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Abstract

The Laplace distribution is one of the earliest distributions in probability theory and
is a frequently used distribution in many fields. Consequently, various goodness-of-fit
tests for the Laplace distribution have been thoroughly derived in the literature. The
purpose of this paper is to carry out a comparative study of these tests as well as a
new one we develop. Power comparisons of all such tests are performed via Monte Carlo
simulations of sample data generated from twenty seven alternatives distributions. Despite
the fact that no single test was found to be most powerful in all situations, several useful
recommendations however are made.
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1. Introduction

The Laplace or the double exponential distribution introduced by Laplace (1774) is one of the
earliest distribution discussed in probability theory. It is a symmetric distribution which has
been used as an alternative to the normal distribution in robustness studies and in modeling
phenomena with heavier than normal tails (see Kozubowski and Nadarajah (2010), Cordeiro
and Lemonte (2011) and references therein). The areas in which the Laplace distribution has
been used are rather wide. A detailed list of these areas along with some references can be
found in Kotz, Kozubowski, and Podgorski (2001), Johnson, Kotz, and Balakrishnan (1995),
Kozubowski and Nadarajah (2010) and Cordeiro and Lemonte (2011).

Due to its importance in modeling real data, validating the assumption of Laplace distribution
has been of great concern. Indeed, numerous studies have been devoted to testing methods
for detecting a departure from Laplace. The existing tests can be classified into five classes,
namely (i) tests based on the empirical distribution function (c.f. Yen and Moore 1988; Rublik
1997; Puig and Stephens 2000a; Chen 2002, and references cited therein); (ii) tests based on
the empirical characteristic function (c.f. Meintanis 2005); (iii) moment based tests, i.e.,
tests based on sample moments, skewness and kurtosis (Gonzalez-Estrada and Villasefior
2016; Gel 2010; Rayner and Best 1989; Langholz and Kronmal 1991; Li and Papadopoulos
2002); (iv) entropy and divergence based tests (Choi and Kim 2006; Rizzo and Haman 2016;
Alizadeh Noughabi and Balakrishnan 2016; Alizadeh Noughabi 2019; Alizadeh Noughabi and
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Park 2016) (v) other tests (Gulati 2011).

The main goal of this paper is to present a detailed comparison of the various testing pro-
cedures for detecting departures from the Laplace distribution. In this context, the rest of
the paper is organized as follows. In Section 2 we present some preliminaries on the Laplace
distribution. In Section 3 the existing goodness-of fit tests for the Laplace distribution are
briefly presented and classified into one of the five classes mentioned above. Moreover, a new
modification of the moment structure based test presented in Li and Papadopoulos (2002,
p.74) for testing departure from Laplace is presented and studied in detail. Section 4 is de-
voted to executing Monte Carlo simulations for comparing the goodness-of fit tests for the
Laplace distribution described in Section 3. Such a comparison includes 22 tests available
in the literature with 27 possible distributions (symmetric or asymmetric) presented as al-
ternatives to the Laplace distribution. To our best knowledge this study is the first attempt
made in the literature to compare so many goodness-of-fit tests for the Laplace distribution
and alternative distributions (c.f., Best, Rayner, and Thas (2008) and Gel (2010)). Section 5
presents a summary of the results of the paper and some practical relevant conclusions. All
proofs related to the new goodness-of fit test for the Laplace distribution introduced in Sec-
tion 3 appear in an Appendix. R codes used to showing and demonstrating the computational
and numerical parts of this paper along with their implementation are also presented in the
Appendix.

2. Background

In this section we present some preliminaries and notation related to the Laplace distribution.
The classical Laplace distribution CL(d, ¢) has a two-parameter probability density function
(p.d.f) and cumulative distribution function (c.d.f) given by

1 _Je=s

fo(x;6,¢) :2—6_7‘, with 6 € R,¢ > 0,z € R, (1)
c

and

Fy (z;0,¢) = 0.5+ 0.5sgn(z — 9) (1 —e” ‘ZZM) ) (2)

where sgn(x —J) equals —1,0, or 1, depending on whether x — ¢ is negative, zero, or positive,
respectively. The case CL(0,1) with § = 0 and ¢ = 1 is called the classical standard Laplace
distribution.

In the sequel we denote, respectively, by p = E(X!) = [2!dF(x) and k; = E[(X — )!] =
[(z — w)!dF(z),l € N, the I-th moment and [-th central moment of a r.v. X with c.d.f.
F, while /31 = k3/ k;’/ % and B2 = ky/k3 are used to denote the corresponding skewness and
kurtosis. For the CL(6, ), the mean, median and mode are all equal to J, the variance to 2¢2,
while the skewness and kurtosis are 0 and 6, respectively.

Let (X, ..., X,) be a random sample of size n and Xa) £ X2y < ... < X(y) denote its order
statistic arrangement. If this sample is taken from a CL(4, c) population then the maximum
likelihood estimators (mle) of § and ¢ are

A ) X(nt1)/25 if n is odd
Op = 0n (X1, ..., X)) = Median(Xy, ..., X)) = T - , (3)
—=t== if nis even
and .
n = (X1, Xn) :%Zp{iﬂm (4)
i=1

By using the fact that E(X) = § and Var(X) = 2¢? then the corresponding method of
moments estimators (mom) of ¢ and ¢ are

On = 0n (X1, .., Xp) = X,y (5)
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and

_ ~ S2

Cn = Cn(X1, ., X)) = 7”, (6)
where

$2 =13 (x,- %,)% (7)

i=1
The mle 5n and the mom estimator 8,, of § are affine equivariant, i.e., for any real d and 8 > 0
o (BX1 +d, ... BXn +d) = B0, (X1, ..., Xp) + d,
and . .
on (BX1+d, ..., X, +d) = Bon (X1, ..., Xp) + d.

Moreover, the mle ¢, and the mom estimator ¢, of ¢ are, respectively, location invariant and
scale equivariant, i.e., for any real d and g > 0

én (BX14d, ..., Xy +d) = Bén (X1,..., Xn),

and

én (BX1+d, ..., Xy +d) = Bén (X1, ..., Xp) -
In the rest of the paper we shall use the following notation:

Zi = F (Xi;Sn,én) Z = Fo (X(i); 8n,en) by, = Ao

C
g = Xizh g X

Cn Cn

7U(i) = ’Y(i)\,and Vi=X;— b, fori=1,..n.

3. Goodness-of-fit tests for the Laplace distribution

Let (X1,...,X;,) be a random sample of size n taken from a c.d.f. F(x) and p.d.f f(z). At
a significance level o we consider testing the null hypothesis that the parent distribution is
Laplace vs any other alternative, i.e.,

Hy:F(-) =Fy(-;0,c), for some § € R and ¢ > 0,

Vs.
H; : F isnot CL(d,c).

Asif X ~ CL(d,c) then X +d ~ CL(B6+d, Bc) for any d € R and 3 € R™ it follows that the
family of Laplace distributions is invariant under affine transformations X — X + d. Thus
any test statistic, say H, (X1, ..., Xy), used for testing departure from the Laplace distribution
should also be affine invariant (see Meintanis (2005), p.927). Accordingly, if (X1,..., X,,) is a
random sample from CL(4, ¢) then the following relation should hold

Hy (BX1+d, ..., BXp +d) = Hy(X1, ..., Xp). (8)

In the sequel, the existing goodness-of fit tests for the Laplace distribution are briefly pre-
sented. Moreover, a new modification of the moment structure based test presented in Li
and Papadopoulos (2002, p.74) for testing departure from the Laplace distribution is pre-
sented and studied in detail. The modification is required as the test proposed by Li and
Papadopoulos (2002) is not affine invariant.

As we previously indicated all existing tests are classified into five classes.
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3.1. Tests based on the empirical distribution function

The key idea of the empirical distribution function (e.d.f.) tests is to compare the data
estimated c.d.f. with the hypothesized c.d.f. Thus e.d.f. tests are based on discrepancy
measures between the c.d.f. of the Laplace distribution given in (2) with ¢ and ¢ being
estimated appropriately and the e.d.f. defined by

Yo I(X; < x)  # of observations < x
n n

F,(z) =

,—00 < & < 00, 9)

where I(+) is the indicator function. In this frame, five different e.d.f. tests have been presented
and studied in the literature, namely the Cramer-von Mises (W?), the Watson (U?), the
Anderson-Darling (A?), the Kolmogorov-Smirnov (y/nD) and the Kuiper (V) tests (c.f. Yen
and Moore 1988; Puig and Stephens 2000a; Chen 2002, and references cited therein). The
test statistics W2, U? and A? belong to the Cramer von Mises family, while the other two to
the Kolmogorov-Smirnov family of tests. These test statistics have the form

n

1 _
w? = T S (Z) - 2i-1)/(2n))°, (10)
=1
U? =W?—n(Z,—05)%, (11)
1 n
A= —n— - > (26 — 1)1og(Z)) + (2(n — i) + 1) log(1 — Z(y)) , (12)
=1
D =max{D*", D" }and V=D"+ D", (13)
where ) .
DT = max (Z — Z(i)> and D™ = max <Z(Z-) = 1) (14)
i=1,..,n \ N i=1,..,n n

with the Z(;) being defined in Section 2.

All of the above tests are right tailed, i.e., the null hypothesis is rejected for large values.
Therefore the critical values are the 100(1 — «)-th percentiles of the empirical distribution
of the respective test statistic. Asymptotic critical values are also available for the tests
belonging to the Cramer von Mises family (see Puig and Stephens (2000a)). A more detailed
discussion, asymptotic results on the e.d.f. tests and tables of critical values based on 50,000
Monte Carlo samples of size n for specific values of n can be found in Puig and Stephens
(2000a).

3.2. Tests based on the empirical characteristic function

The characteristic function (c.f.) of X ~ CL(J,¢) is

exp(idt)

Trep ek

d)O(t? 5a C) =

Meintanis (2005) proposed a class of goodness-of-fit tests for the Laplace distribution based
on its c.f. More specifically, the key idea behind his proposal is related to the fact that the
c.f. of the Laplace distribution satisfies the relation

(1+ 2t2)o(t) — exp(idt) = 0,t € R. (15)

Under the null hypothesis of Laplace distribution then for large n the transformed data Y; or
Y; are approximately CL(0, 1). By using these transformed data, Meintanis (2005) proposed a
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weighted integral of the squared of an empirical counterpart of the equation (15) for ¢ = 1 and
0 = 0. To be more specific, Meintanis (2005) proposed the following classes of test statistics

T = n/oo (1 + )2 (t) — 1[*w(t)dt, j = ML, MO, (16)

—0o0

where w(t) denotes an appropriate weight function, ¢M(t) and ¢MO(t) are the empirical
characteristic functions (e.c.f.) of the transformed data Y; and Y;, respectively, defined by

n () = Lin RO g SMO () — LiL, exp(itYi)
n n . - .

For computational purposes Meintanis (2005) focused on two parametric classes of weight
functions for which both TM* and TM© take simple forms. In this frame, the test statistics

corresponding to w(t) = exp(—alt|), a > 0 are denoted by T,g,l,;MO) or qu},;ML). Similarly,

the test statistics corresponding to w(t) = exp(—at?), a > 0, are denoted by ng?[;Mo) or

T7§,2(;ML). For simple forms of these statistics and further computational details we refer to p.
928 in Meintanis (2005). Based on the simulation study performed by Meintanis (2005) it is
recommended to use 7| ,E’léMO), qu}éML), 75,16{\5/10) and be?d{\gj“). Indeed, for this reason we use

these statistics in our simulation study.

All the above tests are again right tailed. The appropriate critical values which are the
100(1 — «)-th percentiles of the empirical distribution of the respective test statistics are
given in Meintanis (2005). A further detailed discussion, asymptotic results on the e.c.f. tests
and tables of critical values based on 100,000 Monte Carlo samples of size n = 20,50 can be
found in Meintanis (2005).

3.3. Sample moments based procedures

Moment-based procedures are widely common for testing departures from a hypothesized
distribution. In this section some existing tests are briefly presented, while a new modification
of the moment structure based test presented in Li and Papadopoulos (2002, p.74) for testing
a departure from the Laplace distribution is presented and studied in detail.

Best et al. tests

Smooth tests of goodness of fit, described in Rayner and Best (1989), seek to assess the fit of
the data to a given p.d.f. f(z;0) within the following class of alternatives of order k given by

k
gk(x36, 8) = C(8, 8) exp <Z ﬂihi(x§9)> f(@30).
=1

Here, 0 is a vector of unknown parameters, C'(¢, 3) is a normalizing constant and h;(x;6),i =
1,..., k, is a set of functions which are orthonormal on the hypothesized distribution f(z;6). If
Ej denotes the expectation when the model that generates the data is f(z;6) then orthonor-
mality means that Ep[h,(X;60)hs(X;0)] = 0y for r,s = 0,1,..., where §,s = 1 if r = s and
ors = 0 if r # s. It is obvious that the alternatives are characterized by their order, i.e., the
greater the order k the richer is the class of alternatives.

In this frame, based on a sample X3,...,.X,,, if 5n(X1, ...y Xpp) is either the mle or the moment
based estimator of the unknown parameters 6 of the hypothesized distribution, Rayner and
Best (1989) proposed a goodness-of-fit test of a hypothesized distribution using

v, = Zn:hr (XZ-; O (X1, ...,Xn)) NS
=1
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Motivated by Rayner and Best (1989) and under the moment estimation method when utiliz-
ing the complete orthonormal functions for » = 3,4, Best et al. (2008) proposed the following
two smooth goodness-of fit tests for the Laplace distribution:

Va3 = /nby /54 and Vy = (be — 6)4/n/1072.8 (17)

where

= \3 S \4
\/a _ Z?:l (Xi — Xn) Z?:1 (Xi - Xn)
nsS3 nSi
and S, is defined in (7). Here, v/b; and by are estimators of the population skewness and
kurtosis, respectively, based on method of moments.

and by = (18)

Asymptotically, both statistics follow a normal distribution with mean zero and variance 7/6
and 165/149, respectively (see Best et al. (2008)). However Best et al. (2008) concluded that in
practice the use of the asymptotic critical values is not recommended as the the convergence
is slow. Taking into account that the null hypothesis of Laplace for both tests is rejected
for large absolute values (two-tailed tests), then the critical values are the 100(a/2)-th and
100(1 — «/2)-th percentiles of the empirical distribution of the test statistics.

Gel tests

Gel (2010) proposed goodness-of-fit procedures for the Laplace distribution based on alter-
native estimates of population skewness and kurtosis obtained by utilizing the mle of the
unknown variance in the denominator of the population skewness and kurtosis. Specifically,
the K test by Gel (2010) is defined as

Kzi(m)2+£(u2—6)2701,02>0, (19)
C1 C2

where | —n - L _—
Jar = nm i (X — X)) n= i (X — Xn)

(V2¢,)? (V2é,)* 7
with ¢, being the mle of ¢ given in (4) while C; and Cs are the asymptotic variances of \/nug
and /nug, respectively. Gel (2010) proved that under the Laplace distribution, then K follows
asymptotically a chi-square distribution with two degrees of freedom. Here the null hypothesis
of Laplace distribution is rejected if K > X%—a,z where X%—a,? is the upper a percentile of
the chi-square distribution with two degrees of freedom. The constants C; and C5 can be
obtained using the multivariate Taylor-expansions. However, as these calculations are rather
cumbersome, Gel (2010) recommended for small or moderate samples to use C7 = 60 and
Cy = 1200 or to approximate them based on functions given in p. 960 by Gel (2010). Also,
based on a Monte Carlo study by Gel (2010), the use of asymptotic critical values for small
to moderately large samples is not recommended. Instead the use of the empirical critical
values is recommended in which case the choice of C| and Cs does not play any role. In this
frame, taking into account that the null hypothesis of Laplace distribution is rejected for large
values of K - implying a right tailed test - the critical values are taken to be 100(1 — «)-th
percentiles of the empirical distribution of the respective test statistic. For more details on
the K tests as well as to individual tests based on /u; and us see Gel (2010).

and ug =

A ratio gof tests

Gonzélez-Estrada and Villasenor (2016) proposed two tests based on ratio of estimators for
the scale parameter of the Laplace distribution. To be more specific, the first test statistic
denoted by R, is defined as the ratio of the sample mean absolute deviation around the
sample mean to the moment estimator of ¢, while the second test denoted by R/n is defined
as the ratio of the sample mean absolute deviation around the sample mean to the mle of ¢,
ie.,

_ \/52;;1 [ Xi — X and R — Z?:l | Xi — Xa (20)

R, n )
n.Sy, Z?:l |Xi - 5n’
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where S2 is defined in (7) and 8, is the mle of § given in (3).

The idea behind the two tests is that under the null hypothesis of Laplace distribution the
test statistics are expected to take values close to one. Thus both test are two-tailed tests.
Gonzdlez-Estrada and Villasefior (2016) proved that under the hypothesis of Laplace distri-
bution v4n(R, — 1) follows asymptotically a standard normal distribution. Thus the null
hypothesis is rejected if |v4n(R, — 1)| > Za/2, Where 2,9 = @71 (1 —a/2), @71 (-) is the
quantile function of the N (0, 1) distribution. In the simulation study of the next section we
use the 100(a/2)-th and the 100(1 — a/2)-th percentiles of the empirical distribution of the
test statistics. For more details on R, and R;L tests see Gonzalez-Estrada and Villasenor
(2016).

Langholz and Kronmal test

Goodness-of-fit tests for the Laplace distribution can obtained as a special case of the class
of tests proposed by Langholz and Kronmal (1991). The key idea behind their method is
motivated by the fact that when the hypothesized distribution F' is completely specified then
X ~ F if and only if F(X) ~ U(0,1). Their approach compares then the estimated Fourier
coefficients to those of the U(0,1) density. For the special case of Laplace, their test statistic
based on the first Fourier coefficient in the density estimation procedure of Fellner (1974) can
be written in the following form

Ky = 2.26n (C? + §7) (21)

where

n n
C=n"t Z cos (27rZ£) and S =n~1 Z sin (27‘(‘2;)
=1 =1

are the estimated first trigonometric moments, with Z; = Fp (Xi;gn,én) Under the hy-

pothesis of Laplace, K follows asymptotically a chi-square distribution with two degrees of
freedom. Since the appropriate test is right-tailed we shall use in our simulation section the
empirical critical values being the 100(1 — «)-th percentiles of the empirical distribution. For
more details on the K test see Langholz and Kronmal (1991).

A modification of a test based on moment structure

A general and interesting method for testing a departure from a given parametric family of
distributions was proposed by Li and Papadopoulos (2002). Their idea is mainly simple as
it is based on some moment structure relation holding among the members of the respective
parametric family of distributions under the null hypothesis. Then based on such a relation, a
test statistic is proposed for testing departures from the relevant family. Li and Papadopoulos
(2002) demonstrated their approach for some common parametric families of distributions.
Among them is the Laplace family for which a test was proposed but was not studied in
details. In the sequel, we present a modification of such a test by requiring that it will be
affine invariant and study it in details.

If Fis CL(0,c) then it can be simply seen that
9(p1, 2, p3) = pg — 3pape + 243 = 0, for any & and c. (22)

This would imply that if the relation in (22) does not hold then the sample is not taken
from CL(d,c). The reverse statement is obviously incorrect as there might exist some other
distributions for which (22) holds. Such a test is termed in the literature (c.f. Fang, Zhu, and
Bentler 1993; Liang, Fang, and Hickernell 2008; Batsidis and Zografos 2013) as a 'necessary’
(but not sufficient). Necessary tests imply that small p-values (say, less than 5%) of the tests
indicate evidence for departure from the family of distributions under the null hypothesis

97



98 A Comparative Study of Goodness-of-Fit Tests for the Laplace Distribution

whereas larger p-values imply that no sufficient evidence is available for drawing any other
statistical conclusion.

Indeed, a necessary test based on (22) for testing Hy vs. H; was proposed by Li and Pa-
padopoulos (2002) and involved with the empirical estimator of g(ju1, pe, pu3). In the sequel,
however, we will modify their test by imposing the property of affine invariance - a desired
property for any goodness-of fit test for the Laplace distribution.

More specifically, the proposed test will be based on the transformed data Y, = (X; — 5n) /Cn
and an empirical estimator T;, of g(u1, p2, p3) based on them. The asymptotic distribution of
T}, is derived under the null hypothesis of Laplace in the following theorem.

Theorem 3.1. Let (X1, Xo, ..., X,,) be a random sample from CL(6,¢) and Y; = (Xi — 6p)/én,
1 =1,...,n, be the transformed data. Let

n n n n 3
n-lyu-al 3Ry ites(1300) )
=1 =1 =1 =1

where

X — 0p(X1, .., Xp)
(X1, Xp)

¥i— (24)
bon = Sn(Xl,...,Xn) and ¢, = ¢ép(X1,...,Xn) are the mle’s of the parameters § and c, re-
spectively. Then the statistic /nT,, converges in distribution, as n — oo, to the normal
distribution N (0,504).

The proof of the Theorem 3.1 is relegated to Appendix A. The results of Theorem 3.1 can
be used to construct a necessary test for testing the hypothesis of Laplace. Indeed by the
previous theorem it follows that if the null hypothesis Hy is true then it is also true that the
statistic Z, = \/z5; 1 is asymptotically N(0,1). Consequently, in view of Theorem 3.1, Hy
should be rejected at a significance level « if | Z,, |> z, /2, which implies departure from the
Laplace distribution. On the contrary, failing to reject the null hypothesis implies that no
sufficient information is available for drawing any statistical conclusion on the null hypothesis.

However in order to use the asymptotic critical values one should examine the convergence of
the percentiles of Z,, to those of the N(0,1) distribution subject to the assumption that the
data are stemming from a Laplace distribution. To achieve this, a total of { = 100.000 samples
of different sample sizes (n = 20, 30, 50, 60, 70, 100, 200, 500, 1000, 5000) were generated from
CL(0,1). Note that one can confine the study to the case of CL(0, 1) since the asymptotic
distribution of T}, is independent of the parameters § and ¢ and T}, is affine invariant. For
each sample, the value of Z, was computed. Then, based on all [ values of Z,,, Monte
Carlo percentiles were computed and compared with the theoretical limiting percentiles. The
simulation was carried out by using R (R Core Team 2020). The R code used is presented in
the Appendix B.

The results are displayed in Table 1. The last row of the table displays the corresponding
percentiles of the N(0,1) distribution. The results indicate a slow convergence of the critical
values to their limiting values. This suggests that the limiting critical values may not provide
a good approximation. Hence, for small and moderate sample sizes one can use a parametric
bootstrap for computing the p-values instead of using the asymptotic distribution. A Monte
Carlo study was carried out on the type I error rates in order to examine the performance of
the test based on these latter two options. The empirical type I error rates appear in Table
2. They are computed by the relation

Number of rejections
Number of replications

Empirical Type I error rate =

at significance levels o = 0.05 and 0.1.

From Table 2 it is clear that for small and moderate sample sizes the use of the parametric
bootstrap is recommended. This is not a disadvantage of the test since as Gel (2010) already
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Table 1: Simulated lower and upper critical values of Z,, indicated for a and n as shown and
100000 simulated samples from CL(0, 1)

a =001 a=0.05 a=01
n 7 Ze 7 Zu 7t 7t
20 | -2.49739 2.40483 | -1.35659 1.32971 | -0.95007 0.95038
30 | -2.75772 2.74174 | -1.50211 1.50553 | -1.08818 1.09160
50 | -2.96832 2.99391 | -1.65895 1.69383 | -1.22410 1.23730
60 | -2.98985 3.07540 | -1.71866 1.72124 | -1.27531 1.27553
70 | -3.07916 3.09744 | -1.76075 1.75607 | -1.30965 1.29881
100 | -3.06851 3.14049 | -1.82853 1.83216 | -1.37432 1.37556
200 | -3.03301 3.03401 | -1.89422 1.91534 | -1.46851 1.48683
500 | -2.91472 2.88816 | -1.94998 1.95911 | -1.56223 1.57465
1000 | -2.79985 2.83282 | -1.95724 1.97529 | -1.59362 1.60403
5000 | -2.64775 2.66607 | -1.96253 1.97677 | -1.63014 1.63365
N(0,1) | -2.57583 2.57583 | -1.95996 1.95996 | -1.64485 1.64485

Table 2: Simulated type I rate: percentage of samples with p-value smaller that a.. CL(0, 1),
number of simulated samples: 10,000, p-value: 1) asymptotic and 2) bootstrap p-value: num-
ber of bootstrap samples: 1000

a=0.01 a=0.05 a=0.1
n | asymptotic bootstrap | asymptotic bootstrap | asymptotic bootstrap
20 0.01 0.0116 0.0218 0.0508 0.0325 0.1002
30 0.0125 0.0096 0.0281 0.0533 0.0443 0.0998
50 0.0157 0.0093 0.0307 0.0482 0.0502 0.0944
60 0.0172 0.0095 0.0363 0.0494 0.0555 0.101
70 0.0155 0.0081 0.0346 0.0467 0.0578 0.0947
100 0.0185 0.01 0.0417 0.0521 0.0695 0.1024
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pointed out critical values of other available tests detecting departures from the Laplace
distribution can be obtained either from special tables or from a Monte Carlo study.

The R function for the proposed goodness-of-fit test with options for bootstrap p-value and
p-value based on the asymptotic standard normal distribution is displayed in Appendix B. In
the simulation study of the next section as well as in practice someone can utilize - taking
into account that the test based on Z, is a two-tailed - the 100(«/2)-th and 100(1 — a/2)-th
percentiles of the empirical distribution of the test statistic.

3.4. Entropy and divergence based tests

Entropy and divergence based tests are widely common for testing departures from a hypoth-
esized distribution. In this section some existing tests are briefly presented.

Mazimum entropy test

Choi and Kim (2006) presented three goodness-of-fit tests for the Laplace distribution based
on its maximum entropy characterization result. However, based on a Monte Carlo study
they recommended the use of only one of these tests. Accordingly we briefly discuss in the
sequel only this recommended test.

Let X be a r.v. with density function fx(z). The Shannon’s entropy (see Shannon (1948))
of X is defined by H(fx) = E (—log(fx(x))). Choi and Kim (2006) proved that under the
restriction that FE|X| = ¢ the distribution of X maximizing the Shannon’s entropy is the
CL(0,c¢) and its entropy is H(fx). Utilizing this maximum entropy characterization result,
Choi and Kim (2006) proposed a test statistic for testing departures from the Laplace distribu-
tion based on an estimation of the entropy difference between the data-generating distribution
and the hypothetical distribution. In this frame, a parametric procedure for estimating the
entropy of the hypothetical distribution and a nonparametric one for estimating the entropy of
the data-generating distribution were used. Following this estimation procedure, the entropy
based gof test statistic is given by

Ty o= ZrZén {ﬁ ( Jiem) — V(z‘—m)) } ; (25)

where m, denoting the window size, is a positive integer smaller than n/2 while ‘7(i_m) = ‘7(1)
for i < m and XA/(Hm) = ‘7(n) for i > n —m. According to Choi and Kim (2006), m is selected
in advance and its optimal choice corresponding to a given sample size n was studied for
various sample sizes up to 100. In Table 4 by Choi and Kim (2006) the results of this study is
given for n < 50, while the rest of the results are available upon request from the authors. In
the simulation study the values m = 3 for n = 20, m = 6 for n = 50 and m = 13 for n = 100
were used.

Based on the asymptotic results obtained by Choi and Kim (2006) the null hypothesis of
Laplace is rejected when the test statistic is less than the corresponding critical value at a
designated significance level « (left-tailed). T),f’n is approximately normally distributed under
the null hypothesis. Its asymptotic variance however is not easy to be derived. Consequently,
we use the empirical critical values which are the 100a-th percentiles of the empirical distri-
bution. For more details on the T%’n tests and a table of critical values for selected values of
m and n see Choi and Kim (2006).

Energy distance test

The idea behind the class of energy distance goodness-of-fit test is based on the following
characterization of equality of distributions: if X; and Y; are independent random variables
such that £ | X; |[< oo and E | Y] |< oo, with cumulative distribution functions F; and G,
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respectively then
D*(Fy,Gh) =2E | X1 = V1| = [ X1 = X; | = [ V1= Y[ [>0

with equality to zero if and only if X; and Y7 are identically distributed, where X 1 and Yll
are i.i.d. copies of the random variable X; and Y7, respectively; that is, X; and X 1 are i.i.d.,
and Y7 and Yll are i.i.d. Note that energy distance between the distributions F; and G; is
defined to be the square root of D?(Fy,Gy).

As pointed out by Rizzo and Szekely (2016), energy distance is a metric that measures the
distance between the distributions of random variables or vectors and is zero if and only if
the distributions are identical. Thus energy distance characterizes equality of distributions
and provides a theoretical foundation for statistical inference and goodness-of-fit tests. For a
review and implementation of the energy goodness-of-fit test we refer to Rizzo and Szekely
(2016).

In the frame of goodness-of-fit test the distributions to be compared are the hypothesized
distribution given in the null hypothesis and the sample distribution. Rizzo and Haman (2016)
presented the results related with the expected distance of a random variable X which follows
asymmetric Laplace distribution from an arbitrary point and with the expected distance
E|X-X ' | when X and X " are independent and identically asymmetric Laplace distributed.
Taking into account that symmetric Laplace distribution is a special case of the asymmetric
one and the previous mentioned results, the test statistic proposed by Rizzo and Haman
(2016) is given by the following relation:

n

B, — 223 (y Vi | +exp (— Y; y)) 150 — %Z(% —1— )Y, (26)
=1

k=1

where Y;, i = 1,...,n were defined in Section 2. The null hypothesis of Laplace distribution
is rejected for large values of E,,- implying a right tailed test- the critical values are taken to
be the 100(1 — a)-th percentiles of the empirical distribution of E,,.

Alizadeh Noughabi and Balakrishnan tests

Divergence measures are indices of similarity or dissimilarity between populations and are used
for the development of statistical methods in order to formulate and solve a great variety of
statistical problems (see the monograph by Pardo (2006)). One of the widely used and studied
divergence measure which includes many others as special cases is the family of divergence
measures which is known as ¢-divergence and were defined simultaneously by Csiszar (1963)
and Ali and Silvey (1966). Let P and @ denote two probability measures over a measurable
space M such that P is absolutely continuous with respect to @, then the ¢-divergence is
defined as

DP.Q) = [ <Zg) aQ (27)

where ¢ : [0, +00) — (—00, 00) is a convex and continuous function such that ¢(1) = ¢/(1) =0,
Ogb(%) =0 and 0¢(%) = plimy ;o0 @ Well-known divergence measures are constructed by
suitable choices of ¢. For instance the Kullback-Leibler (Kullback and Leibler (1951)) is
obtained when ¢(t) = tlog(t). Notice that for all probability measures Dy(P, Q) > 0, while
Dy(P,Q)=0if P = Q.

As a consequence of this last property, a goodness-of-fit test can be constructed based on an
estimate of the ¢-divergence between the true density of the observations X7,...,X,, and the hy-
pothesized distribution under the null hypothesis. Based on this idea Alizadeh Noughabi and
Balakrishnan (2016) introduced a general goodness-of-fit test based on an estimate through
kernel density estimation of this divergence. In their study Alizadeh Noughabi and Balakr-
ishnan (2016) considered five different choices for the function ¢ function and applied them
to the goodness-of-fit test for the normal, exponential, uniform and Laplace distributions.
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Based on a Monte Carlo study Alizadeh Noughabi and Balakrishnan (2016) concluded that
for the Laplace distribution, the test based on Kullback-Leibler divergence performs quite well
as compared to the EDF tests and the other four tests proposed by them by using different
member of the ¢-divergence. For this reason, we only consider this test in our simulation
study which is defined as follows:

Xi)
= S ({5 ) )

where fo(2; 0, ¢) is the p.d.f. of the classical Laplace distribution CL(J, ¢) given in (1), while f is
a kernel density estimator of the unknown true density. Alizadeh Noughabi and Balakrishnan
(2016) proposed (see p. 414) to use the following kernel density estimator

. 1 n X — X
I = St oen 17 ;f <1.06Snn1/5> (29)

where S, denotes the sample standard deviation which is obtained from relation (7), while f
is the p.d.f. of the standard normal distribution. The null hypothesis of Laplace distribution
is rejected for large values of Tk - implying a right tailed test- the critical values are taken to
be the 100(1 — «)-th percentiles of the empirical distribution of Tk . For more details about
this class of tests we refer to Alizadeh Noughabi and Balakrishnan (2016), while for more
details about ¢-divergence measures see Pardo (2006).

Alizadeh Noughabi test

Let Xj,...,X,, be a sample of size n from a population with unknown true density say g(z)
and suppose that we interest to test the null hypothesis Hy : g(z) = f(x;80), for some 6§ € ©
with f(z;0) the p.d.f. of a parametric family of distributions. Then, as mentioned in the
previous subsection, a goodness-of-fit test can be constructed based on an estimator of a
divergence measure between g(x) and f(z;6). Motivated by this idea, Alizadeh Noughabi
(2019) proposed recently a general statistic for the goodness-of-fit test of statistical distribu-
tion which is constructed based on an estimate of Kullback-Leibler divergence. Recall that
Kullback-Leibler is a special case of the ¢ divergence given in (27) with ¢(t) = tlogt. Thus
the Kullback-Leibler between g(z) and f(x;#) is given by:

Dicsla ) = [ ate)toe (150 ) ds (30)

=E, (log (X)) — Ey (log f(X;0))
= — H(gx) — Ey (log f(X;0))

where H(gx) is Shannon’s entropy. In this frame, Alizadeh Noughabi (2019) proposed to
estimate the entropy term by Vasicek’s estimate and the term E, (log f(X;0)) by a semi-
parametric estimate. In this frame the proposed test statistic for testing departures from
Laplace distribution is the following:

=—-= Zlog ( Z(H_m) Zi- m))) (31)

where m denoting the window size is a positive integer smaller than n/2, while Z(;_,,) = Z(1)
for i <m and Z(j 1) = Z(,) for i > n —m. Alizadeh Noughabi (2019) mentioned that the
optimal choice of m equals 4 for n = 10, m = 7 for n = 20, m = 15 for n = 100 and that
it increases with n while the ration m/n tends to zero. In our simulation study the value
m = 10 for n = 50 was also used. The null hypothesis of Laplace distribution is rejected
for large values of DA- implying a right tailed test- the critical values are taken to be the
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100(1 — a)-th percentiles of the empirical distribution of DA. For more details about this test
we refer to Alizadeh Noughabi (2019).

Alizadeh Noughabi and Park tests

Alizadeh Noughabi and Park (2016) proposed several test statistics for testing departures
from the Laplace distribution. Their idea is also motivated by the Kullback-Leibler diver-
gence between the unknown true density g(z) and the hypothesized density under the null
hypothesis, i.e. the density of the Laplace distribution. From relation (30) it is easily obtained
that in the case of Laplace distribution

Drr(g, fo) = —H(gx) +log(2¢) Ey (| X =4 ). (32)

In this frame, Alizadeh Noughabi and Park (2016) proposed to use the minimum discriminant
information loss estimator for the unknown parameters instead of the maximum likelihood
(see Alizadeh Noughabi and Park (2016) for further details). On the other hand since the
problem of estimation of H(gx) has been considered by several authors, Alizadeh Noughabi
and Park (2016) obtained five different test statistics based on five different estimators of
Shannon’s entropy and the moments of nonparametric distribution functions of the afore-
mentioned estimators. Based on a Monte Carlo study Alizadeh Noughabi and Park (2016)
concluded that the statistic which uses the Vasicek entropy estimator and the minimum dis-
criminant information loss estimator has a good performance against symmetric alternatives
and better performance against asymmetric alternatives. According we only consider this last
test in our simulation study which is defined as follows:

TVin = log(2¢,) + 1 — HV (33)
where

Zlog ( (Xirm) — X(z‘—m>)) ) (34)

where m denoting the window size is a positive integer smaller than n/2, while ¢, is defined
(see Lemma 3 in Alizadeh Noughabi and Park (2016))

Z"/Q €z+£z+l +1 ZZ /241 51"'5”‘1 if n is even

1 n— 1 )/2 §1+fl+1 Ent1)/241 (1) /2
&y = 1y + In + : (35)

1 §i+&i . .
n Z?:(n+1)/2+1 5 if n is odd

where
X(z—m) +...+ X(i+m—1)

2m

& = (36)

with X;_,,) = X(q) for i < m and X(;4,n) = X() for i@ > n — m. The proposed values of
m for different values of sample size n are given in Table 6 by Alizadeh Noughabi and Park
(2016). In our simulation study the values m = 4 for n = 20, m = 6 for n = 50 and m = 8
for n = 100 were used. The null hypothesis of Laplace distribution is rejected for large values
of TV,un- implying a right tailed test- the critical values are taken to be the 100(1 — «)-th
percentiles of the empirical distribution of T'V,,,. For more details about this class of tests
we refer to Alizadeh Noughabi and Park (2016).

3.5. Other tests

In this section a goodness-of fit test for the Laplace distribution which cannot be classified in
either one of the previous classes is briefly presented.
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Gulati test

It is well known that if X ~ CL(d,c) then Y = |X — §| ~ Exp(c) where Exp(c) stands for
the exponential distribution with mean c. Based on this property Gulati (2011) proposed
a goodness-of fit test for the Laplace distribution based on the regression test of Brain and
Shapiro (1983) for exponentiality. In this frame, let

Wi=(n—i+1) (O = Oin) i =1,0m, (37)
with U(O) = 0 and U(i), i = 1,...,n as defined in Section 2. Also let [; = E%L:I W]:, for
. > 5=1 W
i=1,..,n—1and ! = Z;'L:jl i Then the test statistic proposed by Gulati (2011) is defined
by
Z=7}+73 (38)
where
n—1 .
- 5(n—1) - il;
Z1=+/12(n—1)({ — 0.5 dZy =4/ —m—m—"— —24+6nl—12 .
! (n = 1) ) and Z; (n+1)(n—2) (n on ;n—1>

Based on Gulati (2011) under the null hypothesis this test statistic is asymptotically a chi-
square variate with 2 degrees of freedom so that the null hypothesis is rejected if Z > x?_ a2
Based on a Monte Carlo study Gulati (2011) concluded that the empirical percentiles were
fairly close to the theoretical percentiles of the chi-square distribution. Since the test is right-
tailed we use in our simulation section the empirical critical values which are the 100(1 — a)-th
percentiles of the empirical distribution. For more details on Z test see Gulati (2011).

4. Monte Carlo study

Our purpose is to present a detailed comparison of the existing procedures for departure from
the Laplace distribution. To assess the performance of the above tests we apply them to alter-
natives distributions (symmetric and asymmetric) which were previously considered in other
studies of testing departures from the Laplace distribution (c.f. Puig and Stephens 2000b;
Best et al. 2008; Gonzalez-Estrada and Villasenior 2016). In this context, the performance of
the power of all the tests is investigated using Monte Carlo simulations by generating samples
for the following alternatives:

e Symmetric alternatives: normal N (0, 1), Logistic L(0,0.551), Cauchy, Uniform (—1.732,
1.732), Beta(2,2), t with 10,6 and 3 degrees of freedom (d.f.’s), Tukey, contaminated
normal C'N3 202 and C'N3 5.1, two special cases of the normal inverse Gaussian (NIG)
distribution denoted by NIG; and NIG2 by Gel (2010), i.e., these are NIG distribu-
tions with common skewness and location parameters 0 and 1, respectively, but with a
combination of shape and scale parameters (0.4,0.6) and (0.7,0.2), respectively.

e Asymmetric alternatives: Exp(1), Gamma(2,1), standard Gumbel, skew-normal with
slant parameter 3, skew-t with slant parameter 3 and 10 d.f., Log-Normal, Weibull
(2,1), Weibull (3,1), x? with 2 degrees of freedom (d.f.’s), Extreme Value (0, 1), Inverse
Gaussian IG(4), two special cases of Normal Inverse Gaussian distribution denoted by
NIGs3 and NIG4 by Gel (2010), i.e., NIG distributions with common location parameter
1, but with a combination of shape, skewness and scale parameters (1,0.5,0.43) and
(0.5,0.2,0.5), respectively.

Only the exact simulated critical values are utilized for the power analysis in order to ensure
that the correct size of the test is preserved. For this purpose we initially use the many.crit
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function of the PoweR package (see Lafaye de Micheaux and Tran (2016)) for the determination
of the critical values based on [ = 100,000 samples from CL(0,1). Then by employing the
function powcomp.fast of the PoweR package (see Lafaye de Micheaux and Tran (2016)), the
empirical power of the tests are obtained by using the above set of critical values. Note that
for implementing the existing gof tests for the Laplace distribution we have used the functions
of the PoweR package with the exception for the K test by Gel (2010), the two tests R,, and
R/n proposed by Gonzélez-Estrada and Villasenor (2016), the modified test based on moment
structure studied in this paper in details and the tests presented in the subsection 3.4, i.e.
the entropy and divergence based tests, denoted by Tn‘;n, E,, Tk, DA and TV,,,, proposed
by Choi and Kim (2006) Rizzo and Haman (2016), Alizadeh Noughabi and Balakrishnan
(2016), Alizadeh Noughabi (2019) and Alizadeh Noughabi and Park (2016), respectively.
The empirical power is then obtained by calculating the proportion of times in { = 100, 000
Monte Carlo simulations for which the false null hypothesis is rejected. For all of the latter
we take into account the specified significance level for which [ = 100,000 samples of size n
(n = 20,50, 100) are simulated from the previous distributions. A relevant R code is presented
in the Appendix.

Based on the results given in Tables 3 and 4 we conclude the following;:

a) For symmetric alternatives it is observed that R,, and R;l proposed by Gonzalez-Estrada
and Villasenior (2016) produce similar results, while R,, outperforms R/n in the majority
of the asymmetric alternatives. Accordingly, the rest of the conclusions is restricted to
R, only. Despite the fact that the R,, test is very simple and is based on a ratio of two
estimators for the scale parameter of the Laplace distribution, it is found to be rather
competitive for the symmetric alternatives.

b) Between the five e.d.f. gof tests, i.e., W2, U2 A% /nD and V, the Watson (U?) is
found to be the best versus symmetric alternatives. For non-symmetric alternatives
the Anderson-Darling (A2) is found to be the best (in 10 out 14 alternatives), though
the U? is rather good and the best for 4 out 14 non-symmetric alternatives. These
conclusions coincide with that reached by Puig and Stephens (2000a) and with that by
Choi and Kim (2006) based on simulation studies with lesser alternatives distributions
and simulation runs. Consequently, for the rest of our conclusions, the U? and A? are
reported, respectively, for symmetric and asymmetric alternatives.

¢) When comparing the e.c.f. tests proposed by Meintanis (2005) it is concluded that for
the symmetric alternatives considered with population kurtosis less or equal to 6, i.e., for
the alternatives U (0, 1), Tukey (0.5), Beta(2,2), Normal, t with 10 d.f., Logistic, t with

6 d.f., T 7(1,26?\54” has the best power. On the other hand for the symmetric alternatives
considered with population kurtosis greater than 6 (see CN320.2, CN350.1, NIG; and
N1IG59) or with undefined or non finite population kurtosis (see Cauchy and t with 3 d.f.),

it seems that T7(ll2’MO) is a good choice among them. Finally, the M O-based tests are

slightly more pox;verful for all asymmetric alternatives considered with the exception of

the Weibull. The performance of TT(:Q’MO) and T, 75,26%0) is almost similar. Consequently,

75,26{\5@) for symmetric alternatives with population
kurtosis less or equal to 6 and to T 7512’MO)

we restrict the rest of the analysis to T’

for any other alternatives.

d) When comparing for symmetric alternatives the performance of e.c.f. based test pre-
viously recommended with the Watson e.d.f. test, we conclude that e.c.f. based tests
outperforms U? (with the exception when testing against the Cauchy and the contam-
inated normal distributions). For asymmetric alternatives, the performance of T,EléMO)
is better in almost all cases than the Anderson Darling test. Thus in a manner similar
to that in Meintanis (2005) we conclude that for the majority of the cases considered

the e.c.f. based tests either outperform or remain competitive with the best e.d.f. test.
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Table 3: Empirical power multiplied by 100 of goodness of fit tests based on empirical critical values, when [ = 100.000 samples of size n (n = 20, 50, 100)

were simulated from several symmetric distributions (o = 0.05). In bold are marked the highest powers per distribution and per sample size.

Goodness-of-fit tests

Alternative no W2 U? A2 /D v MO pME e pGNO) p By E. Txr DA TV, 7 K Vs Vi K R, R, Zn
CL(0,1) 20 4976 5011 4917 4848 4944 4788 4857 48 4961 4.927 4895 4817 487 4861 4954 4885 5006 487 504 4898 4961 5.044
50 480 5.024 5002 4811 513 4946 5066  4.806 5077 4955 4975 4891 4863 4799 4862 4979 5155 504 5177 5046 5125 5181
100 5082 5132 5053 5024 5043 5013 523 5012 5176 5046 5004 5036 5219 5065 4.994 4879 4874 5083 4987 5019 5054 4.874
N(0,1) 20 7.622 10820 6.682 8.628 10415 10918  13.87 12057 15261 18.041 6539 19.358 15.585 10.221 7.904 8.941 0.119 15.171 0.075 15566 16.358  0.08
50 17.018 33.621 14.819 19.132 20.396  30.678 35753 32260 38315 45567 13.777 40.175 38409 52.305 30.586 29.48  0.013 42.943 0.001 51017 52345  0.004
100 40.285 69.48 35738 37.62 60.398 65750 68368  66.632 70.805 73.781 33.149 70426 62982 86.669 7273 67.348 0.001 76.054 0.001 88.12 88.776  0.001
Logistic(0,0.551) 20 6.000 7.080 535 6392 698  7.025 89 7591 9206 11.052 5229 12.238 9859 749 5444 5639 145 8455  1.09 8726 9.078 1117
50 991 17177 8542 11566 15.632 14.499 18311 15322  19.074 20.101 8.063 20.901 16.654 26.339 13.597 12509 1.123 15.997 0.645 21.968 22.709  0.737
100 1859 36379 14.934 20.274 31.521  30.008 35592  30.923 36.388 29.245 13.409 35.619 22.920 47.666 32.704 27.238 0.909 26.104 0.399 43.249 44.304 0.501
Cauchy 20 53788  62.97 55.673 50.920 60.794 60.549 55822 58.896 55312 36.159 55.161 2106 46.148 45448 67.574 63.12 58.383 53.224 68.132 60.692 66.52 64.835
50 86.019 91.989 87.063 82.893 90416 92.206 88.893  91.881  88.787 59.685 86.673 8.971 87.726 64.905 94.659 93.077 78.248 84232 93.61 93.566 94.543 87.434
100 98.62 99482 98.727 97.631 99.233 99551  99.1  99.536  99.087 58.873 98.655 30.469 99.373 89.356 99.772 99.632 87.303 97.366 99.536 99.712 99.758 95.538
U(-1.732,1.732) 20 25.130 44.426 24.62 24.135 36.752 48866 58.004 52.033 63.118 76.555 24.405 70.458 71.655 49.544 31.454 40.708 0 71056 0.001 60.448 58877 0.001
50 76.331 94.504 81511 62.012 87.966 96.289 97.808  96.406  98.407 99.988 S81.801 99.462 99.924 99.777 94.702 93.521 0 99.892 0 99.36 99.225 0
100 99.483  99.99 99.880  93.87 99.849  99.996  99.998  99.995 99.999 100 99.92 100 100 100 99.991 99.978 0 100 0 100 100 0
Beta(2,2) 20 13.074 23.292 12.097 14.766 20.498 246 31033 27.200 35444 43.288 11.899 43.156 38.550 23.038 16.977 21.175 0 42333 0 37.079 37.557 0
50 42.297 71.624 42464 38.527 6.9 72535  77.686  73.967 81550 96.229 41.24 87.773 92763 93.842 7T.A78 71755 0 96.624 0 92751 92947 0
100 86473 98.217 89.446 72.287 94.348  98.636  98.859 9851  99.160 99.999  89.27 99.83 99.971 99.99  99.7 98.527 0 99.999 0 99976  99.98 0
t(df=3) 20 6539 7.922 6.909 6.723 7.681 8095  6.706 8  6.641 7054 6968 7.871 8712 915 10614 8462 12.907 12.229 12.801 11506 1212  12.66
50 7.745 10.608 8546 7.932 9.947 1176 8935 11484 8236 6.136  8.66 18508 13.418 10.246 16.204 12.378 21.506 19.723 22.024 18.849 19.132 21.316
100 9147 1431 10169 9426 13.103 159 11789 15128 10229 3.395 10.341 33.382 20144 10.215 25515 15935 20.226 28.551 32451 25994 26.222 29.603
t(df=6) 20 5892 6915 533 6282 672 6823  8.381 723 8.687 10351 5211 11574 0418 7.578 5789 50646 3.137 8801 2593 8755 9.257  2.657
50  9.088 15.355 7.965 10499 14142 1285 16.607 13423 16979 16.808 7.522 20.579 14.931 23.394 12.285 10.85 4.086 14572 3.013 18722 19495  3.236
100 16367 31.683 13.072 17.926 27.382 24.806 31548 25.588 3201 21.348 11.819 3508 19.388 39.925 27.664 21151 4765 20.608 3.384 33.105 34.068 3.653
t(df=10) 20 6415 8164 5.607 6983 7.972 8029 10.137 860 10.882 1279 5571 14.041 1129 8088 6.154 64 1.113 10.131 0795 10535 11.227 0.817
50 11.926 21.615 10.15 13.827 10417 18757 23.282  10.814 24479 25.823 9.499 26.338 21.619 33.506 17.623 1661 0.987 21.694 0528 29.23 30.173  0.61
100 24.21 46.713 19.805 25.206 40.311  40.155 45992  41.279  47.687 38.954 17.971 46.382 32228 60.292 43.876 37.83 0.919 36.654 0437 56.597 57.756  0.525
Tukey(0.5) 20 1442 25.981 13.524 16.075 22.705 27.735 34.698 30581 39.420 48.397 13.292 47.496 43355 26.241 18.714 23.844 0 47.123 0 40.798 41.203 0
50 47.155 76.559 48.179 42.077 66.668 78.007 82786  79.120  86.075 97.932 46.995 91452 95.67 95.962 81.953 76.536 0 98.043 0 94724 94.879 0
100 90427 99.023 93.381 76.787 96.176  99.343 99474  99.260  99.622 100 93414  99.95 99.994 99.998 99.855 99.174 0 99.998 0 99.986 99.986 0
CNsso1 20 6537 8376 6.585 6.982 7.081 8192 8424 8398 8403 0991 6.627 13517 11.056 10.889 10.763 7.916 14.635 15.28 13574 13.39 14.173 13.473
50  8.955 14.165 9.112  9.597 12.964 12.085 15.235 12.012 14.365 9.866  9.048 33.715 15.457 18.49 18.379 10.154 22.507 21.314 22.312 19.597 19.963 20.773
100 13.296 24.545 13.866 13.48 21.182 17.29 27.929 16.449 25.707  4.748 13.829 58.884 20.353 21.669 32.97 11.144 26.223 25.269 30.301 21.631 21.898 25.164
CN3202 20 5937 7.007 6.134 6.138 6794  6.654 6412  6.601 6201 6.712 6.159 8701 7.759 8.982 8749 6.617 11.993 9594 11521 9.198 0.649 11.328
50 7147 9.674 7.684 7579 9.067 8323  9.566  8.083 8217 4844 7.734 18728 742 8563 13.674 7.325 14004 9.102 14.803 11.082 11.235 13.784
100 888 1458 9.938 9396 13.315 10.859  15.55 10.013 12.393 1.765 10.098 33.388 0.463 7.109 25.652 7.669 13.763 8775 17.424 12.808 1291 14.362
NIG, 20 8164 11459 9.354 8402 10721 11185 8135 10569  8.158 5.128 0427 4.768 7.754 9.476 15578 13.051 17.807 13.22 19.716 14.395 15.784 19.089
50 10.273 17.085 12.234 10.708 15456 18859 12311 18312 12467 2761 12413 11531 13.334 3424 26772 21.614 25981 21.115 32.988 27.418 28323 20.517
100 14.993 27.048 17.709 15464 23.686  30.904 20.125  30.372 20480 0.697 17.973 23.786  20.68 1489 43.677 34185 31.369 31.128 47.131 44.386 44.993 37.288
NIG, 20 12.684 10.265 1442 12.398 17.816 18221 13517 17.109 13505  6.11 14.477 404 10.718 12.574 24874 21.107 25.263 10.059 2918 22213 24572 27.836
50 21.098 34.879 24121 20313 3131 36557 26.835  35.67 26988  3.980 23.967 13.647 25.971 4.296 46.963 40.367 36.907 32.912 50.52 46.43 47.926 43.663
100 36.941 56.849 40.635 33.973 51.252  60.697 47.256  60.222  47.757 0.676 40.472 35.899 57.011 3.309 72.374 G64.187 44.499 49.991 70.561 72213 73.115 54.716
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For all the alternatives considered FE,, has less power than the respective of the e.d.f.
and e.c.f. based tests previously recommended. Thus this test cannot be recommended.
Accordingly the rest of the conclusions is restricted to the rest of the tests belonging to
the class of entropy and divergence based tests.

When comparing the rest of the entropy and divergence based tests with the e.d.f. and
e.c.f. tests previously recommended it is concluded that for symmetric alternatives
T,‘,;n performs better than them under symmetric alternatives with population kurtosis
less than or equal to 6. For this type of alternatives Tk, DA and TV,,, behave
also similar in almost all cases in comparison with the recommended e.d.f and e.c.f.
tests. It seems that for such alternatives T'V,,, and T%)n stand out as the best ones,
for moderate and large sample sizes, i.e. for n = 50,100, while for n = 20 T,‘,f’n and
Tk are good choices among the entropy and divergence based tests. For the rest of
the symmetric alternatives we have that the entropy and divergence based tests have
less power than the respective of the e.d.f. and e.c.f. previously recommended for the
NIG1, NIGy and Cauchy distributions, with DA being the best among them. On
the other hand Tk outperforms the e.d.f. and e.c.f. tests previously recommended
for contaminated normal and t with 3 d.f. Moreover, for asymmetric alternatives the
entropy and divergence based tests have in almost all cases better performance than
the recommended e.c.f. and e.d.f. tests with the exception of the NIG distributions.
Note that for such alternatives these tests, namely T,‘,f’n, Tkr, TV, and DA, have the
better performance among the tests considered. Specifically, for asymmetric alternatives
with the exception of NIG distributions, T'V,,, is recommended for moderate and large
sample sizes for, while DA is recommended for n = 20.

However at this point we have to note that there are two points that make the use of the
four previously mentioned entropy and divergence based tests difficult or even impossible
in some cases in practical applications. The first point is related to the fact that Tn‘;n,
DA and TV,,, depend on the optimal choice of window sizes m. These choices are
available for the T'V,,,, for several sample sizes in Table 6 by Alizadeh Noughabi and Park
(2016), while for the other two tests are available for specific choices of n. Nonetheless,
this problem can be tackled by noticing, based on the available information, that for
T,‘,;n it seems that the optimal choice of m is about 13% — 15% of the size of n. On the
other hand, DA was constructed based on specific choice of kernel density estimator.
The second point is that for instance Tn‘in is based on the geometric mean of a suitable
transformation of the data which involves differences related to their median, while
the rest of the tests involve the logarithm of some differences. As a result, whenever
we tackle with data points having identical numerical values with that of the median
or with differences which are equal to zero, the tests cannot be executed and are not
recommended. Note that such a situation is not rare in real data sets due to the rounding
up to a certain number of decimal points.

As previously noted, the main idea behind the Z, test is that for the Laplace distribu-
tion the third central moment equals zero which implies that the population skewness
is also zero. This means that its difference with the test based on sample skewness
proposed by Rayner and Best (1989), denoted by V3, is that only the numerator is used
and this does not estimate the standard deviation as V3 does. The Z,, test has similar or
superior performance against some symmetrical distributions (Cauchy, NIG;, i = 1,2
distributions) since estimating the standard deviation in such cases add an extra layer
of doubt in the estimation. On the other hand the Z,, test has inferior or similar perfor-
mance for non symmetric alternatives since the presence of an estimator of the standard
deviation allows the existence of a skewed distribution to be more easily spotted.

The K test by Gel (2010) which is based on a combination of the sample skewness
and kurtosis; the smooth V3 test by Rayner and Best (1989) which is related to sample
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skewness; and the modified moment based gof Z,, test do not perform well and are not
competitive under symmetric alternatives with population kurtosis less than or equal to
6. On the other hand these tests are competitive for symmetric alternatives such as the
Cauchy, t with 3 d.f.’s, NIG1, NIG5 and contaminated normal distributions, where in
some cases they attain the maximum power. Note also that these tests outperforms the
popular edf tests for t with 3 d.f.’s, contaminated normal and normal inverse Gaussian
distributions. Furthermore, they do not perform well and are not competitive in com-
parison with the popular edf tests under the asymmetric alternative distributions that
are considered (with the exception of the asymmetric normal inverse Gaussian distribu-
tion). For the latter alternative distribution their performance is found to be the best
among all tests considered and thus is recommended for possible applications. Note
that for the asymmetric alternatives considered, V3 is better than Z, which is better
than K with the exception of the NIG, distribution.

i) Based on the results given in Table 3, we note that for symmetric alternatives, with
the exception of uniform distribution, the Z test by Gulati (2011) outperforms the K;
test by Langholz and Kronmal (1991). However, based on the results of Table 4, the
situation is reversed in favor of the K test. Moreover, the smooth test V; by Rayner
and Best (1989) which is related to sample kurtosis is better than the Z and the K
tests for symmetric alternatives with the exception of the Cauchy and the two normal
inverse Gaussian distributions.

Based on the previous results and comments it is concluded that for the majority of the
considered asymmetric alternatives there is a power advantage in using the DA and TV,
tests, while for symmetric alternatives a single recommendation is not that clear, since, as
expected, there is no test that can detect all types of symmetric alternatives. There are several
tests including TV, Tk, T Vi, Z, V4 and K that present the highest power under different
alternatives. Although, it is for note, that T'V,,,, present a robust, acceptable behavior under
the symmetric alternatives used with tails not heavier than that of the standard Laplace
distribution. On the other hand, despite the fact that in general some tests, for instance the
Zy, or V3, are not useful for detecting several alternatives, they are quite competitive when
alternatives with tails heavier than that of the standard Laplace distribution as the Cauchy, t
with 3 d.f.’s, contaminated normals and normal inverse Gaussian distributions are considered.
These tests may not present the highest power but have a competitive behavior to that of
the tests with the highest power under such alternatives. The same holds for these two tests
and for asymmetric alternatives with heavy tailness of large degree. Finally, for symmetric
alternatives the simple R,, test could be also recommended.

5. Conclusions

The main contribution of the paper is linked to the fact that twenty two different goodness-of-
fit tests for the Laplace distribution, included a new one, have been compared with 27 possible
alternative distributions (symmetric and asymmetric). As has been initially expected there
is no test which outperforms the others in all cases. However if a particular alternative is
suspected like the ones mentioned in the simulation study of the previous section, one can
utilize the recommended test based on the conclusions of the simulation study. Moreover,
extremely practical and important R codes are provided in the appendix for implementing the
comparison study of the various tests for detecting a departure from the Laplace distribution
while taking into account a numerous alternative distributions.
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suggesting substantial improvements, such as the inclusion of some competitive tests.
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Appendices

Appendix A

Proof of Theorem 3.1. Consider T}, as a function of 6,, and expand it into a Taylor series
around the true value of § = (8, ¢)”, where T denotes the transpose of a vector or matrix. We
will obtain that

(39)

foThf(aT zrr)' hn0).

Oc <0n —0

n’

where 5
mznan”—%ZnZﬁH(nZn) : (40)
i=1 =1 =1 =1
Y, = M and 0% = ab,, + (1 — a)0, for some a € (0,1) (note that 67, LN 0).

We first determine the asymptotic joint distribution of — Z Y, — Z Y2 and — Z Y3 under

the hypothesis that X; ~ CL(d,¢), i =1,...,n, or equ1valently, that Y ~ CL(0, 1) i=1,.

From the multivariate Central Limit Theorem we easily obtain that under the null hypothe51s
of Laplace distribution

1 v0y
Vol YR Y2—2 | =5 N3 (03,%), (41)
w i Y =0

where 03 is a 3-dimensional column vector with zero elements and ¥ = (oyx)3x3 with oy, =
EY*! — EY'EY*. As under the null hypothesis EY"™ = 0 if 7 is odd and EY" = 7! if r is
even, we obtain that

2 0 24
Y= 0 20 O
24 0 720

In order to find the asymptotic distribution of 7,, we note that

1 — 1 < 1 &
—g(n;n,nzyg,n;n>,

=1

where g (x,y,2) = z — 3wy + 22% and g (x,y,2) = (a%g, 8%97 %g) = (—3y + 622, -3z, 1).
Then by the Cramér’s Theorem (see Theorem 7, p. 45, in Ferguson, 1996), we find that
under Hy

Vi (T = 9(0,2,0)) 2 N (0,02),

where

o =§(0,2,0)2g" (0,2,0).

As g(0,2,0) =0 and §(0,2,0) = (—6,0, 1) it follows that o> = 504. Therefore, under the null
hypothesis, the first term /n7,, in the right side of (39) converges in distribution to N (0, 504).

For the second term we first note that the quantity \/n (én — 0) is bounded in probability.

Then by evaluating the derivative of 7, given in (40) with respect to 6 at the point 6 = 07 it
follows that
OTn

a5~ °
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and
—=——YY+—)> V)Y Y —— ) Y
Oc nc3; +n2c; ; ! n3c; ¢
Since under the null hypothesis X; ~ CL(J, ¢) one obtains that
ITa(Y) p
00 - — 0asn — oo,

and thus the second term on the right side of (39) converges in probability to zero. This
completes the proof. O

Appendix B

Next the R code used to obtain the results appearing in the Tables is presented. Note that
the following versions of R packages were loaded during the preparation of the revised version
of the current paper:

e PoweR, version 1.0.7 published on August 28, 2018

e univariateML, version 1.1.0 published on August 5, 2020
e MuMIn, version 1.43.17 published on April 15, 2020

e psych, version 1.0.7 published on December 16, 2020

e skewt, version 0.1 published on October 10, 2012

e statmod, version 1.4.35 published on October 19, 2020

e teachingApps, version 1.0.8 published on May 13, 2020

e rmutil, version 1.1.5 published on June 9, 2020

Main function for
the proposed gof test

H $

1
2
3
4 # load the following packages
6 library (PoweR)

7 library (univariateML)
g library (MuMIn)

11 gofMomentsLaplace <— function (data, levels, boot){

12 # Arguments

data: a list of data points

levels: vector of significance levels for the test.
set levels=NA if only the value of the test
statistic is required

boot : number of bootstrap samples to generate
set boot=0 if only the asymptotic
distribution is to be used

16

Value — output

2 statistic: the value of the test statistic
3 pvalue: the asymptotic pvalue
pvalueboot : the bootstrap pvalue (NA if boot=0)
5 levels: vector of significance levels for the test.

decision_asymp: the vector of decisions based on the
asymptotic distribution same length as levels
1 if we reject the null, 0 otherwise

NN NN N NN

3

FH IR FFFFEREE

o
0
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#
#
31 #
#
33  # stat.pars:

34 # boot_crit:
35 #
#

decision_boot: the vector of decisions based on bootstrap

same length as levels

1 if we reject the null, 0 otherwise

NA if boot=0

A vector of the MLE of the Laplace parameters.
A vector of bootstrap critical values at

sort (c(levels ,levels/2,1—1levels/2,1—1levels))
NA if boot=0

38 n <— length(data)

10  mledata=mllaplace (data)

41 hatdelta=mledata[1]

42 hatc=mledata [2]

43 datatransf=stdize (data, center = hatdelta, scale = hatc)

45 mtr=mean(datatransf)
46 tn=mean(datatransf"3)—3% mtrxmean(datatransf”2)4+2%(mtr)"3
a7 zn=sqrt (n/504)*tn

19 pvalue=2%(1—pnorm(abs(zn) ,0,1))

decision_asymp <— as.numeric(pvalue<levels)

51
52 stat .pars = mledata

53

54 if (boot>0){

55 znboot=rep (0, boot)

56 countme<—0

57 for (kk in 1:boot){

58 datamc=gensample (law .index=1,n,law. pars=c(hatdelta , hatc))$sample
59 mledatamc=mllaplace (datamc)

60 hatdeltamc=mledatamc [1]
61 hatcmc=mledatamc [2]

62 datatransfmc=stdize (datamc, center = hatdeltamc, scale = hatcmc)
63 mtrmc=mean ( datatransfmec)

64 tnmc=mean ( datatransfmc ~3)—3+«mtrmc+mean(datatransfmc ~2)42% (mtrmc) "3
65 znboot [kk]=sqrt (n/504)«tnmc

66 if (abs(sqrt(n/504)*tnmc)>abs(zn)){countmc<—countmc+1}

69 pvalueboot=countmc/boot

telse{

SN

}

B TS BEES TN BN B S B |

decision_boot <— as.numeric(pvalueboot<levels)

pvalueboot=NA
decision _boot=NA

(c(levels ,levels/2,1—1levels /2, 1—1levels))
quantile (znboot , probs =quant)

7 if (boot>0){

8 quant=sort

9 boot_crit=

s0 telse{

81 boot_crit=NA

83

84 return (list (
levels ,

85

statistic = zn, pvalue = pvalue, pvalueboot=pvalueboot ,h levels=

decision _asymp = decision_asymp, decision_boot=decision_boot ,
.pars = stat.pars[1:2],boot_crit=boot_crit

L #

2

code for Table 1 #

3 # standard Laplace

1 law.index<—1

stat
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16

17

19
20
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mu<— 0
b<— 1

# simulation setup

nsim<—100000

nall<— ¢(20,30,50,60,70,100,200,500,1000,5000)

quant=c(c¢(0.005,0.025,0.05) ,sort(1—c(0.005,0.025,0.05)))

typel_crit<—matrix( rep( NA, (length(quant)+1)xlength(nall)), nrow = length (
nall))

nsimtotal=nsim=length (nall)

# setting progress bar
pb <— winProgressBar(title = "progress bar”, min = 1, max = nsimtotal , width =
500)

7 simrunning=0

for(jj in 1l:length(nall)){
crit <— rep(NA, length = nsim)

# set seed for reproducibility purposes
set .seed (0)

for (ii in 1:nsim){

n=nall[jj]

data=gensample (law . index=1,n,law.pars=c (mu,b))$sample

LapM<—gofMomentsLaplace (data, levels=NA, boot=0) #compute only the test
statistic

crit [ii]=LapM$statistic

simrunning=simrunning+1

setWinProgressBar (pb, simrunning, title=paste( round(simrunning/nsimtotalx
100, 4),”% done 7, n))

}

typel_crit [jj,]=c(n,quantile(crit ,probs =quant))

}

5 # calculating asymptotic critical values

typel_crit<—rbind (typel_crit ,c(NA,gnorm(quant)))

# Formating results to obtain Table 1

typel _crit_table<—cbind (typel_crit [,1],typel_crit[,2],typel_crit[,7],typel_crit
[,3],typel_crit[,6],typel_crit[,4],typel_crit[,5])

close (pb)

# code end for Table 1 #

# code for Table 2 #
law . index<—1

mu<— 0

b<— 1

nsim<—10000

nboot=1000

nall<— ¢(20,30,50,60,70,100)
alpha=c (0.01,0.05,0.1)

typel_boot<—matrix( rep( NA, (2xlength(alpha)+1)xlength(nall)), nrow = length
nall))

nsimtotal=nsim=length (nall)

pb <— winProgressBar(title = "progress bar”, min = 1, max = nsimtotal , width =
500)
simrunning=0
for(jj in 1l:length(nall)){
crit <— matrix(rep(NA, length = 2xnsim), nrow = nsim)

set .seed (0)

115
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N =

for (ii in 1l:nsim){
n=nall[jj]
data=gensample (law.index=1,n,law.pars=c (mu,b))$sample
LapM<—gofMomentsLaplace (data, levels=NA, boot=nboot ,return_boot_critical=0)
crit [ii ,]<—c(LapM$pvalue ,LapM$pvalueboot)
simrunning=simrunning+1
setWinProgressBar (pb, simrunning, title=paste( round(simrunning/nsimtotalx

100, 4),”% done 7, n))

SR

=~

NN NN NN N

oo

29 }

30  typel_boot[jj,]=c(n*nsim,sum(as.numeric(crit[,1]<alpha[l])),sum(as.numeric(
crit[,2] <alpha[1l])),sum(as.numeric(crit[,1]<alpha[2])),sum(as.numeric(crit
[,2] <alpha[2])) ,sum(as.numeric(crit[,1]<alpha[3])),sum(as.numeric(crit
[,2] <alpha[3])))/nsim

w

31
32 }

3 close (pb)

34 # code end for Table 2 #

w

# code for Tables 3 and 4 #

library ("psych”)
skewt )
statmod)
teachingApps)
PoweR)
univariateML)
rmutil)

1
2
3 # load the following packages

library
6 library
7 library
s library
o library
10 library
11

Py

12

13 # properly defined function for the proposed test

14 # in order to be used in many.crit and powcomp.fast

15 # commands of PowerR package

16 gofMomentsLaplace_PowerR <— function (data, levels ,usecrit=0,critvalL =0,
critvalR=0){

18 n <— length(data)

19 mledata=mllaplace (data)

20 hatdelta=mledata [1]

1 hatc=mledata [2]
datatransf=(data—hatdelta)/hatc

mtr=mean (datatransf)

tn=mean (datatransf”"3)—3% mtrxmean(datatransf”2)+2x(mtr)"3
26 zn=sqrt(n/504)«tn

2

28 pvalue=2%(1—pnorm(abs(zn) ,0,1))

30 decisions <— rep (0, length(levels))
31 for (i in 1:length(levels)) {

32 if (usecrit = 0) {

33 decisions[i] <— if (pvalue < levels[i]) 1 else 0

34 } else {

35 decisions [i] <— if (zn < critvalL[i] | zn > critvalR[i]) 1 else 0

36 }

37}

38 stat .pars = NULL

39 return(list (statistic = zn, pvalue = pvalue,decision= decisions, alter=0,stat
.pars = NULL, pvalcomp=1L,nbparstat=0))

43 # gofSlLaplace is the test $T_{m,n} " {V}$ proposed by Choi and Kim (2006)
14 gof51Laplace <— function (data, levels ,usecrit=0,critvalL=0,critvalR=0){
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n <— length (data)

muhat <— median(data)

tildaY _sorted <— sort (data—muhat)
thetahat <— mean(abs(data—muhat))

if (n==20){
m<—3

telse if (n==>50){
nK—6

telse if (n==100){
n<—13

}else{

n<—round (0.13%n) # set by noticing that the best m is close to the 0.13xn

}

newd<—rep (NA,n)
for (i in 1:n){
if (i<=m){
x<—tildaY _sorted [1]
telse{

x<—tildaY _sorted [i-m]

if (i>=n-m){
y<—tildaY _sorted [n]

}else{
y<—tildaY _sorted [ i-m]

newd [ i]<—y—x
}
GM <— geometric.mean(newd)
rnstar=n/(2+m+thetahat )+«GM
pvalue <—0
stat.pars = NULL
decisions <— rep (0, length(levels))
for (i in 1l:length(levels)) {

if (usecrit = 0) {
decisions[i] <— 0
} else {

decisions[i] <— if ( rnstar < critvalL[i]) 1 else 0

}

return(list (statistic = rnstar, pvalue = pvalue,decision= decisions, alter=4,
stat.pars = NULL, pvalcomp=0L,nbparstat=0))

}

# gof60Laplace is the test proposed by Gel (2010).
gof60Laplace <— function (data, levels ,usecrit=0,critvalL=0,critvalR=0){

n <— length (data)
mledata=mllaplace (data)

hatdelta=mledata [1]

hatc=mledata [2]
datanew3=(data—mean(data)) "3
datanewd=(data—mean(data)) "4
ulsqrt=mean(datanew3)/((sqrt (2)=*hatc) "3)
u2=mean (datanew4) /((sqrt (2)«hatc) "4)

c1=60
c2=1200

k=n/cl*(ulsqrt) 2+n/c2%(u2—6)"2
pvalue=l-pchisq(k,2)

decisions <— rep (0, length(levels))
for (i in 1l:length(levels)) {
if (usecrit = 0) {
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decisions [i] <— if (pvalue < levels[i]) 1 else 0

} else {

decisions[i] <— if (k > critvalR[i]) 1 else 0
}

}

stat.pars = NULL

return (list (statistic = k, pvalue = pvalue,decision= decisions, alter=3,stat.
pars = NULL, pvalcomp=I1L,nbparstat=0))

# gof91lLaplace is the 1st ratio test proposed by Gonzalez—Estrada and
Villasenor (2016)
gof91Laplace <— function (data, levels ,usecrit=0,critvalL=0,critvalR=0){

n <— length (data)
mledata=mllaplace (data)
hatdelta=mledata [1]
hatc=mledata [2]

samplevariance=(n—1)/n*xvar (data)
datanew=abs ((data—mean(data)))

bnrelation3=mean(datanew)
bnrelationunder=sqrt (samplevariance/2)
rnstar=sqrt (4+n)=*(bnrelationunder/bnrelation3 —1)

pvalue=2%(1—pnorm(abs(rnstar) ,0,1))

decisions <— rep (0, length(levels))
for (i in 1l:length(levels)) {
if (usecrit = 0) {
decisions[i] <— if (pvalue < levels[i]) 1 else 0

} else {

decisions[i] <— if (rnstar < critvalL[i] | rnstar > critvalR[i]) 1 else O
}

}

stat.pars = NULL

return(list (statistic = rnstar, pvalue = pvalue,decision= decisions, alter=0,
stat.pars = NULL, pvalcomp=1L,nbparstat=0))

# gof92Laplace is the 2nd ratio test proposed by Gonzalez—Estrada and
Villasenor (2016)
gof92Laplace <— function (data, levels ,usecrit=0,critvalL=0,critvalR=0){

n <— length (data)

mledata=mllaplace (data)
hatdelta=mledata [1]
hatc=mledata [2]

samplevariance=(n—1)/n*xvar (data)
bnrelationunder=sqrt (samplevariance/2)
rnstar=sqrt (4*n)=*(bnrelationunder/ hatc—1)

pvalue=2%(1—pnorm(abs(rnstar) ,0,1))

decisions <— rep (0, length(levels))
for (i in 1:length(levels)) {
if (usecrit = 0) {
decisions [i] <— if (pvalue < levels[i]) 1 else 0O

} else {
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173 decisions [i] <— if (rnstar < critvalL[i] | rnstar > critvalR[i]) 1 else O

174 }

75}

176 stat.pars = NULL

177 return(list (statistic = rnstar, pvalue = pvalue,decision= decisions, alter=0,
stat.pars = NULL, pvalcomp=1L,nbparstat=0))

178}

180 # gof97Laplace is the test proposed by Rizzo and Haman (2016)
181 gof97Laplace <— function (data, levels ,usecrit=0,critvalL=0,critvalR=0){

183 n <— length (data)

155 mledata=mllaplace (data)
186 hatdelta=mledata [1]
187 hatc=mledata [2]

189 datatransf=(data—hatdelta)/hatc
190 y <— sort(datatransf)

192 voit <— rep(0,n)

193 for (k in 1:n){

194 voit [k]<—(2xk—1-n)xy[k]

195}

197 En=2xsum(abs (y)+exp(—abs(y)))—1.5%n—2/n ssum(voit)

199 pvalue<—0

201 decisions <— rep (0, length(levels))
202 for (i in 1l:length(levels)) {

203 if (usecrit = 0) {

204 decisions[i] <— if (pvalue < levels[i]) 1 else 0
205 } else {

206 decisions[i] <— if (En > critvalR[i]) 1 else 0

207 }

208}

209 stat .pars = NULL

210 return(list (statistic = En, pvalue = pvalue,decision= decisions, alter=3,stat
.pars = NULL, pvalcomp=I1L,nbparstat=0))

211}

214 # goftestlLaplace is the test proposed by Hadi Alizadeh Noughabi &
Narayanaswamy Balakrishnan (2016) Tests

215 # DOI:  10.1080/02664763.2015.1063116

216 goftestlLaplace <— function (data, levels ,usecrit=0,critvalL=0,critvalR=0){

217

218 n <— length (data)

219 mledata=mllaplace (data)

220 hatdelta=mledata [1]

221 hatc=mledata [2]

222 w<—1/(2xhatc)*(exp(—abs(data—hatdelta)/hatc))

223

2204 s<—sd(data)xsqrt ((n—1)/n)

225 h<—1.06%s*n"(—1/5)

226

227 fhat <— rep(0, n)

228

229 for (i in 1:n){

230 fhat [i]<—sum(dnorm ((data[i]—data)/h,mean = 0, sd = 1, log = FALSE))/(nxh)

231}

232

233 Tkl<—sum(log (fhat /w))/n

234

235 pvalue<—0
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237 decisions <— rep (0, length(levels))
238 for (i in 1:length(levels)) {

239 if (usecrit = 0) {

240 decisions[i] <— if (pvalue < levels[i]) 1 else 0

241 } else {

242 decisions [i] <— if (TkL > critvalR[i]) 1 else 0

243 }

244}

245 stat.pars = NULL

246 return(list (statistic = TkL, pvalue = pvalue,decision= decisions , alter=3,
stat.pars = NULL, pvalcomp=1L,nbparstat=0))

247 }

248

249

250

251

252

253

254

255

256 # goftes2Laplace is the test proposed by Hadi Alizadeh Noughabi & Sangun Park

(2016)
257 # DOI: 10.1080/00949655.2015.1104685
258 goftest2Laplace <— function (data, levels ,usecrit=0,critvalL=0,critvalR=0){

260 n <— length (data)

261 mledata=mllaplace (data)
262 hatdelta=mledata [1]

263 hatc=mledata [2]

266 if (n==20){

267 m<—4

268 telse if (n==50){

269 m<—6

270 telse if (n==100){

271 m<—8

272 }else{

273 n<—round (3.22449 +0.04898+n) # by fitting the linear model Im(c(4,6,8) ¢

(20,50,100))

274 }

275 data_sorted <— sort(data)

276

277

278 xi1 <— rep (0, n+1)

279 for (ii in 1:(n+1)){

280 if (11 —m<1){

281 rdused<—length (data_sorted [1:( ii+m—1)])

282 augdata<—2*m—rdused

283 xii[ii]=mean(c(rep(data_sorted [1],augdata),data_sorted[1l:(ii+mn—1)]))
284 telse if(ii—m>=1 & iitm1<=n){

285 xii[ii]=mean(data_sorted [(ii—m):(ii+m—1)])

286 telse{

287 rdused<—length (data_sorted [(ii—m):n])

288 augdata<—2*m—rdused

289 xii[ii]=mean(c(data_sorted [(ii—-m):n],rep(data_sorted [n],augdata)))
290 }

201}

292

293 if ((n %% 2) = 0){

294 cuhat<— —1/n * sum( (xii[l:(n/2)]+=xii[(1+1):(n/24+1)])/2)+

295 1/n*sum (( xii [(n/241):n]+xii [(n/2414+1):(n+1)])/2)

206 telse{

297 cuhat<— —1/nxsum ((xii[1:((n—1)/2)]+xii[(14+1):((n=-1)/2+41)])/2)+

298 1/(4#n)*(xii [(n+1)/24+1]—xii [(n+1)/2])+
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} 1/mssum (( xii [((n+1)/241) 0]+ xii [((n+1)/24141): (n+1)]) /2)

difxm<—rep (0, n)
for (ii in 1:n){
P (i1 —m<=1){
difxm [ii]=data_sorted[ii+m|—data_sorted [1]
telse if(ii—-m>1 & ii-fmx=n){
difxm [ii]=data_sorted [ii+m|—data_sorted [ii-—m]
}telse{

difxm [ ii]=data_sorted [n]—data_sorted [ii—m]
}

}
HVmn<—sum (log (difxm*n/(2+m))) /n

TVmn<—log (2+cuhat )+1-HVmn

pvalue<—0

decisions <— rep (0, length(levels))
for (i in 1:length(levels)) {

if (usecrit = 0) {
decisions [i] <— if (pvalue < levels[i]) 1 else 0
} else {

decisions[i] <— if (TVmm > critvalR[i]) 1 else 0
}
}
stat .pars = NULL
return(list (statistic = TVmmn, pvalue = pvalue,decision= decisions , alter=3,
stat.pars = NULL, pvalcomp=1L,nbparstat=0))

# goftest3Laplace is the test proposed by Hadi Alizadeh Noughabi (2019)
# DOI: 10.1080/00949655.2019.1602870
goftest3Laplace <— function (data, levels ,usecrit=0,critvalL=0,critvalR=0){

n <— length (data)
mledata=mllaplace (data)
hatdelta=mledata [1]
hatc=mledata [2]

if (n==10){
m<—4

telse if (n==20){
m<—7

telse if (n==33){
-7

telse if (n==45){
m<—10

telse if (n==100){
nK—15

}telse{
n<K—round (3.802140.1153*n ) # by fitting the linear model Im(c(4,7,7,15) ¢

(10, 20,33,100))
}

data_sorted <— sort(data)
z=plaplace (data_sorted , m=hatdelta , s=hatc)

difzm<—rep (0, n)
for(ii in 1:n){
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Pf (i —m<=1){
difzm [ii]=z[iit+m]—z[1]
telse if(ii—-m>1 & ii+m—1<n){
difzm [ii]=z[ii+m]—z[ii-m]
telse{

difzm [ii]=z[n]—z[ii—m]
}

}
DA<— —sum(log (difzm#*n/(2+m)))/n

pvalue<—0
decisions <— rep (0, length(levels))
for (i in 1:length(levels)) {
if (usecrit = 0) {
decisions[i] <— if (pvalue < levels[i]) 1 else 0
} else {
decisions[i] <— if (DA > critvalR[i]) 1 else 0
}
}
stat .pars = NULL
return(list (statistic = DA, pvalue = pvalue,decision= decisions, alter=3,stat
.pars = NULL, pvalcomp=I1L,nbparstat=0))
}

# simulation setup
law . index<—1

M<—10"5

vectn<— ¢(20,50,100)
levels<— 0.05

stind<—c (43,44 ,42,45,46 ,47,48,49,50, 0,0,0,0,0,59,57,55,56,0,0,0,0)

alter <— list (stat43 = 3,statd4d = 3,stat42 = 3,statdb5 = 3,stat46 = 3,statd7 =
3,statd8 = 3,statd9 = 3,statb0 = 3,stat0=4,stat0=3,stat0=3, stat0=3,stat0=3,
statb9 = 3,statb7 = 3,statb5 = 0,statb6 = 0,stat0=3,stat0=0,stat0=0,stat0=0)

set .seed (0)

critval<—many. crit (law.index ,stat.indices=stind ,M, vectn ,levels ,alter ,law.pars=c
(0,1) ,Rstats=list (NULL,NULL,NULL, NULL,NULL,NULL, NULL, NULL,NULL, gof51Laplace ,
gof97Laplace ,goftestl1Laplace ,goftest2Laplace , goftest3Laplace , NULL,NULL,NULL
,NULL, gof60Laplace , gof91Laplace , gof92Laplace ,gofMomentsLaplace_PowerR)

)
print (critval)

# law indices for Table 3

law . indices<—c(1,2,4,3,7,6,8,8,8,18,31,31,37,37)

parlaws=list (lawl=c(0,1) ,law2 = ¢ (0, 1),lawd=c(0,sqrt(3)/pi),law3d=c(0,1) ,law7=c
(—sqrt(12)/2,sqrt (12)/2) ,lawb=c(2,2) ,law8=3,law8=6,law8=10,law18=0.5,law31=c



424

125
126
427
128
129
430
131
132

133
434

435
136
437
438
139
440
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(0.1,0,3.5) ,law31=c (0.2,0,3.2) ,law37=c (0.4,0,0.6 ,1) ,]Jaw37=c (0.7,0,0.2,1))

table3<—powcomp. fast (law.indices ,stind ,vectn ,M, levels , critval=critval ,alter ,
Rlaws=1ist (NULL,NULL,NULL,NULL, NULL,NULL,NULL, NULL, NULL,NULL, NULL, NULL,NULL,

NULL)

,parlaws=parlaws , Rstats=1ist (NULL,NULL, NULL, NULL,NULL, NULL, NULL,NULL, NULL,
gofb51Laplace ,gof97Laplace , goftestlLaplace , goftest2Laplace ,goftest3Laplace,
NULL,NULL,NULL,NULL, gof60Laplace , gof91Laplace , gof92Laplace , gofMomentsLaplace

_PowerR)

print (table3)

# law indices for Table 4
law.indices<—c(35,5,5,26,21,0,10,11,11,9,0,0,37,37)

parlaws=list (law35=1,lawb=c(2,1) ,lawb=c (6,1) ,law26=c (0,1) ,law21=c (0,1,3) ,law0=c
(3,10) ,law10=c (0,0.5) ,lawll=c(3,1), lawll=c(2,1) ,law9=c(2) ,law0=c(0,1) ,law0=

c(1,4),law37=c(1,0.5,0.43,1) ,law37=c(0.5,0.2,0.5,1))

tabled<—powcomp. fast (law.indices ,stind ,vectn ,M, levels , critval=critval ,alter ,
Rlaws=1list (NULL,NULL,NULL,NULL,NULL, rskt ,NULL,NULL,NULL,NULL, rsev , rinvgauss ,
NULL,NULL) , parlaws=parlaws , Rstats=1ist (NULL,NULL,NULL,NULL,NULL,NULL,NULL,
NULL,NULL, gof51Laplace , gof97Laplace , goftestl1Laplace , goftest2Laplace ,
goftest3Laplace , NULL,NULL,NULL,NULL, gof60Laplace ,gof91Laplace , gof92Laplace ,

gofMomentsLaplace _PowerR)

print (tabled)
7 code end for Tables 3 and 4
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