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Abstract

Several authors have studied fractional cointegration in time series data, but little or
no consideration has been extended to panel data settings. Therefore, in this paper, we
compare the finite sample behaviour of existing fractional cointegration time-series test
procedures in panel data settings. This comparison is performed to determine the best
tests that can be adapted to fractional cointegration in panel data settings. Specifically,
simulation studies and real-life data analysis were performed to study the changes in
the empirical type I error rate and power of six semiparametric fractional cointegration
tests in panel settings. The various results revealed the limitations of the tests in the
nonstationary and low or high correlation of the residual errors conditions. Also, two
of the test procedures were recommended for testing the null hypothesis of no fractional
cointegration in both time series and panel data settings.

Keywords: panel data models, long memory, fractional cointegration, semiparametric tests.

1. Introduction

In econometrics, whether a data is experimental or observational, it can be majorly classified
into cross-sectional data, time-series data and panel data whereas the panel data combines the
attributes of both the cross-sectional data and the time series. However, in macroeconomics
and finance, variables are usually presented in panels to describe the varying characteristics
of the diffrent entities such as currencies, asset, countries, income, people, and so on. Since
panel data allows for interactions of cross-sections with each other, it leads to a more robust
inference when correctly specified.

Cointegration techniques have been widely used for decades in empirical studies, it naturally
occurs in economics and finance, and it allows modelling of equilibrium relationships between
non-stationary time series while fractional cointegration is well known to overcome the short-
comings of cointegration by allowing for non-integer integration orders of the variables in the
system and any possible non-zero memory order in the cointegrating residuals as long as it is
reduced in comparison to the original system Johansen and Nielsen (2012).

Studying fractional cointegration has led to the development of various test and estimation
procedures to determine its presence in a multivariate time series. Some of the tests used
include Marmol and Velasco (2004), Chen and Hurvich (2006), Johansen (2008), Robinson
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(2008a), Nielsen (2010), Avarucci and Velasco (2009),  Lasak (2010), Johansen and Nielsen
(2012), Johansen and Nielsen (2019) and Souza, Reisen, Franco, and Bondon (2018) among
others.

In a recent Monte-Carlo based comparative study of existing fractional cointegration tech-
niques by Leschinski, Voges, and Sibbertsen (2020), it was observed that some of the existing
fractional cointegration test procedures exhibit various weaknesses in their finite sample be-
haviour. Specifically, some tests show low power or size bias in the presence of correlated
short-run components. This concerns mostly the methods of Nielsen and Shimotsu (2007) (or
Robinson and Yajima (2002)), Marmol and Velasco (2004), and Hualde and Velasco (2008).

Leschinski et al. (2020) also find that the size properties of the tests in the triangular case and
the common-components model is generally comparable. For the power of the tests, however,
there are important differences between the two cases. In particular, the test of Chen and
Hurvich (2006) has much better power for stationary systems under the common components
specification. In contrast, the methods of Robinson and Yajima (2002) and Hualde and
Velasco (2008) become worse in their ability to detect fractional cointegration.

Moreover, the difficulties in finding a long time series and the low power of the Augmented
Dickey-Fuller and Dickey-Fuller unit root tests for the univariate case made researchers de-
velop unit root and cointegration tests for panel data.

McCoskey and Kao (1998) derived a panel cointegration test for the null of cointegration
which is an extension of the LM test and the locally best-unbiased invariant (LBUI) test for
a Moving Average (MA) root and Kao, Chiang, and Chen (1999) considered the spurious
regression for the panel data and introduced the Dickey-Fuller and Augmented Dickey-Fuller
type tests. Kao et al. (1999) proposed four different DF type of test statistics and used the
sequential limit theory of Phillips and Moon (1999) to derive the asymptotic distributions of
these statistics.

However, Larsson, Lyhagen, and Löthgren (2001) suggested the panel cointegration test statis-
tic based on cross-sectional independence. While Groen and Kleibergen (2003) on the other
hand presented how homogenous and heterogeneous cointegration vectors are estimated within
a maximum-likelihood framework using the GMM procedure. The authors also proposed a
likelihood ratio test for the common cointegration rank, which is based on the GMM estima-
tors and the cross-sectional dependence.

Of all the work done on fractional cointegration and panel data analysis, no one has considered
the two scenarios together, i.e. fractional cointegration in panel data parlance. Still, a lot
has been done on fractional cointegration in time series model. Therefore, in this paper, we
compare the finite sample behaviour of existing semiparametric fractional cointegration time-
series test procedures in panel data settings. This comparison is performed to determine the
best tests that can be adapted to fractional cointegration in panel data settings. In this study,
we focus on the changes in power and size of the panel fractional cointegration tests when
time and cross-section dimensions and various parameters like the correlation parameter and
bandwidth in the data generating process varies for each cross-section in homogenous and
heterogeneous data structures. The semiparametric tests were considered in this paper as
they are more popular than their counterparts.

2. Fractional cointegration

Suppose xt and yt are two processes that are both I(d), Engle and Granger (1987) reported
that for a certain scalar a 6= 0, a linear combination wt = yt − axt, will also be I(d), with
the possibility that wt can be I(d − b) with b > 0. Thus, given two real numbers d, b, the
components of the vector ct are said to be cointegrated of order d, b, denoted as ct ∼ CI(d, b)
if:

i all the components of ct are I(d),
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ii there exists a vector α 6= 0 such that st = α′ct ∼ I(γ) = I(d− b), b > 0,

where α and st are called the cointegration vector and error respectively Caporale and Gil-
Alana (2014). A simple bivariate system of fractional cointegrated xt and yt processes can be
defined as:

yt = βxt + (1− L)−γε1t

xt = (1− L)−dε2t
(1)

for positive t. The vector εt = (ε1t, ε2t)
′ is now a bivariate zero mean covariance stationary

I(0) process, β 6= 0 and γ < d. In equation (1) xt and yt are both I(d) and ε1t = yt − βxt is
I(γ). The bivariate system in (1) can be reduced to classical cointegration of Phillips (1991)
if γ = 0 and d = 1 which is denoted by CI(1, 1). The lag operator (1−L)−d is obtained using

(1− L)−d = Γ(j+d)
Γ(d)Γ(j+1) , where Γ(z) =

∫∞
0 ωz exp−ω dω.

In contrast to standard CI(1, 1) cointegration, the memory parameter d is unknown in frac-
tionally cointegrated systems and has to be estimated.

2.1. Fractional cointegration in panel models

In this section, we consider a panel model similar to (1) but with the introduction of i =
1, 2, . . . , N cross-sectional units. The general fractional cointegration panel model derived
from (1) is given by:

yit = βxit + (1− L)−γε1it

xit = (1− L)−dε2it
(2)

where the cointegration parameter β is assumed to be constant over i cross-sectional units.
Model (2) is the simplistic form of fractional integration in panel settings and differs from the
cross-sectional dependence one proposed by Ergemen and Velasco (2017). In this paper, we
extend (2) to capture fixed effect homogenous (Pooled) and heterogenous panel data settings.
The homogenous (Pooled) model is given by:

yit = µ+ βxit + (1− L)−γε1it

xit = (1− L)−dε2it,
(3)

and the heterogenous model is given by;

yit = µi + βxit + (1− L)−γε1it

xit = (1− L)−dε2it.
(4)

The parameter µ or µi is the fixed effect coefficient for the pooled or ith cross-sectional units.
Given models (3) and (4), the fractional cointegration tests in (1) can also be applied. The
comparative analysis for semiparametric tests conducted in Leschinski et al. (2020) holds for
(1). The focus of this paper is to determine the validity of some of these tests in panel data
settings captured in (3) and (4).

3. Fractional cointegration tests

In this section, we present a brief review of six fractional cointegration tests that are com-
monly used to test the existence of fractional cointegration in time series data. These tests are
broadly classified into spectral-based and residual-based tests Leschinski et al. (2020). The
relevant hypotheses to test whether the two processes are fractionally cointegrated are:

H0 : xt and yt are not fractionally cointegrated (d = γ),
H1 : xt and yt are fractionally cointegrated (d > γ).
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3.1. Spectral-based fractional cointegration tests

The spectral density of a p−dimensional long memory vector Xt can be defined as;

fX(λ) ∼ Λj(d)GΛj(d), λ→ 0+, (5)

where Λj(d) = diag
(
λ−d1eiπd1/2, . . . , λ−dpeiπdp/2

)
is a p × p diagonal matrix, Λj(d) is its

complex conjugate, and G is a real, symmetric and positive definite matrix.

The spectral-based test procedures utilize the zero frequency property of rescaled spectral
matrix G in (5) to determine the fractional cointegrating rank r of a p−dimensional time series
Xt. The matrix G has a reduced rank if and only if Xt is fractionally cointegrated. If fractional
cointegration is present, the number of eigenvalues that are equal to zero corresponds to the
cointegrating rank r and therefore to the number of cointegrating relationships Leschinski
et al. (2020).

Robinson (2008) test

Robinson (2008a) proposed a test statistic that is based on the objective function of the
multivariate local Whittle estimator of Nielsen and Shimotsu (2007) given by:

S(d) = log det Ĝ∗(d)− 2pd

m

m∑
j=1

log λj (6)

where Ĝ∗(d) = 1
m

∑m
j=1 IX(λj)λ

2d
j , IX(λj) = wx(λj)wx(λj) is the periodogram of p−dimensional

series Xt at the Fourier frequencies λj = 2πj/T , j = 1, 2, . . . bT/2c, b.c denotes the greatest

integer smaller than the argument, wx(λj) = 1√
2πT

∑T
t=1Xte

iλt and m is the bandwidth.

Robinson (2008a) used the derivative of equation (6) given by:

s∗(d) = tr

(
Ĝ∗(d)−1Ĥ∗(d)

)
(7)

where Ĥ∗(d) = 1
m

∑m
j=1 vjIX(λj)λ

2d
j and vj = log j

∑m
k=1 k to derive the test statistic

X∗Rob =
ms∗

(
d̂LW

)2
p2tr

(
F̂ ∗2

)
− p

(8)

with d̂LW being the pooled local Whittle estimates of the memory parameter d for each
component series (xt, yt) and F̂ ∗ = R̂∗

−1/2
Ĝ∗
(
d̂LW

)
R̂∗

−1/2
, R̂∗ = diag(ĝ∗11, . . . , ĝ

∗
pp), ĝ

∗
aa, a =

1, . . . , p are the diagonal elements of Ĝ∗
(
d̂LW

)
. Under H0, the statistic X∗Rob

D∼ χ2
1. The test

can be applied to series with dimension greater than 2 but restricted the memory parameter
to d ∈ (−1/2, 1/2) and specifically d ∈ (0, 1/2). Thus, the test is only applicable to stationary
process.

Souza et al. (2018) test

The Souza et al. (2018) test is based on the estimate of memory reduction parameter b
obtained from the determinant of trimmed and truncated spectral matrix of the fractionally
differenced process using log-periodogram regression.

Suppose we let ∆dXt = (∆dyt,∆
dxt) be a fractionally differenced process with spectral density

matrix f∆d(λ) then the determinant D∆d(λ) ∼ g̃|1−e−iλ|2b, (where g̃ is a constant) of f∆d(λ)
depends on the memory reduction parameter b ∈ (0, d). The parameter b is obtained from
log(D∆d(λ)) via a log-periodogram regression,

log(D∆d(λ)) ∼ log g̃ + 2b log |1− e−iλ|+ log

(
g̃∗(λ)

g̃

)
(9)
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where g̃∗(λ) = g̃, when λ→ 0+.

A feasible estimate of b is obtained by estimating f∆d(λ) at Fourier frequencies j = l, l+(2l−
1) + l + 2(2l − 1), . . . ,m(2l − 1),m with l < m < T . The estimate of the spectral density is;

f̂∆d(λ) =
1

2l − 1

j+(l−1)∑
k=j−(l−1)

I∆d(λk),

where I∆d(λk) is the periodogram of the fractionally differenced series. For every j, f̂∆d(λ) is
estimated using the local average of the periodogram at frequency j and the l+ 1 frequencies
to its left and right and the j are spaced so that the local averages are non-overlapping.
Consequently, the estimator of b is given by

b̂ =

( m∑
j=l+1

Z̃∗2j

)−1 m∑
j=l+1

Z̃∗j log D̂d
∆(λj), (10)

where Z̃∗j = Z∗j − Z̄∗, Z∗j = log |1− eiλ| = log(2− 2 cos(λj)), and Z̄∗ is the mean of Z∗j . The
relevant hypotheses here are now;

H0 : xt and yt are not fractionally cointegrated (b = 0),
H1 : xt and yt are fractionally cointegrated (b > 0).

Under H0, it can be assumed that l and m satisfy the condition l+1
m + m

T + 1
m + logm

m → 0 as

T → ∞ and thus b̂ is consistent and asymptotically normal with variance σ2
b = 1

m(Ψ(1)(2l +

1)+Ψ(1)(2l)), Ψ(1) = δ2 log Γ(x)
δx2

is the first order polygamma function. Correspondingly, Souza
et al. (2018) proposed the wald t-test statistic:

tSRFB =
b̂√
σ2
b

D∼ N(0, 1). (11)

The t−test statistic in equation (11) is unrestricted like Robinson (2008a) as it is applicable
to any values of d and b. However, it is only applicabe to bivariate process Leschinski et al.
(2020).

3.2. Residual-based fractional cointegration tests

Suppose we define wt = yt − βxt to be fractionally cointegrated I(γ), we can test that
the components xt and yt are fractionally cointegrated if γ < d based on the estimate of
the residual ŵt. The Ordinary Least Square (OLS) method is commonly used to estimate
the cointegration relationship β. The estimate is consistent under the alternaive hypothesis
(γ < d) provided d > 0.5 but inconsistent under the null hypothesis (γ = d).

Marmol and Velasco (2004) test

Marmol and Velasco (2004) proposed the Narrow Band estimator β̂NB that is consistent
under H0 but inconsitent under H1. Marmol and Velasco (2004) defined the β̂NB as:

β̂NB(d̂, γ̂) = ĜMV
xx (d̂)−1ĝMV

xy (γ̂), (12)

with ĜMV
xx (d̂) = 2π

m

∑m
j=1 Λ̃j(d)−1<{Ixx(λj)}Λ̃−1

j (d), ĝMV
xy (γ̂) =

∑m
j=1<{Ixy(λj)λ

2(γ̂−1)
j }, and

Ixx(λj), Ixy(λj) are the elements of I∆X∆X(λj) which is the periodogram of the differenced
series ∆Xt while Λ̃j(d) = diag(λ1−d

j , . . . , λ1−d
j ). Marmol and Velasco (2004) compared the
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βOLS with β̂NB using the normalizing variance V̂ −1
MV estimated from the periodogram of the

OLS residuals ŵt and xt. The test statistic is given by

WMV =
1

p− 1

(
β̂OLS − β̂NB

)′
V̂ −1
MV

(
β̂OLS − β̂NB

)
, (13)

where V̂ −1
MV =

(∑m
j=−m Ixx(λj)

)−1∑m
j=−m Ixx(λj)Iŵŵ(λj)

(∑m
j=−m Ixx(λj)

)−1

. The asymp-

totic distribution of WMV was derived by Marmol and Velasco (2004) and critical values
provided for dimensions up to p = 5.

Chen and Hurvich (2006) test

Chen and Hurvich (2006) proposed a more direct test that utilizes the residual wt = yt−βxt.
The residual is first multiplied by the eigenvectors χa,IavX

of the averaged periodogram IavX (λj).
The resulting transformed first and last residuals ŵav1t and ŵavpt are used to estimate the memory

parameters d̂ and γ̂. Chen and Hurvich (2006) presents the statistic

TCH =
d̂w1 − γ̂wp√
VCH/m

(14)

where VCH = 0.5

(
Γ(4h−3)Γ4(h)

Γ4(2h−1)

)
, h is the apriori differencing parameter for Xt. Under H0,

TCH
D∼ N(0, 1).

Nielsen (2010) test

Nielsen (2010) introduced an alternative approach for testing the null hypothesis of no frac-
tional cointegration that is based on sequential testing. The appraoch utilizes the variance-
ratio statistic with the assumption that the process Xt is I(d) and the resultant residuals is
I(γ) < 1/2 < d. The procedure start by first computing the centered version of Xt denoted
by Ct = Xt− X̄t, where X̄t is the mean vector of the process and its fractionally cointegrated
version defined as C̃t = ∆εCt. Thus, Nielsen (2010) defined the variance-ratio as

V RT =

T∑
t=1

CtC
′
t

( T∑
t=1

C̃tC̃
′
t

)−1

. (15)

Under H1 the rank of V RT reduce to p − r. The proposed non-parametric traced test by
Nielsen (2010) is

C = T 2ε
p−r∑
k=1

êvk, r = 1, 2, 3, . . . , p− 1, (16)

with ev being the eigenvalues of V RT and r is the number of cointegrating relationships
under H0. Equation (16) is used to test the hypothesis that the cointeration rank r equals r0

under H0 and greater than r0 under H1. The limiting distribution of XNeil and corresponding
critical values for varying d and dimension p − r are provided in Nielsen (2010). The major
drawback of Nielsen (2010) approach is that it assumes the process Xt is nonstationary.

Wang et al. (2015) test

The Wang, Wang, and Chan (2015) fractional cointegration test is based on second compo-
nents xt of the process Xt = (yt, xt) and the associated residuals ε2t. Wang et al. (2015)
constructed a simple t-like test statistic that utilizes the spetral density of the component xt
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denoted as f̂22 = 1
2πT

∑T
t=1(∆d̂xt)

2 and the fractional cointegration parameter γ of residual
ε2t. Thus, the statistic is given as

FWang =

∑T
t=1 ∆γ̂xt√
2πT f̂22

H0→ N(0, 1). (17)

The method does not imposed any restriction on the memory parameter b, but requires d > 0.5
so that the cointegrating vector β can be estimated using OLS.

4. Simulation study

The structure of the simulations to which results follows is divided into three phases: (i.) Con-
trol (Traditional Time series model); (ii.) Moderate (Homogenous fixed effect panel model)
and (iii.) High (Heterogenous fixed effect panel model). Each scenario is replicated over two
bandwidth power values ηm = (0.65 & 0.75), where bandwidth m = T ηm as required for each
test procedure. In addition, for each scenario, 5000 replications and three different correlation
values ρ = (0, 0.4, & 0.9) values were used. The empircal type I error rates and power for
the six tests were calculated using the average of the 5000 runs of each simulated model and
testing. Similar procedure was used in Jamil, Abdullah, Kek, Olaniran, and Amran (2017);
Olaniran and Yahya (2017); Olaniran and Abdullah (2019b, 2020); Popoola, Yahya, Popoola,
and Olaniran (2020); Olaniran and Abdullah (2019a). For brevity, each test is presented in
tables and figures as authors’ initial letters and the corresponding publication year.

4.1. Scenario 1 (control): simulation procedure for time series model

We tried to have a control model structure to which the test procedures were originally
designed to accommodate. Here, we assume a typical time series structure with no cross-
sectional units. That is T is the total sample size. The model is:

yt = βxt + ∆−γε1t

xt = ∆−dε2t
(18)

where β = −1, εt = (ε1t, ε2t)
′ being a Gaussian white noise with E(εt) = 0, V ar(ε1t) =

V ar(ε2t) = 1 and Cov(ε1t, ε2t) = ρ. We consider cases with ρ = 0, 0.4 & 0.9 and sample
sizes T = 50, 100, 150, 200, 250, 300, 350, 400, 450, 500 and bandwidths power ηm = 0.65, 0.75
separately. We set d = 0.4, 0.8 and γ = 0.2, 0.4, 0.8 for each d. The results for bandwidth
power ηm = 0.75 were presented in Figure 1 - 2 while results for ηm = 0.65 are shown in
Figure 3 - 4. For all tests, type I error was fixed at 5%.

Figure 1 presents the simulation results for the empirical type I error rate, which was used
to assess the validity of the tests at the control level and bandwidth 0.75. A test is valid if
its empirical type I error rate revolves around the fixed 5% value imposed. At d = γ = 0.8,
the results observed indicate that the methods of Chen and Hurvich (2006), Marmol and
Velasco (2004) and Wang et al. (2015) overestimates the imposed threshold implying they
rejected the null hypothesis more than expected. In contrast, the method of Nielsen (2010)
and Souza et al. (2018) underestimates the imposed threshold implying they rejected the null
hypothesis less than expected. While we can say the methods of Chen and Hurvich (2006),
Marmol and Velasco (2004) and Wang et al. (2015) are restrictive; we can say the methods
of Nielsen (2010) and Souza et al. (2018) are conservative. However, it was found that the
method of Robinson (2008a) are approximately exact (closer to the threshold), especially at
smaller sample size. Also, the empirical type I error rates of methods of Chen and Hurvich
(2006), Marmol and Velasco (2004), Nielsen (2010), Robinson (2008a), and Wang et al. (2015)
consistently increases with increase in sample sizes while the empirical type I error rates of
the method of Souza et al. (2018) consistently reduces with increase in sample sizes.
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Figure 1: Empirical type I error rate (%) for time series model at bandwidth ηm = 0.75,
d = γ = 0.8, d = γ = 0.4 and (i.) ρ = 0, (ii.) ρ = 0.4, (iii.) ρ = 0.9
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Figure 2: Empirical power (%) for time series model at bandwidth ηm = 0.75, d = 0.8, γ = 0.2,
d = 0.4, γ = 0.2, and (i.) ρ = 0, (ii.) ρ = 0.4, (iii.) ρ = 0.9
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Table 1: Average empirical type I error rate (when d = γ = 0.8) and power (when d = 0.8 and
γ = 0.2) of time series model for the six tests at bandwidth ηm = 0.65, 0.75 and correlation
ρ = 0.0, 0.4, 0.9

Type I error rate (%)

Method ρ = 0.0 ρ = 0.4 ρ = 0.9

0.65 0.75 0.65 0.75 0.65 0.75

CH06 1.536 11.450 10.270 10.270 0.238 9.724
MV04 4.674 6.288 8.016 8.016 21.318 18.750
N10 35.918 1.886 1.992 1.992 6.730 2.060
R08 7.670 8.016 7.336 7.336 5.204 6.860
SFRB18 0.064 2.492 2.492 2.492 0.036 2.492
WWC15 0.290 13.640 13.644 13.644 0.094 13.562

Power (%)

CH06 6.420 96.688 94.484 94.484 1.462 91.098
MV04 70.418 87.260 93.032 93.032 34.934 96.542
N10 2.602 78.130 74.868 74.868 1.982 72.368
R08 0.846 66.926 36.450 36.450 6.672 13.196
SFRB18 1.780 93.862 93.580 93.580 0.458 89.786
WWC15 5.260 93.916 94.116 94.116 0.242 93.876

Table 2: Average empirical type I error rate (when d = γ = 0.4) and power (when d = 0.4 and
γ = 0.2) of time series model for the six tests at bandwidth ηm = 0.65, 0.75 and correlation
ρ = 0.0, 0.4, 0.9

Type I error (%)

Method ρ = 0.0 ρ = 0.4 ρ = 0.9

0.65 0.75 0.65 0.75 0.65 0.75

CH06 8.748 7.412 8.394 7.036 8.144 6.850
MV04 3.522 1.030 6.766 1.688 19.394 7.480
N10 7.954 7.512 8.234 7.678 8.662 7.908
R08 13.314 6.588 10.622 6.190 8.974 5.962
SFRB18 3.612 3.040 3.612 3.040 3.612 3.040
WWC15 15.992 10.384 15.996 10.386 15.922 10.500

Power (%)

CH06 34.196 45.074 25.640 34.012 17.812 32.640
MV04 8.584 2.930 11.182 5.708 15.640 15.172
N10 40.304 39.552 39.724 38.946 31.034 30.176
R08 1.852 6.148 2.030 2.848 5.758 4.914
SFRB18 22.684 34.390 22.626 34.222 20.508 31.648
WWC15 52.828 49.374 52.628 49.218 47.804 42.108



Austrian Journal of Statistics 105

● ● ● ● ● ● ● ● ● ●

●

●
●

● ● ●
● ● ●

●

●

●

● ●
●

●

●
●

● ●

●

●

●
● ● ●

● ● ● ●

● ● ● ● ● ● ● ● ● ●

●

●

●
● ● ●

● ● ● ●

d = 0.4 , γ = 0.4

η = 0.65 , ρ = 0

d = 0.4 , γ = 0.4

η = 0.65 , ρ = 0.4

d = 0.4 , γ = 0.4

η = 0.65 , ρ = 0.9

d = 0.8 , γ = 0.8

η = 0.65 , ρ = 0

d = 0.8 , γ = 0.8

η = 0.65 , ρ = 0.4

d = 0.8 , γ = 0.8

η = 0.65 , ρ = 0.9

100 200 300 400 500 100 200 300 400 500 100 200 300 400 500

100 200 300 400 500 100 200 300 400 500 100 200 300 400 500

0

10

20

5

10

15

20

25

5

10

15

5

10

15

20

0

20

40

60

0

5

10

15

20

Sample Sizes

E
m

pi
ric

al
 T

yp
e 

I e
rr

or
 r

at
e 

(%
)

Tests

● CH06

MV04

N10

R08

SRFB18

WWC15

Figure 3: Empirical type I error rate (%) for time series model at bandwidth ηm = 0.65,
d = γ = 0.8, d = γ = 0.4 and (i.) ρ = 0, (ii.) ρ = 0.4, (iii.) ρ = 0.9
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Figure 4: Empirical power (%) for time series model at bandwidth ηm = 0.65, d = 0.8, γ = 0.2,
d = 0.4, γ = 0.2and (i.) ρ = 0, (ii.) ρ = 0.4, (iii.) ρ = 0.9

Furthermore, increasing the correlation of the residuals reduces the empirical type I errors
for the methods of Chen and Hurvich (2006), Robinson (2008a) and Wang et al. (2015) while
it increases the empirical type I errors for the methods of Marmol and Velasco (2004) and
Nielsen (2010).
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On the other hand, the results observed for d = γ = 0.4, which addresses cases with d < 0.5
showed similar results with d > 0.5 (d = γ = 0.8) except for the method of Marmol and
Velasco (2004) which is now conservative and the method of Nielsen (2010) which is now
restrictive as sample size increases.

Figure 2 presents the simulation results for the empirical power, which was used to assess
the usability of the tests at the control level and bandwidth 0.75. A test is usable if its
empirical power converges to 100% as sample size increases. At d = 0.8 and γ = 0.2, the
results observed indicate that the methods of Chen and Hurvich (2006), Marmol and Velasco
(2004), Nielsen (2010), Souza et al. (2018) and Wang et al. (2015) are usable at T ≥ 100 and
all correlation levels used. Again, as observed with empirical Type I error rate, the method of
Robinson (2008a) was found to be unusable at smaller sample sizes and high correlation level.
Similar results was observed when d < 0.5 (d = 0.4 and γ = 0.2) except that the method of
Marmol and Velasco (2004) joined the group of unusable test at various correlation levels.

Figure 3 presents the simulation results for the empirical type I error rate at the control
level and bandwidth 0.65. At d = 0.8, γ = 0.8, the results showed that only the methods of
Marmol and Velasco (2004) appear to be valid at ρ = 0, while other methods underestimates
the imposed threshold except the method of Robinson (2008a) that overestimates it as sample
size increases. At ρ = 0.4, the methods of Nielsen (2010) and Souza et al. (2018) underestimate
the threshold while other methods overestimates it. At ρ = 0.9, the performance of the tests
appear to be better except for the method of Marmol and Velasco (2004). Figure 4 presents the
simulation results for the empirical power at the control level and bandwidth 0.65. The results
showed that at ρ = 0 only the methods of Marmol and Velasco (2004) yielded reasonable power
while other methods are not usable. At ρ = 0.4, all the tests returned reasonable of as sample
size increases. The performance of all the tests were found to be poor at ρ = 0.9.

For d < 0.5, similar results as observed when d > 0.5 were obtained except for the method
of Nielsen (2010) whose empirical type I error rate increases with increase in sample size. In
addition, the empirical type I error rates for all the tests were closer to the 5% threshold
when d < 0.5. The preferable tests here include Chen and Hurvich (2006), Robinson (2008a)
and Souza et al. (2018) which are more stable at various correlation levels when comapred to
others.

Table 1 presents the overall results for the time series model when d = γ = 0.8 and d =
0.8, γ = 0.2. All the six tests achieved high power at bandwidth ηm = 0.75 across various
correlation levels. In contrast for bandwidth ηm = 0.65, the six tests return low power except
when correlation ρ = 0.4. Similarly, for the empirical Type I error rate, the performance at
ηm = 0.75 is better for most of the tests compared to at ηm = 0.65. Thus, the final conclusion
about the best test would be drawn using ηm = 0.75 results. Therefore, at ηm = 0.75, the
uniformly most powerful test that maintains the 5% size, highest power and robustness to
correlation levels is Souza et al. (2018).

Table 2 presents the overall results for the time series model when d = γ = 0.4 and d =
0.4, γ = 0.2. Most of the tests achieved their highest power at bandwidth ηm = 0.75 across
various correlation levels. In contrast for bandwidth ηm = 0.65, the six tests return low power
except for the methods of Wang et al. (2015), Nielsen (2010) and Marmol and Velasco (2004).
Similarly, for the empirical Type I error rate, the performance at ηm = 0.75 is better for most
of the tests compared to at ηm = 0.65. Thus, the final conclusion about the best test would
also be drawn using ηm = 0.75 results. Therefore, at ηm = 0.75, the uniformly most powerful
test that maintains the 5% size, average power and robustness to correlation levels is Souza
et al. (2018). In terms of power, the most powerful test is Wang et al. (2015).

4.2. Scenario 2 (moderate): simulation procedure for homogenous panel

We assume the following balanced fixed effect panel model with n the number of cross-sectional
units, t the time unit such that T = n× t is the total sample size.
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yit = µ+ βxit + ∆−γε1it

xit = ∆−dε2it
(19)

where µ is the constant intercept across the units i = 1, 2, . . . , n, β = −1, εit = (ε1it, ε2it)
′ being

a Gaussian white noise with E(εit) = 0, V ar(ε1it) = V ar(ε2it) = 1 and Cov(ε1it, ε2it) = ρ. We
consider cases with ρ = 0, 0.4, 0.9, sample sizes T = 50, 100, 150, 200, 250, 300, 350, 400, 450, 500
and bandwidths power ηm = 0.65, 0.75 separately. We set d = 0.4, 0.8 and γ = 0.8, 0.2 for
each d. The results for bandwidth power ηm = 0.75 were presented in Figure 3 - 4 while
results for ηm = 0.65 are shown in Figure 5 - 6. For all tests, type I error was fixed at 5%.

Table 3: Average empirical type I error rate (when d = γ = 0.8) and power (when d = 0.8
and γ = 0.2) of homogenous panel model for the six tests at bandwidth ηm = 0.65, 0.75 and
correlation ρ = 0.0, 0.4, 0.9

Type I error rate (%)

Method ρ = 0 ρ = 0.4 ρ = 0.9

0.65 0.75 0.65 0.75 0.65 0.75

CH06 1.956 2.578 1.730 2.322 1.704 2.248
MV04 4.132 0.320 8.554 0.802 32.650 7.180
N10 84.220 88.606 83.678 88.332 83.068 87.944
R08 6.020 2.082 2.594 1.494 1.562 1.278
SFRB18 0.062 0.008 0.062 0.008 0.062 0.008
WWC15 0.030 0.002 0.030 0.002 0.030 0.002

Power (%)

CH06 99.478 99.584 99.370 99.486 99.264 99.442
MV04 99.072 94.382 98.596 92.308 97.940 89.524
N10 99.732 99.834 99.624 99.780 99.482 99.722
R08 39.082 80.636 28.370 73.620 9.626 37.586
SFRB18 71.128 85.524 70.610 85.328 67.524 83.696
WWC15 64.478 59.244 62.774 56.692 63.028 55.502

Figure 5 presents the simulation results for the empirical type I error rate at the moderate
level (homogenous panel model) and bandwidth 0.75. At d = γ = 0.8, the results showed
that all the tests underestimates the 5% threshold imposed at all levels of correlation except
for the method of Marmol and Velasco (2004) at ρ = 0.9 and Nielsen (2010) at all correlation
levels. At d = γ = 0.4, the results observed differs from when d = γ = 0.8 as the methods of
Chen and Hurvich (2006) and Robinson (2008a) slightly overestimates the threshold imposed
while other tests underestimates and Nielsen (2010) produces empirical type I error rates that
increases with sample size. On the other hand, for the power when d = 0.8, γ = 0.2, Figure 6
shows that the group of tests with high power are Nielsen (2010), Marmol and Velasco (2004)
and Chen and Hurvich (2006) while tests with moderate power are Robinson (2008a), Souza
et al. (2018) and Wang et al. (2015). Similarly, when d = 0.4, γ = 0.2, only Chen and Hurvich
(2006) and Nielsen (2010) returned high power while all other tests returned low power at
various correlation levels.

Figure 7 presents the simulation results for the empirical type I error rate at the moderate
level (homogenous panel model) and bandwidth 0.65. The results when d = γ = 0.8 showed
that the methods of Chen and Hurvich (2006), Souza et al. (2018) and Wang et al. (2015)
underestimates the 5% threshold imposed at all levels of correlation. The methods of Nielsen
(2010), Robinson (2008a) and Marmol and Velasco (2004) overestimates the 5% threshold
imposed at all levels of correlation. For d = γ = 0.4, the methods of Nielsen (2010); Chen and



108 Fractional Cointegration in Panel Data Models

● ● ● ● ● ● ● ● ● ●

● ●
● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ●

● ●
● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ●

● ●
● ● ● ● ● ● ● ●

d = 0.4 , γ = 0.4

η = 0.75 , ρ = 0

d = 0.4 , γ = 0.4

η = 0.75 , ρ = 0.4

d = 0.4 , γ = 0.4

η = 0.75 , ρ = 0.9

d = 0.8 , γ = 0.8

η = 0.75 , ρ = 0

d = 0.8 , γ = 0.8

η = 0.75 , ρ = 0.4

d = 0.8 , γ = 0.8

η = 0.75 , ρ = 0.9

100 200 300 400 500 100 200 300 400 500 100 200 300 400 500

100 200 300 400 500 100 200 300 400 500 100 200 300 400 500

0

25

50

75

0

20

40

60

0

25

50

75

0

20

40

60

0

25

50

75

0

20

40

60

Sample Sizes

E
m

pi
ric

al
 T

yp
e 

I e
rr

or
 r

at
e 

(%
)

Tests

● CH06

MV04

N10

R08

SRFB18

WWC15

Figure 5: Empirical type I error rate (%) for homogenous panel model at bandwidth ηm =
0.75, d = γ = 0.8, d = γ = 0.4 and (i.) ρ = 0, (ii.) ρ = 0.4, (iii.) ρ = 0.9
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Figure 6: Empirical power (%) for homogenous panel model at bandwidth ηm = 0.75, d =
0.8,γ = 0.2, d = 0.4,γ = 0.2 and (i.) ρ = 0, (ii.) ρ = 0.4, (iii.) ρ = 0.9
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Table 4: Average empirical type I error rate (when d = γ = 0.4) and power (when d = 0.4
and γ = 0.2) of homogenous panel model for the six tests at bandwidth ηm = 0.65, 0.75 and
correlation ρ = 0.0, 0.4, 0.9

Type I error (%)

Method ρ = 0 ρ = 0.4 ρ = 0.9

0.65 0.75 0.65 0.75 0.65 0.75

CH06 9.474 8.612 9.162 8.214 9.004 7.926
MV04 5.610 1.034 11.122 2.408 31.282 14.434
N10 25.820 24.174 27.052 25.208 28.442 26.384
R08 11.166 6.568 8.754 6.042 7.216 5.678
SFRB18 1.290 0.982 1.290 0.982 1.290 0.982
WWC15 1.618 0.368 1.618 0.368 1.618 0.368

Power (%)

CH06 45.378 58.106 34.700 45.714 27.260 43.882
MV04 4.642 1.870 5.792 1.878 13.794 4.934
N10 63.276 62.304 62.634 61.786 57.182 56.064
R08 1.060 9.864 1.114 3.724 6.504 7.754
SFRB18 15.822 22.970 15.194 22.214 8.466 11.910
WWC15 7.350 2.646 5.248 1.658 2.572 0.432

Hurvich (2006); Marmol and Velasco (2004); Robinson (2008a)overestimates the true type I
error rate while the methods of Wang et al. (2015); Souza et al. (2018) underestimates it.
Figure 8 shows that for d = 0.8, γ = 0.2, the group of tests with high power are Nielsen
(2010), Marmol and Velasco (2004) and Chen and Hurvich (2006) while tests with moderate
power are Robinson (2008a), Souza et al. (2018) and Wang et al. (2015). On the other hand
for d = 0.4, γ = 0.2, only Chen and Hurvich (2006) and Nielsen (2010) returned high power
while all other tests returned low power at various correlation levels.

Table 3 present the overall results for the homogenous panel model when (d = γ = 0.8
and d = 0.8, γ = 0.2). All the six tests achieved high power at the two bandwidth levels
ηm = 0.65, 0.75 across various correlation levels. Similarly, for the empirical type I error rate,
the performance at ηm = 0.75 is better for most of the tests compared to at ηm = 0.65. Thus,
the final conclusion about the best test would be drawn using ηm = 0.75 results. Therefore,
at ηm = 0.75, the uniformly most powerful test that maintains the 5% size, highest power
and robustness to correlation levels is Chen and Hurvich (2006).

Table 4 present the overall results for the homogenous panel model when (d = γ = 0.4 and
d = 0.4, γ = 0.2). Similar results as in (d = γ = 0.8 and d = 0.8, γ = 0.2) were equally
observed.

4.3. Scenario 3 (high): simulation procedure for heterogenous panel

We assume the following balanced fixed effect panel model with n the number of cross-sectional
units, t the time unit such that T = n× t is the total sample size.

yit = µi + βxit + ∆−γε1it

xit = ∆−dε2it
(20)

where µi = i ∀i ∈ 1, . . . , n implying µ = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]′ is the vector of intercept
across the units, β = −1, εit = (ε1it, ε2it)

′ being a Gaussian white noise with E(εit) = 0,
V ar(ε1it) = V ar(ε2it) = 1 and Cov(ε1it, ε2it) = ρ. We consider cases with ρ = 0, 0.4, 0.9,
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sample sizes T = 50, 100, 150, 200, 250, 300, 350, 400, 450, 500 and bandwidths power ηm =
0.65, 0.75 separately. We set d = 0.4, 0.8 and γ = 0.8, 0.2 for each d. The results for band-
width power ηm = 0.75 were presented in Figure 9 - 10 while results for ηm = 0.65 are shown
in Figure 11 - 12. For all tests, type I error was fixed at 5%.

Table 5: Average empirical type I error rate (when d = γ = 0.8) and power (when d = 0.8
and γ = 0.2) of heterogenous panel model for the six tests at bandwidth ηm = 0.65, 0.75 and
correlation ρ = 0.0, 0.4, 0.9

Type I error rate (%)

Method ρ = 0 ρ = 0.4 ρ = 0.9

0.65 0.75 0.65 0.75 0.65 0.75

CH06 1.536 2.178 1.144 1.764 0.238 0.418
MV04 4.674 0.524 8.514 0.974 21.318 3.498
N10 35.918 42.204 30.720 36.760 6.730 8.164
R08 7.670 2.614 3.796 1.966 5.204 3.476
SFRB18 0.064 0.018 0.070 0.018 0.036 0.004
WWC15 0.290 0.046 0.188 0.028 0.094 0.020

Power (%)

CH06 6.420 47.658 3.496 33.948 1.462 18.852
MV04 70.418 41.738 54.928 27.392 34.934 15.766
N10 2.602 1.686 2.298 1.299 1.982 0.988
R08 0.846 24.412 1.792 11.171 6.672 4.570
SFRB18 1.780 11.696 1.384 9.742 0.458 2.508
WWC15 5.260 12.370 1.854 4.980 0.242 1.182

Figure 9 presents the simulation results for the empirical type I error rate at the high level
(heterogenous panel model) and bandwidth 0.75 when d = γ = 0.8. The results showed that
all the tests underestimates the 5% threshold imposed at all levels of correlation except for the
method of Nielsen (2010) at all correlation levels. For d = γ = 0.4, all the tests overestimates
the imposed 5% threshold except the methods of Nielsen (2010); Souza et al. (2018). On the
other hand, for the power, Figure 10 shows that when d = 0.8, γ = 0.2, the group of tests with
high power are Marmol and Velasco (2004) and Chen and Hurvich (2006) while tests with
moderate through low power are Robinson (2008a), Souza et al. (2018),Wang et al. (2015)
and Nielsen (2010). In constrast, when d = 0.4, γ = 0.2, the group of tests with high power
are Wang et al. (2015); Marmol and Velasco (2004); Robinson (2008a); Chen and Hurvich
(2006) while Nielsen (2010); Souza et al. (2018) are again the lowest in terms of power.

Figure 11 presents the simulation results for the empirical type I error rate at the high level
(heterogenous panel model) and bandwidth 0.65. The results at d = γ = 0.8 showed that
the the methods of Chen and Hurvich (2006), Souza et al. (2018) and Wang et al. (2015)
underestimates the 5% threshold imposed at all levels of correlation. The methods of Nielsen
(2010), Robinson (2008a) and Marmol and Velasco (2004) overestimates the 5% threshold
imposed at all levels of correlation. For d = γ = 0.4, all the tests overestimates the imposed
5% threshold except the methods of Nielsen (2010); Souza et al. (2018). Figure 12 shows that
the only test with high power is Marmol and Velasco (2004) while other tests returned low
power at various correlation levels. In constrast, when d = 0.4, γ = 0.2, the group of tests
with high power are Wang et al. (2015); Marmol and Velasco (2004); Robinson (2008a); Chen
and Hurvich (2006) while Nielsen (2010); Souza et al. (2018) are again the lowest in terms of
power.

Table 5 presents the overall results for the heterogenous panel model when d = 0.8, γ = 0.2.
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Table 6: Average empirical type I error rate (when d = γ = 0.4) and power (when d = 0.4
and γ = 0.2) of heterogenous panel model for the six tests at bandwidth ηm = 0.65, 0.75 and
correlation ρ = 0.0, 0.4, 0.9

Type I error (%)

Method ρ = 0 ρ = 0.4 ρ = 0.9

0.65 0.75 0.65 0.75 0.65 0.75

CH06 63.700 68.068 43.042 46.326 19.486 21.014
MV04 95.334 97.548 94.802 97.318 94.062 96.576
N10 0.064 0.034 0.078 0.036 0.108 0.028
R08 86.306 82.232 86.724 85.954 93.236 94.856
SFRB18 0.014 0.012 0.008 0.004 0.000 0.000
WWC15 97.126 97.466 94.530 94.858 87.170 87.424

Power (%)

CH06 63.136 61.892 40.880 34.454 16.494 9.396
MV04 98.392 99.018 97.050 98.722 92.714 97.470
N10 0.046 0.010 0.044 0.012 0.058 0.018
R08 88.372 82.174 90.274 88.074 94.796 95.894
SFRB18 0.012 0.014 0.010 0.014 0.000 0.000
WWC15 97.434 97.548 94.748 94.506 86.598 83.018

All the six tests achieved low power at the two bandwidth levels ηm = 0.65, 0.75 across various
correlation levels. Similarly, for the empirical type I error rate, the performance at ηm = 0.75
is better for most of the tests compared to at ηm = 0.65. Thus, the final conclusion about
the best test would be drawn using ηm = 0.75 results. Therefore, at ηm = 0.75, the uniformly
most powerful test that maintains the 5% size, highest power and moderate robustness to
correlation levels is Chen and Hurvich (2006).

Table 6 presents the overall results for the heterogenous panel model when d = 0.4, γ = 0.2.
All the six tests except Nielsen (2010); Souza et al. (2018) achieved high power at the two
bandwidth levels ηm = 0.65, 0.75 across various correlation levels. Similarly, for the empirical
type I error rate, the performance at ηm = 0.75 is not different from ηm = 0.65 with all tests
overestimating the true type I error rates across various correlation levels. Therefore, none
of the six tests is valid for testing fractional cointeration in heterogenous panel settings when
d < 0.5. However, all the tests except Nielsen (2010); Souza et al. (2018) are usable for testing
fractional cointegration in heterogenous panel settings when d < 0.5.

5. Application to real-life dataset

The datasets used here were drawn from Yahoo Finance and Kenneth French’s Data Library.
Five Industries portfolios (Cnsmr, Manuf, HiTec, Hlth, and Other) for 240 months were
extracted from Kenneth French’s Data Library. This dataset was used to compute the industry
realized volatility. The market volatility data was extracted from Yahoo Finance for three
composite portfolios (NYSE, NASDAQ and AMEX). The market portfolios were aggregated
to be used as constant input for the realized industry portfolios. We let IVit i = 1, 2, 3, 4, 5, t =
1, . . . , 240 represent industry volatility and MVit represent market volatility. The associated
fractional cointegrated panel model is given by

IVit = µi + βMVit + ∆−γε1it

MVit = ∆−dε2it.
(21)

We estimated the fractional cointegration parameters d and γ using bandwidth ηm = 0.75
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for each industry and for the pooled industries (Panel). It is essential to test the equality
of d across portfolios to ensure the validity of pooling. The tests of Robinson and Yajima
(2002) and Nielsen and Shimotsu (2007) were applied and the estimated result observed is
(Tstat = 0.378, p − value = 0.3528). The result shows that the null hypothesis of equality of
d across various portfolios holds. Furthermore, the test for null hypothesis of no fractional
cointegration was conducted using the six tests and the results reported in Table 7.

Table 7: Estimate of d, γ, β and test of hypothesis of no fractional cointegration for the five
industries and market average

Method/Parameter Market Cnsmr Manuf HiTec Hlth Other Panel

d̂ 0.55 0.55 0.52 0.61 0.46 0.74 0.58
γ̂ 0.20 0.42 0.87 0.32 0.34 0.56

β̂ 0.746 0.980 1.110 0.680 1.261 0.955

SE(β̂) (0.016) (0.022) (0.043) (0.028) (0.029) (0.016)

rank : (r̂) 1.000 1.000 1.000 1.000 1.000 1.000

CH06 Statistic 2.592 0.677 -0.566 1.186 3.621 -0.222
Decision TRUE FALSE FALSE FALSE TRUE FALSE

MV04 Statistic 0.027 0.129 2.702 0.753 171.286 13.429
Decision FALSE FALSE FALSE FALSE TRUE TRUE

N10 Statistic 3.677 3.339 2.970 3.302 3.604 3.756
Decision FALSE FALSE FALSE FALSE FALSE FALSE

R08 Statistic 2.871 0.362 5.000 0.385 1.925 4.073
Decision FALSE FALSE TRUE FALSE FALSE TRUE

SFRB18 Statistic 3.076 0.205 -1.136 0.449 3.784 3.268
Decision TRUE FALSE FALSE FALSE TRUE TRUE

WWC15 Statistic 7.540 2.162 0.786 2.797 12.691 1.279
Decision TRUE TRUE FALSE TRUE TRUE FALSE

By default, realized industry volatility is cointegrated with market volatility if γ̂ < d̂. Table 4
shows that γ̂ < d̂ for most of the industries except HiTec industry with γ̂ > d̂. Thus, expect-
edly, the null hypothesis of no fractional cointegration should be rejected for industries with
γ̂ < d̂ if the difference is significant. The methods of Chen and Hurvich (2006) and Souza
et al. (2018) behaves similarly with rejection of null hypothesis when there is large difference
between the memory parameters for the industries. The presence of fractional cointegration
in two industries could not trigger panel fractional cointegration with Chen and Hurvich
(2006) while it triggers with Souza et al. (2018). The results of Marmol and Velasco (2004)
and Wang et al. (2015) are not reliable as high false rejections were observed in the various
simulation scenarios. In addition, rejection of no fractional cointegration in three of the five
industries with Wang et al. (2015) could not lead to overall rejection of the null hypothesis of
no fractional panel cointegration. The results from methods of Robinson (2008a) and Nielsen
(2010) are also not reliable as they are not applicable to nonstationary series with d̂ > 0.5.
Therefore, further exploration of the methods of Chen and Hurvich (2006) and Souza et al.
(2018) is necessary to resolve if truly a fractional panel cointegration exists in the dataset.

Note: A decision is TRUE in Table 4 if the null hypothesis of no fractional cointegration is
rejected and FALSE if otherwise.
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6. Conclusion

The objective of this paper is to compare the applicability of six existing semiparametric
fractional cointegration tests in time series and panel data settings. Leschinski et al. (2020)
already presented an extensive comparative simulation study of the tests in time series data
and observed that the best bandwidth is 0.75 and the best test at both d < 0.5 and d > 0.5 is
Souza et al. (2018). The tests were adjudged based on their ability to achieve the imposed type
I error, high power and robustness to different correlation structures. Based on the results of
the simulation conducted in this paper, it can be concluded that the best test for examining
fractional cointegration in time series data is Souza et al. (2018). This findings corroborates
the results observed in Leschinski et al. (2020). On the other hand, the simulation results also
revealed that the best test for examining panel fractional cointegration is Chen and Hurvich
(2006). Furthermore, the real-life industries and market volatility data analysis corroborates
the applicability of the two methods. Also, most of the tests performed better with bandwidth
ηm = 0.75 compared to ηm = 0.65.

Overall, the various results observed with fractional cointegration in panel settings showed
that there is still room for improvement as even the best test Chen and Hurvich (2006) could
not achieve 60% power under the heterogenous panel model condition. This, therefore, implies
that further modification of the methods of Chen and Hurvich (2006) and Souza et al. (2018)
is vital to achieving improved applicability in fixed and random effects panel settings.
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Figure 7: Empirical type I error rate (%) for homogenous panel model at bandwidth ηm =
0.65, d = γ = 0.8, d = γ = 0.4 and (i.) ρ = 0, (ii.) ρ = 0.4, (iii.) ρ = 0.9
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Figure 8: Empirical power (%) for homogenous panel model at bandwidth ηm = 0.65, d =
0.8,γ = 0.2, d = 0.4,γ = 0.2 and (i.) ρ = 0, (ii.) ρ = 0.4, (iii.) ρ = 0.9
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Figure 9: Empirical type I error rate (%) for heterogenous panel model at bandwidth ηm =
0.75, d = γ = 0.8, d = γ = 0.4 and (i.) ρ = 0, (ii.) ρ = 0.4, (iii.) ρ = 0.9
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Figure 10: Empirical power (%) for heterogenous panel model at bandwidth ηm = 0.75,
d = 0.8,γ = 0.2, d = 0.4,γ = 0.2 and (i.) ρ = 0, (ii.) ρ = 0.4, (iii.) ρ = 0.9
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Figure 11: Empirical type I error rate (%) for heterogenous panel model at bandwidth ηm =
0.65, d = γ = 0.8, d = γ = 0.4 and (i.) ρ = 0, (ii.) ρ = 0.4, (iii.) ρ = 0.9
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Figure 12: Empirical power (%) for heterogenous panel model at bandwidth ηm = 0.65,
d = 0.8,γ = 0.2, d = 0.4,γ = 0.2 and (i.) ρ = 0, (ii.) ρ = 0.4, (iii.) ρ = 0.9
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