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Abstract

The generalized Topp-Leone-Weibull (GTL-W) distribution is a generalization of Weibull
distribution which is obtained by using generalized Topp-Leone (GTL) distribution as a
generator and considering Weibull distribution as a baseline distribution. Weibull dis-
tribution is a widely used survival model that has monotone- increasing or decreasing
hazard. But it cannot accommodate bathtub shaped and unimodal shaped hazards. As a
survival model, GTL-W distribution is more flexible than the Weibull distribution to ac-
commodate different types of hazards. The present study aims at fitting GTL-W model as
an accelerated failure time (AFT) model to censored survival data under Bayesian setting
using R and Stan languages. The GTL-W AFT model is compared with its sub-model and
the baseline model. The Bayesian model selection criteria LOOIC and WAIC are applied to
select the best model.

Keywords: generalized Topp-Leone-Weibull distribution, baseline distribution, censored data,
monotone hazard, accelerated failure time, Stan, LOOIC, WAIC.

1. Introduction

Topp and Leone (1955) introduced a new probability distribution having one parameter on
the support (0, 1). Nadarajah and Kotz (2003) discussed this distribution and derived many
relevant functions and quantities, for instance, characteristic function, moments. The cumu-
lative distribution function (cdf) and probability density function (pdf) of a random variable
X having Topp-Leone (TL) distribution with shape parameter a > 0 and 0 < x < 1 are given
as follows:

F (x|a) = xa(2− x)a = {x(2− x)}a

f(x|a) = 2a(1− x)xa−1(2− x)a−1

Since the support of TL distribution is (0, 1), so it can not be used in many areas including in
survival analysis. Recently, Sangsanit and Bodhisuwan (2016) and Al-Shomrani, Arif, Shawky,
Hanif, and Shahbaz (2016) extended TL distribution as the Topp-Leone generated (TL-G)
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family of distributions. Suppose, G(x) = G(x|ξ), and g(x) = g(x|ξ) be the baseline cdf and
pdf of a continuous random variable X. If TL distribution is considered as a generator then
the TL-G family of distributions is obtained by replacing x with G(x) in the TL distribution
and is given as below:

F (x|a, ξ) = G(x)a[2−G(x)]a = {G(x)[2−G(x)]}a (1)

f(x|a, ξ) = 2ag(x)[1−G(x)]G(x)a−1[2−G(x)]a−1 (2)

where f(x) = d
dxF (x), g(x) = d

dxG(x), support of F (x|a, ξ) is the support of G(x) and ξ is the
vector of parameters of baseline distribution G(x) and we can write X ∼ TL-G (a, ξ). Further
generalization of TL-G model is considered in the next section.

1.1. Generalized Topp-Leone-G model

Rezaei, Sadr, Alizadeh, and Nadarajah (2017) generalized the TL-G(a, ξ) distribution by ex-
ponentiating the baseline cdf G(x) with an additional shape parameter b > 0. Mahdavi (2017)
made generalization of TL-G model with different consideration. Motivated by Cordeiro and
de Castro (2011) , in this article, the generalization of TL-G family due to Rezaei et al. (2017)
is called as the generalized Topp-Leone-G (GTL-G) family of distributions. So the GTL dis-
tribution is considered as the generator of the new family, GTL-G model. The cdf, survival
function (sf) and pdf of GTL-G model can be written as:

F (x|a, b, ξ) = {G(x)b[2−G(x)b]}a (3)

S(x|a, b, ξ) = 1− {G(x)b[2−G(x)b]}a (4)

f(x|a, b, ξ) = 2abg(x)[1−G(x)b]G(x)ab−1[2−G(x)b]a−1 (5)

where, shape1 a > 0, shape2 b > 0, and ξ is the vector of parameters of baseline distribution
G(x), support of F (x|a, b, ξ) is the support of G(x) and we can write X ∼ TL-G (a, ξ). The
GTL-G model will be tractable if the baseline cdf G(x) and pdf g(x) have simple analytic
forms. Considering the cdf of Weibull distribution G(x) as the baseline distribution, the
GTL-W distribution is derived and discussed as a survival model with Bayesian perspective.

Random number generation from GTL-G model:
Suppose that U ∼ Uniform(0, 1). Then

F (x) = F (x|a, b, ξ) = u

{G(x)b[2−G(x)b]}a = u

G(x) =
{

1−
√

(1− u1/a)
}1/b

(6)

This is the general expression for generating random numbers from GTL-G model for any
baseline cdf G(x).

2. Weibull survival model

Suppose, survival time T follows Weibull distribution with shape α(> 0) and scale parameter
λ(> 0). Then the pdf g(t), cdf G(t), survival function (sf) Ḡ(t) and hazard function (hf) h(t)
of Weibull distribution are given as below (Lawless 2003):

g(t|α, λ) = (α/λ)(t/λ)(α−1)exp[−(t/λ)α], t > 0

G(t|α, λ) = 1− exp[−(t/λ)α]
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Ḡ(t|α, λ) = exp[−(t/λ)α]

h(t|α, λ) = (α/λ)(t/λ)(α−1)

and we write T∼ Weibull(α, λ). The Weibull distribution is one of the basic lifetime distri-
butions used in survival analysis. The hazard function of Weibull distribution is monotone-
increasing or decreasing. Moreover, its survival and hazard functions can be expressed ex-
plicitly and as such, it can handle censored data easily and effectively. Because of flexibility
and tractability of hazard and survival functions, Weibull model is widely used in modelling
reliability and survival data. But the distribution is not suitable for analyzing data having
bathtub shaped and unimodal shaped hazard rates. So to capture different types of hazards,
more flexible generalization of the Weibull model is essential in fitting skewed survival data.

2.1. Weibull AFT model

The accelerated failure time (AFT) model considers linear regression of logarithm of survival
time T on a number of covariates and is used for studying the effect of a covariate that
accelerates or decelerates the survival process. The AFT models are parametric models as they
depend on the distribution of survival times. The AFT model postulates a direct relationship
between failure time and covariates (Kalbfleisch and Prentice 2002). The models are becoming
popular as they directly explain reduction or prolongation of the time to event. If survival
time T depends on a number of covariates x1, x2, . . . , xp then the AFT model can be written
as:

log(T ) = β0 +
p∑
j=1

βjxj + σz = x′β + σZ

where, βj , j = 0, 1, 2, . . . , p are the regression coefficients, σ(> 0) is a scale parameter, and
random error Z has a specified probability distribution. For instance, if Z has an extreme
value distribution then T has Weibull distribution (Lee and Wang 2013; Collett 2015).

Suppose that a random variable Z has a standard extreme value distribution with den-
sity function g(z) = exp[z − exp(z)] and survival function S(z) = exp[−exp(z)]. Sub-
stituting z = (logt − x′β)/σ in the extreme value distribution, Weibull AFT model, T

∼ Weibull( 1
σ , exp(x′β)), is obtained as follows:

g(t|σ, β,x) =
( σ−1

exp(x′β)

)( t

exp(x′β)

)( 1
σ
−1)

exp

(
−
( t

exp(x′β)

) 1
σ

)
(7)

G(t|σ, β,x) = 1− exp

(
−
( t

exp(x′β)

)1/σ)
(8)

Ḡ(t|σ, β,x) = 1−G(t|σ, β,x) = exp

(
−
( t

exp(x′β)

)1/σ)
(9)

h(t|σ, β,x) = g(t)/Ḡ(t) =
( σ−1

exp(x′β)

)( t

exp(x′β)

)(1/σ−1)
(10)

Considering the Weibull AFT model as the baseline model, GTL-W AFT model is developed.

2.2. Generalized Topp-Leone-Weibull AFT model

Aryal, Ortega, Hamedani, and Yousof (2017) introduced Topp-Leone generated Weibull dis-
tribution and illustrated with real data sets using maximum likelihood method of estimation
and showed that the model fit the data better than the other competitive models. GTL dis-
tribution is considered as a generator of the new family of models and Weibull AFT model
is considered as the baseline model G. The generalized Topp-Leone-Weibull (GTL-W) AFT
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model is obtained by substituting Weibull AFT model in the GTL-G model. The cdf, sf, pdf
and hf of the GTL-W AFT model can be written as follows:

F (t|θ,x) = {G(t)b[2−G(t)b]}a (11)

S(t|θ,x) = 1− {G(t)b[2−G(t)b]}a (12)

f(t|θ,x) = 2ag(t)[1−G(t)]G(t)a−1[2−G(t)]a−1 (13)

h(t|θ,x) = f(t|θ,x)/S(t|θ,x) (14)

where, t > 0, g(t) = g(t|σ, β,x) and G(t) = G(t|σ, β,x) are the pdf and cdf of Weibull AFT
model (Equation 7, 8), θ = (a, b, σ, β), shape1 a > 0, shape2 b > 0, shape3 α > 0, and scale
parameters λ > 0; moreover, σ = 1/α, λ = exp(x′β) from the AFT model log(T ) = x′β+σZ
and we write T ∼ GTL-W(a, b, 1/σ, exp(x′β)). Since the GTL-W distribution has explicit forms
of survival function and hazard function, so, it can be used properly as a survival model to
analyze censored data under Bayesian framework.

Random number generation from GTL-W AFT model:
Suppose, U ∼ Uniform(0, 1). Then

F (x) = F (x|a, b, α, λ) = u

G(x) = {1−
√

(1− u1/a)}1/b

1− exp[−(x/λ)α] = {1−
√

(1− u1/a)}1/b

x = (exp(x′β))

{
− log

[
1− {1−

√
(1− u1/a)}1/b

]}σ
(15)

This is the expression for generating random numbers from GTL-W AFT model, where,
σ = 1/α and λ = exp(x′β).

3. Description of data

Survival times of 80 patients with diffuse histiocytic lymphoma according to stage of tumour-
stage III and stage IV are given in Table 1. The death times are recorded in days ( ? indicates
censored time). Vidakovic (2011) and Armitage, Berry, and Matthews (2002) discussed the
data from different aspects and the data was first reported by McKelvey, Gottlieb, Wilson,
Haut, Talley, Stephens, Lane, Gamble, Jones, Grozea et al. (1976).
The aim of this study is to fit GTL-W AFT model for comparing the survival patterns of
two groups of patients under Bayesian framework and the fitted model is compared with its
sub-model and baseline Weibull AFT model on the basis of LOOIC and WAIC.

4. Bayesian analysis of GTL-W AFT model

The basic assumption of Bayesian statistics is that parameters θ in a probability model are
random variables having prior distributions π(θ) while the observed data drawn from a sam-
pling density are considered as fixed. Bayes Theorem is the main instrument of Bayesian
statistics that establishes the relationship among the prior distributions, likelihood and the
posterior distribution.

4.1. Bayes theorem

Suppose that f(y|θ) be the density of data having parameter θ that may be a vector and
from this density observed data values y = (y1, y2, . . . , yn) are obtained independently. The
Bayes Theorem states that (Gelman, Stern, Carlin, Dunson, Vehtari, and Rubin 2013),
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Table 1: Survival times (in days) of patients with diffuse histiocytic lymphoma according to
stage of tumour

Stage III (19 patients)
6, 19, 32, 42, 42, 43?, 94, 126?, 169?, 207, 211?,
227?, 253, 255?, 270?, 310?, 316?, 335?, 346?

Stage IV (61 patients)
4, 6, 10, 11, 11, 11, 13, 17, 20, 20, 21, 22, 24, 24, 29,
30, 30, 31, 33, 34, 35, 39, 40, 41?, 43?, 45, 46, 50, 56,
61?, 61?, 63, 68, 82, 85, 88, 89, 90, 93, 104, 110, 134,
137, 160?, 169, 171, 173, 175, 184, 201, 222, 235?,
247?, 260?, 284?, 290?, 291?, 302?, 304?, 341?, 345?

π(θ|y) =
f (y, θ)

h(y)
=

π(θ)f (y|θ)∫
π(θ)f (y|θ)dθ

=
L(θ|y)π(θ)∫
π(θ)f (y|θ)dθ

(16)

where, π(θ|y) is the posterior distribution of parameter θ given the data y, π(θ) is the prior
distribution of θ that is selected independent of the data and the likelihood function is given
by

L(θ|y) = f (y|θ) = f (y1 , y2 , . . . , yn |θ) =
n∏

i=1

f (yi |θ)

h(y) =
∫
π(θ)f (y|θ)dθ is the marginal distribution of y which is independent of θ and con-

sidered as normalizing constant. So dropping h(y) from Equation (16), we can write

π(θ|y) ∝ L(θ|y)× π(θ)

Posterior ∝ Likelihood×Priors (17)

Equation (17) is the main essence of Bayes Theorem. That is, the posterior distribution of
parameters are obtained by combining prior distribution and data. All inferences are based
on the posterior distribution.

4.2. Likelihood function of GTL-W AFT model

The likelihood function of GTL-W AFT model for a right censored sample is derived as
(Collett 2015; Lawless 2003; Wang, Ryan, and Faraway 2018):

L(θ|D) =
n∏
i=1

f(ti|a, b, σ, β, x)δiS(ti|a, b, σ, β, x)1−δi

=
n∏
i=1

(
f(ti|a, b, σ, β, x)

S(ti|a, b, σ, β, x)

)δi
S(ti|a, b, σ, β, x)

=
n∏
i=1

(
h(ti|a, b, σ, β, x)

)δi
S(ti|a, b, σ, β, x)

=
n∏
i=1

(
h(ti|θ, x)

)δi
S(ti|θ, x) (18)

where, S(ti|a, b, σ, β, x), f(ti|a, b, σ, β,x) and h(ti|a, b, σ, β, x) of GTL-W AFT model are given
in Equation (12, 13, 14), θ = (a, b, σ, β), D = (t, δ,X), the censoring indicator δ = 0 if the
observation is censored and δ = 1 if the observation is failed, and X is the matrix of covariates
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which is known as design matrix or model matrix. The contribution of data to the posterior
distribution is ensured through the likelihood.

Taking logarithm of both sides of likelihood function, the log-likelihood can be written by the
following two alternative equations,

l(θ|D) =
n∑
i=1

(
δi(logf(ti|θ, x)− logS(ti|θ, x)) + logS(ti|θ, x)

)

l(θ|D) =
n∑
i=1

(
δi(logh(ti|θ, x)) + logS(ti|θ, x)

)

4.3. Prior distributions of GTL-W AFT model parameters

Selecting prior distributions of the parameters of a probability model of data is very impor-
tant as they might have significant influence on the posterior distribution of the parameters.
GTL-W density has two shape parameter(a, b), a positive scale parameter (σ) and regression
coefficients (β). So prior distributions for the parameters θ = (a, b, σ, β) are required to be
selected. For scale parameter σ, half-Cauchy distribution and for the regression coefficients
β, normal distribution are considered as weakly informative prior distribution (Gelman et al.
2006). But Cauchy sampling process may not converge to a stable mean and variance (McEl-
reath 2015). So in this article we consider half-t distribution (Wiper, Girón, and Pewsey 2008)
as prior for the scale parameter and for the shape parameters as well. Half-t distribution with
one degrees of freedom is equivalent to half-Cauchy distribution. The hyperparameters of the
prior distributions are chosen so that priors are almost flat (Figure 1), as such, the data
dominate the posterior through the likelihood.

Truncated student’s t distribution restricted to the interval [0, ∞] is called the half-t dis-
tribution. For the scale parameter, π(σ) =half-t(df, location, scale) = student t(2, 0, 10)
T[restricted interval] = student t(2, 0, 10) T[0, ], for the shape parameters, π(a) = π(b) =
student t(5, 0, 10) T[0, ] and for the regression coefficients, π(βj) = normal(µ, σ) = normal(0,
10) are considered as priors. Stan has provision to write truncated distributions. The pa-
rameters are assumed to be independent and their joint prior density function can be written
as:

π(θ) = p(a, b, σ, β) = π(a)× π(b)× π(σ)× π(β) (19)

4.4. Posterior distribution of GTL-W AFT model parameters

The joint posterior distribution of the parameters θ = (a, b, σ, β) =
(a, b, σ, β0, β1, . . . , βp) of GTL-W AFT model given the data can be written following Bayes
Theorem as:

π(θ|D) ∝ L(θ|D)× π(θ)

π(θ|D) ∝ L(θ|D)× π(a)× π(b)× π(σ)× π(β) (20)

where the likelihood L(θ|D) is given by Equation (18), parameters are assumed to be inde-
pendent.

The normalized joint posterior distribution and the marginal distributions of the parameters
are difficult to obtain analytically that requires solving high dimensional integration and, as
such, Markov chain Monte Carlo (MCMC) simulation technique is employed to get the esti-
mates and other relevant results.
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Figure 1: Density curves of half-t and normal distribution for different values of the parameters

4.5. Rationale of using Bayesian methods to survival analysis

Bayesian methods are becoming increasingly popular among the survival analysis researchers.
Ibrahim, Chen, and Sinha (2001) and Li and Ma (2013) highlighted some reasons of ap-
plying Bayesian methods to survival analysis. As the survival time is non-negative, usually
positively skewed and censored, so the least squares method is not applicable for analyzing
survival data. The likelihood function is the most important way of handling survival data
that considers each of the censored and uncensored observations. But the likelihood func-
tion for censored data is complicated and different from likelihood function for a sample of
complete observations. The maximum likelihood method of estimation can be applied and
sampling distribution can be derived for inference procedures only for simple distributions for
some censoring schemes, not for all types of censoring. Large sample asymptotic sampling
distribution is difficult to derive for censored data, even that is not applicable for small sized
censored sample. Bayesian methods are very useful in survival analysis as it can analyze
censored survival data effectively and efficiently irrespective of sample size and can handle
complex models with any number of parameters using MCMC algorithms.

4.6. Stan code for fitting Bayesian GTL-W AFT model

Stan is a probabilistic programming language for Bayesian analysis. It uses no-U-turn sampler
(NUTS), an adaptive form of Hamiltonian Monte Carlo (HMC) sampling that is more efficient
than other Metropolis-Hastings algorithms, specially for high-dimensional models regardless
of whether the priors are conjugate or not (Carpenter, Gelman, Hoffman, Lee, Goodrich,
Betancourt, Brubaker, Guo, Li, and Riddell 2017; Hoffman and Gelman 2014). It is easier to
specify the constraints of the parameters in Stan. A prior can be specified in Stan, but if prior
is not specified, Stan uses uniform prior for each parameter. Bayesian softwares BUGS or
JUGS is flexible enough to specify a large variety of models, but for large data sets and com-
plex models they might take too long computing time or even may fail to provide solutions.
Stan can handle large data sets and complex models in less computing time than BUGS. The
number of iterations needed to achieve convergence is lower using Stan. Stan does not allow
discrete parameters. As Stan is a recently developed software, not much literature is available
on it. Gelman et al. (2013), Kruschke (2015), Korner-Nievergelt, Roth, Von Felten, Guélat,
Almasi, and Korner-Nievergelt (2015) and Turkman, Paulino, and Müller (2019) discussed
Stan to some extent. However, a comprehensive Stan manual is available online. Stan is
becoming popular and it is being rapidly developed by the Stan Development Team.
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A complete Stan program consists of six code blocks. Sequentially, the blocks are: (i) data
block (ii) transformed data block, (iii) parameters block, (iv) transformed parameters block
(v) model block (vi) generated quantities block. A sequence of programming statements sur-
rounded by curly braces {} form a block. A statement ends with a semi-colon. A comment
in Stan are indicated by a double slash //. The Stan Development Team (2017) called the
language as ‘Stan’ in honor of Stanislaw Ulam, one of the creators of the Monte Carlo methods.

The six code blocks for implementing Bayesian GTL-W AFT model are shown in the ap-
pendix. The model block is mandatory that contains the model specification. Priors and
likelihood are mentioned in model block. All other blocks are optional. In generated quanti-
ties block, the pointwise log-likelihood log_lik and posterior prediction y_rep are calculated
and are stored for future use. Three functions, namely, (i) log survival function, (ii) log hazard
function and (iii) log-likelihood function are defined at the beginning, before starting the code
blocks. Stan codes are written in the editor RStudio . Stan has interface with R by rstan .

Stan codes are written with comments for fitting the GTL-W AFT model under Bayesian
framework and are given in the appendix. The whole code block is saved as stancode_gtlw

that is used afterwards.

Data structure for Stan to fit GTL-W model:
Stan requires a data list that might include a matrix, vector and values. So, data must
be prepared to feed into Stan. An object list is constructed using R and assigned it
to dat1 (say).

# survival times in days

y <- c(6,19,32,42,42,43,94,126,169,207,211,227,

253,255,270,310,316,335,346,4,6,10,11,11,

11,13,17,20,20,21,22,24,24,29,30,30,31,33,

34,35,39,40,41,43,45,46,50,56,61,61,63,68,

82,85,88,89,90,93,104,110,134,137,160,169,

171,173,175,184,201,222,235,247,260,284,

290,291,302,304,341,345)

# event=1 indicates death and 0 indicates censored

event <- c(rep(1,5),0,1,0,0,1,0,0,1,rep(0,6),

rep(1,23),0,0,rep(1,4),0,0,rep(1,12),0,

rep(1,7),rep(0,10))

# x1=0 if disease stage is III and 1 if stage is IV

x1 <- c(rep(0,19),rep(1,61))

x = cbind(1,x1) # model matrix

N = nrow(x)

M = ncol(x)

dat1 = list(y=y,event=event,x=x,N=N,M=M)

Model fitting:
To fit the GTL-W AFT model under Bayesian framework and to simulate from the pos-
terior distribution, the function stan() from the package rstan is called and a Stanfit
object M1 (say) is created. Stan has default initialization strategy. But initial values
can be supplied by the user for avoiding divergent transitions. To decrease divergent
transitions, the argument control=list(adapt_delta=0.9995 is also used. In Stan,
default choice for chain and iteration are 4 and 2000 respectively. We have fixed 4
chains and 4000 iterations for each chain, that is, for each of the 4 chains 4000 sam-
ples are drawn for each of the parameters. Stan uses half of the iterations as warmup
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iterations, so post-warmup draws per chain is 2000. Relevant codes are given in the
appendix.

Summarizing output of Stanfit GTL-W AFT model:
Using print() command, summary results are obtained from the fitted object M1 and
are reported in Table 2. Trace plots are made for visual convergence checking. For
posterior plot bayesplot package and for model comparison criteria LOOIC and WAIC,
loo package are used and they are reported in Table 5. Codes are explained in the
appendix.

Table 2: Summary results of fitted GTL-W AFT model

Parameter mean se mean sd 2.5% 50% 97.5% n eff R̂

beta[1] -3.248 0.105 4.379 -12.274 -10.740 4.656 1744 1.001
beta[2] -1.046 0.007 0.474 -2.000 -1.843 -0.121 4248 1.000
shape1 10.418 0.141 8.344 1.283 1.799 31.942 3494 1.001
shape2 9.607 0.139 7.394 1.037 1.535 28.078 2825 1.001
sigma 7.524 0.052 2.220 3.291 3.918 11.978 1839 1.001

Convergence of MCMC algorithm for GTL-W AFT model:
An MCMC algorithm simulates samples from the complex posterior distribution. So
an algorithm is converged to the target posterior distribution means that the Markov
chain is stationary and adding more samples will not change the location and shape
of the density of the posterior distribution sensibly and hence will not change the
estimates and other relevant results. Quantitatively, potential scale reduction factor,
R̂ (Gelman and Rubin 1992), is used for checking convergence of MCMC algorithms
which is defined based on between chain variance and within chain variance. Gelman
et al. (2013) recommended acceptable limit of potential scale reduction factor R̂ < 1.1
and effective sample size as n eff = 100.

From the summary features (Table 2), it is evident that R̂ is less than 1.1, n eff is
greater than 100; moreover, Monte Carlo (MC) error, se mean is less relative to the
standard deviations for all of the parameters which is expected, that is, convergence of
MCMC algorithm to the posterior distribution has been attained.

Graphically, convergence of an MCMC algorithm can be judged, mainly, by trace plot
(Gelman et al. 2013; Ntzoufras 2009; Hamra, MacLehose, and Richardson 2013). Trace
plot (Figure 2) shows no periodicity indicating convergence of the MCMC sampling
process to the joint posterior distribution. That is, MCMC algorithm HMC-NUTS
performs correctly to explore the target posterior distribution.

Evaluating Bayesian fitting of GTL-W AFT model:
A fitted Bayesian model is accepted as adequate if it predicts the future observations
that are consistent with the present data. Model fit is assessed visually by posterior
predictive density (PPD) plots which are made using bayesplot package. From pos-
terior predictive density plots (Figure 3), it is observed that GTL-W AFT model is
compatible with the data.

Interpretation of results of fitted GTL-W AFT model:
Summary features of the posterior distribution of the parameters of GTL-W AFT model
are shown in Table 2. In regression modelling with Stan, intercept is denoted as β[1].
The coefficient β[2] of covariate x1, stage of tumour, is negative which means that death
will be accelerated for patients with stage IV tumour, consequently, length of lifetime
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Figure 2: Trace plot of fitted GTL-W AFT model are obtained by plotting parameter val-
ues along the Y-axis against their corresponding iterations along the X-axis and there is no
tendency of periodicity of the plot indicating convergence of the algorithm
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PPD plot (GTL−W AFT model, y and y_rep are overlayed)

Figure 3: Posterior predictive density (PPD) plot of GTL-W AFT model is done by plotting
the data y and then overlaying the density of the predicted values y rep. PPD plot of GTL-W
AFT model shows that the posterior predictive density fits the data well
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will decrease. Estimated value of the coefficient β[2] = −1.046 belongs to the 95%
credible interval (−2.000,−0.121) which does not include zero value indicates statistical
significance. Moreover, it is seen from the caterpillar plot (Figure 4) that zero value is
not contained in the 95% credible interval for the coefficient β[2], so the coefficient is
statistically significant. The acceleration factor is exp(β2) = exp(−1.046) = 0.35(< 1)
for a patient with stage IV tumour. Therefore, duration of life of a patient with stage
IV tumour would be 0.35 times shorter than that of a patient having tumour of stage
III , that is, survival time would be shorter for the patients with stage IV tumour.

beta[1]

beta[2]

sigma

−10 −5 0 5 10

Caterpillar plot (GTL−W AFT model)

Figure 4: Caterpillar plot of GTL-W AFT model shows that the 95% credible interval of the
parameter β[2] does not include zero value that means the parameter is statistically significant

5. Sub-models of GTL-W AFT model

If b = 1 then GTL-W (a, b, 1/σ, exp(x′β)) AFT model reduces to TL-W (a, 1/σ, exp(x′β))
AFT model,

F (t|a, σ, β,x) = {G(t|σ, β,x)(2−G(t|σ, β,x))}a (21)

where,

G(t|σ, β,x) = 1− exp

(
−
( t

exp(x′β)

)1/σ)
is the cdf of baseline Weibull(1/σ, exp(x′β)) AFT model. So TL-W AFT model and
the baseline Weibull AFT model are analyzed and compared with GTL-W AFT model
using Bayesian approach.

5.1. Bayesian analysis of sub-models of GTL-W AFT model

Using the same data and same prior distributions the sub-model TL-W AFT and the
baseline Weibull AFT model are fitted with little manipulations of Stan code. Neces-
sary results and graphs are shown for comparison.

Fitting TL-W AFT model with Stan and summarizing output:
Stanfit object M2 (say) is created for TL-W AFT model. The Stan codes for TL-W AFT
model are given in the appendix and the whole code block is saved as stancode_gtlw.
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Summary results are reported in Table 3. Posterior predictive density plot are shown
in Figure 5. LOOIC and WAIC are reported in Table 5.

Table 3: Summary results of fitted TL-W AFT model

Parameter mean se mean sd 2.5% 50% 97.5% n eff R̂

beta[1] 3.846 0.032 1.283 2.984 3.916 6.193 1604 1.002
beta[2] -1.132 0.009 0.478 -1.444 -1.124 -0.225 2976 1.001
shape1 15.365 0.237 9.852 8.401 13.089 39.597 1729 1.001
sigma 4.097 0.022 0.941 3.453 4.052 6.048 1752 1.002

400 800 1200 1600

y
yrep

PPD plot(TL−W AFT model,y and y_rep are overlayed)

Figure 5: The plot shows that the posterior predictive density of TL-W AFT model fits the
data well

Fitting Weibull AFT model and summarizing output:
Stanfit object M3 is created for Weibull AFT model. The Stan codes for TL-W AFT
model are given in the appendix and the whole code block is saved as stancode_weibull.
Summary results are reported in Table 4. Posterior predictive density plot are shown
in Figure 6. LOOIC and WAIC are reported in Table 5.

Table 4: Summary results of fitted Weibull AFT model

Parameter mean se mean sd 2.5% 50% 97.5% n eff R̂

beta[1] 6.257 0.008 0.468 5.431 6.221 7.277 3205 1.001
beta[2] -1.318 0.009 0.510 -2.401 -1.284 -0.406 3304 1.001
sigma 1.274 0.002 0.149 1.021 1.259 1.604 4041 1.000

6. Model comparison

Selecting the best model from among the several competitive models is always crucial
in Bayesian statistics and in classical statistics as well. Two information criteria Leave-
one-out cross validation (LOO) and Widely Applicable or Watanabe Akaike Information
Criterion (WAIC) (Vehtari, Gelman, and Gabry 2017; McElreath 2015; Gelman et al.
2013) are usually used to compare the Bayesian fitted models. Pointwise log-likelihoods
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PPD plot (Weibull AFT model, y and y_rep are overlayed)

Figure 6: Posterior predictive density (PPD) plot of Weibull AFT model shows that the
model is not compatible well with the current data

are calculated in the generated quantities block of Stan program and afterwards ‘loo-
package’ (Vehtari, Gelman, Gabry, and Yao 2018) extracts and uses these quantities
to obtain numerical measures LOOIC (LOO information criterion) or WAIC for model
comparison and they are presented in the Table 5. A better fitted model has less LOOIC
or WAIC than the others. On the basis of LOOIC and WAIC, it is evident that the AFT
models TL-W and GTL-W are better fitted models than the baseline Weibull AFT
model; TL-W and GTL-W AFT models are almost indistinguishable and might be
equally acceptable for analyzing the tumour stage data. As generalizations, GTL-W
has 4 parameters, TL-W model has 3 parameters whereas Weibull distribution has 2
parameters. The well-known Occam’s principle of parsimony is, “ If two models describe
the observations equally well, we should choose the simpler one.” (Lesaffre and Lawson
2012). Accordingly, TL-W AFT model is the most preferred model.

Table 5: LOOIC and WAIC of the fitted model

Model LOOIC WAIC

Weibull 661.7 661.7

TL-W 655.3 655.3

GTL-W 655.2 655.1

7. Conclusion

The generalized Topp-Leone-Weibull (GTL-W), Topp-Leone-Weibull (TL-W) and Weibull
survival models are fitted as accelerated failure time models under Bayesian framework
to the tumour data. For all the models, the coefficient of tumour stage is statistically
significant. Comparing posterior predictive density plots, LOOIC, WAIC and the number
of parameters of the models, it can be concluded that the TL-W AFT model is the
best suited model for fitting the censored tumour data. The death is accelerated as
the acceleration factor is less than one for patients having stage IV tumour, that is,
survival time is shorter for the patients with stage IV tumour than that of the patients
with stage III tumour (Figure 7).
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Figure 7: Survival curve for patients with stage III tumour is higher than that of the patients
with stage IV tumour

Appendix

A1. Derivation of equation (2)

F (x|a, ξ) = G(x)a[2−G(x)]a = {G(x)[2−G(x)]}a

f(x|a, ξ) =
d

dx
F (x|a, ξ) =

d

dx
{2G(x)−G(x)2}a

f(x|a, ξ) = a{G(x)[2−G(x)]}a−1 d
dx
{2G(x)−G(x)2}

f(x|a, ξ) = a{G(x)[2−G(x)]}a−1[2g(x)− 2G(x)g(x)]

f(x|a, ξ) = 2ag(x)[1−G(x)]G(x)a−1[2−G(x)]a−1

A2. Derivation of equation (6)

F (x) = F (x|a, b, ξ) = u

{G(x)b[2−G(x)b]}a = u

2G(x)b − [G(x)b]2 = u1/a

1− 2G(x)b + [G(x)b]2 = 1− u1/a

[1−G(x)b]2 = 1− u1/a

G(x) =
{

1−
√

(1− u1/a)
}1/b
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A3. Stan code for GTL-W AFT model

library(rstan)

stancode_gtlw = "

functions{

// defines the log survival

vector log_S (vector t,real shape1,real shape2,

real shape3,vector scale){

vector[num_elements(t)] log_S ;

for (i in 1:num_elements(t)){

log_S[i] = log(1-(((weibull_cdf(t[i],shape3,

scale[i]))^(shape1*shape2))*

((2-(weibull_cdf(t[i],shape3,

scale[i]))^(shape2))^(shape1))));

}

return log_S;

}

//defines the log hazard

vector log_h (vector t,real shape1,real shape2,

real shape3,vector scale){

vector[num_elements(t)] log_h ;

vector[num_elements(t)] ls ;

ls = log_S(t,shape1,shape2,shape3,scale) ;

for (i in 1:num_elements(t)){

log_h[i] = (log(2)+log(shape1)+log(shape2)+

weibull_lpdf(t[i]|shape3,scale[i])+

((shape1*shape2)-1)*weibull_lcdf(t[i]|shape3,scale[i])+

log(1-(weibull_cdf(t[i],shape3,scale[i]))^(shape2))+

(shape1-1)*(log(2-(weibull_cdf(t[i],shape3,

scale[i]))^(shape2))))- ls[i];

}

return log_h;

}

//defines the log-likelihood for right censored data

real surv_gtlw_lpdf(vector t,vector d,real shape1,

real shape2,real shape3,vector scale){

vector[num_elements(t)] log_lik;

real prob;

log_lik = d .* log_h(t,shape1,shape2,shape3,scale)+

log_S(t,shape1,shape2,shape3,scale);

prob = sum(log_lik);

return prob;

}

}

//data block

data{

int N; // number of observations

vector <lower=0> [N] y;// observed times

vector <lower=0,upper=1> [N] event;//censoring(1=obs.,

// 0=cens.)

int M; // number of covariates

matrix[N,M] x;//model matrix (N rows, M columns)
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}

//parameters block

parameters{

vector [M] beta;//coef.in the linear predictor

real<lower=0> shape1;// shape parameter

real<lower=0> shape2;// shape parameter

real<lower=0> sigma;//scale parameter sigma=1/shape3

}

// transformed parameters block

transformed parameters{

vector[N] linpred;

vector[N] mu;

linpred = x*beta; //linear predictor

for (i in 1:N){

mu[i] = exp(linpred[i]);

}

}

// model block

model{

shape1 ~ student_t(5,0,10) T[0, ];//prior for shape1

shape2 ~ student_t(5,0,10) T[0, ];//prior for shape2

sigma ~ student_t(2,0,10) T[0, ];//prior for sigma

beta ~ normal(0,10);//prior for reg. coefficients

y ~ surv_gtlw(event,shape1,shape2,1/sigma,mu);

//model for the data

}

// generated quantities block

generated quantities{

vector[N] y_rep;//posterior predictive value

vector[N] log_lik;//log-likelihood

{ for(n in 1:N){

log_lik[n] = (((log(2)+log(shape1)+log(shape2)+

weibull_lpdf(y[n]|1/sigma,exp(x[n,]*beta))+

((shape1*shape2)-1)*weibull_lcdf(y[n]|1/sigma,

exp(x[n,]*beta))+log(1-(weibull_cdf(y[n],1/sigma,

exp(x[n,]*beta)))^(shape2))+(shape1-1)*

(log(2-(weibull_cdf(y[n],1/sigma,exp(x[n,]*beta)))^

(shape2))))-(log(1-(((weibull_cdf(y[n],1/sigma,

exp(x[n,]*beta)))^(shape1*shape2))*

((2-(weibull_cdf(y[n],1/sigma, exp(x[n,]*beta)))^

(shape2))^(shape1))))))*event[n])+

(log(1-(((weibull_cdf(y[n],1/sigma,exp(x[n,]*beta)))^

(shape1*shape2))*((2-(weibull_cdf(y[n],1/sigma,

exp(x[n,]*beta)))^(shape2))^(shape1)))));}

}

{real u;

u=uniform_rng(0,1);

for (n in 1:N){

y_rep[n] = (exp(x[n,]*beta))*

((-log(1-(1-(sqrt(1-u^(1/shape1))))^

(1/shape2)))^(sigma));}

}
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}

"

The whole code block is saved as stancode_gtlw that is used afterwards.

A3.1. Fitting GTL-W AFT model with Stan

#selecting initial values

require(survival)

#regression coefficient of log(y) as initial values

beta1 = solve(crossprod(x),crossprod(x,log(y)))

#convert matrix to a vector

beta1 = c(beta1)

#beta1 is used as initial values for 4 chains

#fitting with stan

M1 <- stan(model_code = stancode_gtlw,data=dat1,

init=list(list(beta=beta1),list(beta=beta1),

list(beta=beta1),list(beta=beta1)),iter=4000,

chains=4,control=list(adapt_delta=0.9995))

A3.2. Summarizing output of fitted GTL-W AFT

print(M1,c("beta","shape1","shape2","sigma"),

probs=c(0.025,0.05,0.975),digits=3)

require(bayesplot)

require(loo)

stan_trace(M1, pars=c("beta","sigma"))+

ggtitle("Trace plot (GTL-W AFT model)")

#posterior predictive check

# posterior predictive value y_rep

y_rep <- as.matrix(M1, pars="y_rep")

ppc_dens_overlay(y,y_rep[50:70,])+grid_lines()+

ggtitle("PPD plot (GTL-W AFT model,

y and y_rep are overlayed)")

#Caterpillar plot for showing credible intervals

stan_plot(M1,pars=c("beta","sigma"),ci_level=.95)+

grid_lines()+

ggtitle("Caterpillar plot (GTL-W AFT model)")

#calculating looic and waic using loo package

log_lik_1 <- extract_log_lik(M1,parameter_name="log_lik",

merge_chains = TRUE)

loo_1 <- loo(log_lik_1,r_eff = NULL,save_psis = FALSE)

print(loo_1)

waic1 <- waic(log_lik_1)

print(waic1)
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A4. Stan code for TL-W AFT model

stancode_tlw = "

functions{

// defines the log survival

vector log_S (vector t, real shape1, real shape2,

vector scale){

vector[num_elements(t)] log_S ;

for (i in 1:num_elements(t)){

log_S[i] = log(1-(((weibull_cdf(t[i],shape2,scale[i]))^

(shape1))*((2-

(weibull_cdf(t[i],shape2,scale[i])))^(shape1))));

}

return log_S;

}

//defines the log hazard

vector log_h (vector t,real shape1,real shape2,

vector scale){

vector[num_elements(t)] log_h ;

vector[num_elements(t)] ls ;

ls = log_S(t,shape1,shape2, scale) ;

for (i in 1:num_elements(t)){

log_h[i] = (log(2)+log(shape1)+weibull_lpdf(t[i]|

shape2,scale[i])+

weibull_lccdf(t[i]|shape2,scale[i])+(shape1-1)*

weibull_lcdf(t[i]|shape2,scale[i])+(shape1-1)*

(log(2-weibull_cdf(t[i],shape2,scale[i]))))-

ls[i];

}

return log_h;

}

//defines the log-likelihood for right censored data

real surv_tlw_lpdf(vector t,vector d,

real shape1,real shape2, vector scale){

vector[num_elements(t)] log_lik;

real prob;

log_lik = d .* log_h(t, shape1, shape2, scale) +

log_S(t, shape1, shape2, scale);

prob = sum(log_lik);

return prob;

}

}

//data block

data{

int N; // number of observations

vector <lower=0> [N] y; // observed times

vector <lower=0,upper=1> [N] event;//censoring(1=obs.,

// 0=cens.)

int M; // number of covariates

matrix[N, M] x;//model matrix (N rows, M columns)

}

//parameters block
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parameters{

vector [M] beta;// coeff.in the linear predictor

real<lower=0> shape1; // shape parameter

real<lower=0> sigma;//scale parameter sigma=1/shape2

}

// transformed parameters block

transformed parameters{

vector[N] linpred;

vector[N] mu;

linpred = x*beta;//linear predictor

for (i in 1:N){

mu[i] = exp(linpred[i]);

}

}

// model block

model{

shape1 ~ student_t(5,0,10) T[0, ];//prior for shape1

sigma ~ student_t(2,0,10) T[0, ];//prior for sigma

beta ~ normal(0,10);//prior for reg. coefficients

y ~ surv_tlw(event, shape1, 1/sigma, mu);

//model for the data

}

// generated quantities block

generated quantities{

vector[N] y_rep;//posterior predictive value

vector[N] log_lik;//log-likelihood

{ for(n in 1:N){

log_lik[n] = (((log(2)+ log(shape1)+

weibull_lpdf(y[n]|1/sigma, exp(x[n,]*beta))+

weibull_lccdf(y[n]|1/sigma,exp(x[n,]*beta))+

(shape1-1)*weibull_lcdf(y[n]|1/sigma,exp(x[n,]*

beta))+ (shape1-1)*(log(2-weibull_cdf(y[n],

1/sigma,exp(x[n,]*beta)))))-(log(1-

(((weibull_cdf(y[n],1/sigma,exp(x[n,]*beta)))^

(shape1))*((2-(weibull_cdf(y[n],1/sigma,

exp(x[n,]*beta))))^(shape1))))))*event[n])+

(log(1-(((weibull_cdf(y[n],1/sigma,exp(x[n,]*

beta)))^(shape1))*((2-(weibull_cdf(y[n],1/sigma,

exp(x[n,]*beta))))^(shape1)))));}

}

{real u;

u=uniform_rng(0,1);

for (n in 1:N){

y_rep[n] = (exp(x[n,]*beta))*

((-log(sqrt(1-u^(1/shape1))))^(sigma));}

}

}

"

The whole code block is saved as stancode_tlw.
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A4.1. Fitting TL-W AFT model with Stan and summarizing output

#selecting initial values

require(survival)

#regression coefficient of log(y) as initial values

beta1 = solve(crossprod(x),crossprod(x,log(y)))

beta1 = c(beta1) #convert matrix to a vector

#beta1 is used as initial values for 4 chains

# fitting with stan

M2 <- stan(model_code=stancode_tlw,data=dat1,

init=list(list(beta=beta1),list(beta=beta1),

list(beta=beta1),list(beta=beta1)),iter=4000,

chains=4,control=list(adapt_delta=0.9995))

print(M2, c("beta", "shape1", "sigma"),

probs=c(0.25,0.5,0.975),digits=3)

require(bayesplot)

require(loo)

#posterior predictive check

#posterior predictive value y_rep

y_rep <- as.matrix(M2, pars="y_rep")

ppc_dens_overlay(y,y_rep[550:560,])+ grid_lines()+

ggtitle("PPD plot(TL-W AFT model,

y and y_rep are overlayed)")

#calculating looic and waic using loo package

log_lik_1 <- extract_log_lik(M2,parameter_name="log_lik",

merge_chains = TRUE)

loo_1 <- loo(log_lik_1, r_eff = NULL,save_psis = FALSE)

print(loo_1)

waic1 <- waic(log_lik_1)

print(waic1)

A5. Stan code for Weibull AFT model

stancode_weibull = "

functions{

// defines the log survival

vector log_S (vector t,real shape,vector scale){

vector[num_elements(t)] log_S;

for (i in 1:num_elements(t)){

log_S[i] = weibull_lccdf(t[i]|shape,scale[i]);

}

return log_S;

}

//defines the log hazard

vector log_h (vector t,real shape,vector scale){

vector[num_elements(t)] log_h ;

vector[num_elements(t)] ls ;
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ls = log_S(t,shape, scale) ;

for (i in 1:num_elements(t)){

log_h[i] = (weibull_lpdf(t[i]|shape,scale[i]))-ls[i];

}

return log_h;

}

//defines the log-likelihood for right censored data

real surv_weibull_lpdf(vector t,vector d,real shape,

vector scale){

vector[num_elements(t)] log_lik;

real prob;

log_lik = d .* log_h(t,shape,scale)+

log_S(t,shape,scale);

prob = sum(log_lik);

return prob;

}

}

//data block

data{

int N; // number of observations

vector <lower=0> [N] y; // observed times

vector <lower=0,upper=1> [N] event;//censoring (1=obs.,

// 0=cens.)

int M; // number of covariates

matrix[N,M] x;//model matrix (N rows, M columns)

}

//parameters block

parameters{

vector [M] beta; //coeff. in the linear predictor

real<lower=0> sigma;//scale parameter sigma=1/shape

}

// transformed parameters block

transformed parameters{

vector[N] linpred;

vector[N] mu;

linpred = x*beta;//linear predictor

for (i in 1:N){

mu[i] = exp(linpred[i]);

}

}

// model block

model{

sigma ~ student_t(2,0,10) T[0,];//prior for sigma

beta ~ normal(0,10); //prior for reg. coefficients

y ~ surv_weibull(event, 1/sigma, mu);

//model for the data

}

// generated quantities block

generated quantities{

vector[N] y_rep;//posterior predictive value

vector[N] log_lik;//log-likelihood

{ for(n in 1:N){
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log_lik[n] = (((weibull_lpdf(y[n]|1/sigma,exp(x[n,]*beta)))-

(weibull_lccdf(y[n]|1/sigma,exp(x[n,]*beta))))*

event[n])+(weibull_lccdf(y[n]|1/sigma,

exp(x[n,]*beta)));}

}

{ for (n in 1:N){

y_rep[n]= weibull_rng( 1/sigma, exp((x[n,]*beta)));}

}

}

"

The whole code block is saved as stancode_weibull.

A5.1. Fitting Weibull AFT model with Stan and summarizing output

# fitting with stan

M3 <- stan(model_code=stancode_weibull,data=dat1,

chains=4,iter=4000)

print(M3,c("beta","sigma"),digits=3,probs=c(0.025,0.50,0.975))

require(bayesplot)

require(loo)

#posterior predictive check

#posterior predictive value y_rep

y_rep <- as.matrix(M3,pars="y_rep")

ppc_dens_overlay(y,y_rep[110:120,])+grid_lines()+

ggtitle("PPD plot (Weibull AFT model,

y and y_rep are overlayed)")

#calculating looic and waic using loo package

log_lik_1 <- extract_log_lik(M3,parameter_name="log_lik",

merge_chains = TRUE)

loo_1 <- loo(log_lik_1,r_ef=NULL,save_psis=FALSE)

print(loo_1)

waic1 <- waic(log_lik_1)

print(waic1)
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