectn ,M, l e v e l s , c r i t v a l=c r i t v a l , a l t e r ,
Rlaws=l i s t (NULL,NULL,NULL,NULL,NULL,NULL,NULL,NULL,NULL,NULL,NULL,NULL,NULL,
NULL)

424 , par laws=parlaws , Rstats=l i s t (NULL,NULL,NULL,NULL,NULL,NULL,NULL,NULL,NULL,
gof51Laplace , gof97Laplace , go f t e s t1Lap lace , go f t e s t2Lap lace , go f t e s t3Lap lace ,
NULL,NULL,NULL,NULL, gof60Laplace , gof91Laplace , gof92Laplace , gofMomentsLaplace
PowerR)

425 )
426

427

428 pr in t ( tab l e3 )
429

430 # law i nd i c e s f o r Table 4
431 law . i n d i c e s<−c (35 , 5 , 5 , 26 , 21 , 0 , 10 , 11 , 11 , 9 , 0 , 0 , 37 , 37 )
432 parlaws=l i s t ( law35=1, law5=c (2 , 1 ) , law5=c (6 , 1 ) , law26=c (0 , 1 ) , law21=c (0 , 1 , 3 ) , law0=c

(3 ,10 ) , law10=c ( 0 , 0 . 5 ) , law11=c (3 , 1 ) , law11=c (2 , 1 ) , law9=c (2) , law0=c (0 , 1 ) , law0=
c (1 , 4 ) , law37=c ( 1 , 0 . 5 , 0 . 4 3 , 1 ) , law37=c ( 0 . 5 , 0 . 2 , 0 . 5 , 1 ) )

433

434 tab l e4<−powcomp . f a s t ( law . i nd i c e s , s t ind , vectn ,M, l e v e l s , c r i t v a l=c r i t v a l , a l t e r ,
Rlaws=l i s t (NULL,NULL,NULL,NULL,NULL, rskt ,NULL,NULL,NULL,NULL, rsev , r invgauss ,
NULL,NULL) , parlaws=parlaws , Rstats=l i s t (NULL,NULL,NULL,NULL,NULL,NULL,NULL,
NULL,NULL, gof51Laplace , gof97Laplace , go f t e s t1Lap lace , go f t e s t2Lap lace ,
go f t e s t3Lap lace , NULL,NULL,NULL,NULL, gof60Laplace , gof91Laplace , gof92Laplace ,
gofMomentsLaplace PowerR)

435 )
436

437

438

439 pr in t ( tab l e4 )
440 #−−−−−−−−−−−−−−−−code end f o r Tables 3 and 4−−−−−−−−−−−−−−−#
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