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Abstract

The hybrid censoring is a mixture of type-I and type-II censoring schemes. This paper
presents the statistical inferences of the inverse Weibull distribution parameters when the
data are type-I hybrid censored. First, we consider the maximum likelihood estimates of
the unknown parameters. It is observed that the maximum likelihood estimates can not
be obtained in closed form. We further obtain the Bayes estimates and the corresponding
highest posterior density credible intervals of the unknown parameters under the assump-
tion of independent gamma priors using the importance sampling procedure. We also
compute the approximate Bayes estimates using Lindley’s approximation technique. The
performance of the Bayes estimates have been compared with maximum likelihood esti-
mates through the Monte Carlo Markov chain techniques. Finally, a real data set have
been analysed for illustration purpose.

Keywords: Bayes estimators, hybrid censoring, importance sampling, maximum likelihood
estimators.

1. Introduction

Type-I and type-II are the two most popular censoring schemes which are in use for any
life testing experiment. Two mixtures of type-I and type-II censoring schemes are known as
hybrid censoring schemes. If the experiment terminates as soon as either the R-th failure or
the pre-specified censoring time T occurs, type-I hybrid censoring scheme has been performed.
In type-II hybrid censoring scheme, the experiment terminates when the latter of the R-th
failure and the censoring time 7T occurs. Denote the i-th order statistic from a random sample
of size n by X;.,,. Thus, in type-I hybrid censoring scheme, one observes Xi.,, -+ , X;.,, when
Xrn < min{Xpg.,, T} and X,41.p, > min{Xpg.,, T}. Under this scheme, the experiment may
be terminated too early resulting in very few failures. Under type-II hybrid censoring scheme,
the experiment terminates when Xi.p, -+ , X, are observed for which X,., < max{Xpg.,, T}
and X,11., > max{Xpg.,,T}. In both hybrid censoring schemes, the failure number R and
censoring time T are pre-fixed.

Epstein (1954) first introduced the hybrid censoring scheme and analyzed the data under the
assumption of exponential lifetime distribution of the experimental units. An extensive lit-
erature exists for hybrid censoring under classical and Bayesian framework and the overview
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presented below describe some of the work done on this topic. Gupta and Kundu (1988) ob-
tained confidence and credible intervals for an one-parameter exponential distribution. Kundu
(2007) obtained the MLE’s, the approximate MLE’s and Bayes estimates of shape and scale
parameters of a Weibull distribution. Kundu and Pradhan (2009) analyzed a generalized
exponential distribution in presence of hybrid censoring. Balakrishnan and Shafay (2012) de-
veloped a general method for obtaining Bayes prediction intervals of future observable based
on an observed type-I hybrid censored data. Rastogi and Tripathi (2013) derived maximum
likelihood and Bayes estimates of the unknown model parameters of a Burr XII distribu-
tion. Singh and Tripathi (2015) studied a two-parameter lognormal distribution using hybrid
censored samples and derived various point and interval estimates of unknown lognormal
parameters from classical and Bayesian viewpoint. Tripathi and Rastogi (2016) considered
point and interval estimation of the unknown parameters of a generalized inverted exponen-
tial distribution and obtained various classical and Bayes estimates based on hybrid censored
samples. Hyun, Lee, and Yearout (2016) analyzed a two-parameter log-logistic distribution
based on type I and type II hybrid censored data.

In this paper, we provide point and interval estimates for the unknown parameters of an
inverse Weibull (IW) distribution based on type-I hybrid censored samples. The probability
density function (PDF) of an IW distribution is

fx(z;a,\) = ‘%x_(aﬂ)e_(em)_a, x>0, a>0, 6>0, (1)

and the corresponding cumulative distribution function (CDF) is given by
Fx(z;o,\) = e 0077 x>0, a>0,0>0, (2)

where a and 6 are the shape and scale parameters respectively. As in the Weibull distribution,
the shape parameter a governs the shape of the PDF, the hazard function and the general
properties of the IW distribution. When o = 1 and a = 2, the IW distribution reduce to the
inverse exponential and inverse Rayleigh distributions respectively.

Extensive work has been done on the IW distribution. Kundu and Howlader (2010) consid-
ered the Bayesian inference and prediction problems of the IW distribution based on type-II
censored data. Singh, Singh, and Sharma (2013) proposed a Bayesian procedure for the es-
timation of the parameters of IW distribution under type-II hybrid censoring scheme. Ateya
(2017) and Ateya (2020) considered estimation of the unknown parameters of the IW distri-
bution based on Balakrishnan’s unified hybrid censoring and generalized type-II progressive
hybrid censoring schemes, respectively. We consider the inference for IW distribution under
type-I hybrid censoring scheme.

The rest of the paper is organized as follows. In Section 2, we discuss the maximum likeli-
hood estimation of the scale and shape parameters of the IW distribution. The asymptotic
confidence bounds are provided in section 3. Bayesian analyses are presented in Section 4. In
Section 5, we conduct a simulation study to compare the performance of proposed methods
and then analyzed a real data set for illustrative purpose in Section 6. Finally we conclude
the paper in section 7.

2. Maximum likelihood estimation

In this section we provide the maximum likelihood estimators (MLEs) of the unknown pa-
rameters. We re-parametrize the model as follows A\ = 9%. Suppose n identical units are put
on life test. Then under type-I hybrid censoring scheme, we observe only the first r failure
times, say ti,to,...,t.. Under the assumptions that the lifetime distribution of the items are
independent and identically distributed (i.i.d.) IW random variable, the likelihood function
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for the type-I hybrid censored data without the multiplicative constant can be written as

Lo, X | data) = a" N'e izt % H:E?H(l — e a>0, A\>0, (3)
i=1

where x; = %, u = min(t(gy,T) and r denotes the number of units that would fail before

the time u. Taking the logarithm of (3), we obtain
l(a, A | data) = rin(a)) )\Zw + (a+1 Zlnxz +(n—r)n(l—e 7). (4)

Taking derivatives with respect to o and X of (4), and equality to zero, we obtain

Oln L r d o - Au=® Inue™
olnL U’ae’“_a
o “Zx e =0 °

=1

It is clear that the normal equations do not have explicit solutions. We need some numerical
techniques to solve the simultaneous equations.

3. Asymptotic confidence bounds

Since the MLEs of the unknown parameters «, A can not be obtained in closed forms, it is not
easy to derive the exact distributions of the MLEs. Therefore, the exact confidence intervals
for the unknown parameters is difficult to obtain. In this section, we compute the observed
Fisher information based on the likelihood equations. These will enable us to develop pivotal
quantities based on the limiting normal distribution and then construct asymptotic confidence
intervals.

From the log-likelihood function in (4) we obtain the observed Fisher information as

Ol (a, N) (n — ) Au"%(Inu)2e " (1 — Au~)
9z ————)\Zx (In z;)? v

[e3

(n— 7“))\2u_2°‘ In u2e—2 "
(1—eNue)?

2?l(a, \) (n —r)uIn(u)e ™ " (1 — Au~?)
g i Inw;
T 000N To T | — o e

)

[e3

(n— T)u_Qa In(u)Ae2 "
(1— e )2 ’
M or (n=rute T (n— )y et

ON2 T2 1 — e~ Mu—@ (1 . e_Aufa)2

The observed Fisher information matrix can be inverted to obtain the asymptotic variance-
covariance matrix of the MLEs as

91(a,)\) 921(a,\) -1 19
1) 95 las  “dadn las _ (Vv
- 3%1(a,)\) o 3, . —\ yiz yp22 )
QA N2 Q,\
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It is well known that MLEs are asymptotically normally distributed and using this property
of MLEs, we can construct the approximate confidence intervals for o and A. Since the & and
A is asymptotically normally distributed, we have the asymptotic distribution of

e p_ A=)
N 2= Vv’
to be standard normal. Using the pivotal quantities P; and P, 100(1 — v)% asymptotic
confidence intervals for o and A based on the MLEs are

(@23 VVILA + 2 VY1), (6)

P =

N)

and

A — lfﬂmﬁ) (7)

M

respectively, where 23 is the (%)th upper percentile of standard normal distribution.

4. Bayesian analysis

In this section we compute the Bayes estimates and the associated HPD credible intervals of
the shape and scale parameters. We need to assume some prior distributions of the unknown
parameters for the Bayesian inference. Unfortunately, when both the parameters are un-
known, there does not exist any natural conjugate priors. In this paper similarly as in Kundu
and Howlader (2010), it is assumed that o and A\ have the following independent gamma
priors;

m(ala,b) oc a® et a >0,

m(Ae,d) oc A tem A > 0.

Here all the hyper parameters a, b, ¢, d are assumed to be known and positive. Based on the
above priors, the joint density function of the data, o and A is

L(data,a,)\) r+a 1>\r+c 1 —bcx Md+>27_, Z}H$a+1 e u*a)n—r‘ (8)

Based on L(data,c, \), we obtain the joint posterior density function of  and A\ given the

data as
L(data, a, \)

157 157 L(data, a, N)dadA”

Therefore, the posterior density function of @ and A given the data can be written as

m(a, A | data) =

(9)

(e, A | data) < g1(A | o, data)ga(a | data)h(a, A | data), (10)

here g1 (\|a, data) is a gamma density function with the shape and scale parameters as (r+c)
and (d+ Y., %), respectively. Also ga(a | data) is a proper density function given by

r

1 ~1,-b +1
g2(a | data) attrleba | | & (11)

Moreover

h(a, X | data) = (1 — e ")n7T,

Therefore, the Bayes estimate of any function of o and A , say g(a, A) under the squared error

loss function is

IS 1o gl A) gi(A | o, data)ga(a | data)h(a, X | data)dod\
IS T 91N | a, data)ga(a | data)h(a, A | data)dadA

gB(o, A) = (12)
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Unfortunately, (12) can not be computed analytically for general g(a, ). We apply two
different approximation methods to evaluate the Bayes estimators of a and A. The first
approximation technique due to Lindley (1980) and the second is an importance sampling
procedure as suggested by Chen and Shao (1999). The details are explained below.

4.1. Lindley’s approximation

It is known that the (12) can not be computed explicitly. Because of that Lindley (1980)
proposed an approximation to compute the ratio of two integrals such as (12). This has been
used by several authors to obtain the approximate Bayes estimators. This approximation
technique uses Taylor’s series expansion of the integral expression around maximum likelihood
estimator.

Based on Lindley’s approximation, the approximate Bayes estimates of o and A under the
squared error loss functions are respectively

13072 + lo3To1To + 3lo1 11710 + lia(ToaTi1 + 27221)]

-1 -1
+ (a _ —b> Ti1 + <C - —d> T12 (13)
& 3

“ ~ 1
)\L:)\+§

R 1
OéL:Oé+§

I30T12711 + lo3Tay + lo1 (T11790 + 275) + 3l127'22721]

a—1 c—1
—|—< A —b>721+< 3 —d>722, (14)

where & and \ are MLESs of & and A respectively and a, b, ¢, d are the known hyper parameters.
The explicit expressions of 71, 712, T22, 30, 721, l03, 12, [21 are provided in the Appendix A.

Although using Lindley’s approximation we can obtain the Bayes estimates, but it is not
possible to construct the HPD credible intervals using this method. Therefore, in the next
subsection we propose the importance sampling procedure to draw samples from the posterior
density function and in turn compute the Bayes estimates, and also construct HPD credible
intervals.

4.2. Importance sampling

We use importance sampling to generate a sample from the posterior density function m(a, A |
data) and then to compute the Bayes estimates and HPD credible intervals. The following
theorem can be useful for further development.

Theorem 1. The conditional density of «, given data, say ga2(« | data) is log-concave.
Proof. See Appendix B. O

Because of log-concavity of ga(a | data), the idea of Devroye (1984) can be used to gener-
ate a sample from go(a | data). Moreover, since gi(A | a,data) follows gamma, it is quite
simple to generate from g1 (A | «, data). Now we would like to provide the importance sam-
pling procedure to compute the Bayes estimates and also to construct the credible interval
of g(a, B) = 6 (say). Similarly as in Ragab and Madi (2005) a simulation based consistent
estimate of E(g(«, 3)) = E(0) can be obtained using Algorithm as given below.

Algorithm.

Step 1: Generate « from go(. | data) using the method developed by Devroye (1984).
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Step 2: Generate A from ¢i(. | «, data).
Step 3: Repeat Step 1 and Step 2 and obtain (a1, A1), ..., (@ar, Anr)-

Step 4: An approximate Bayes estimate of 6§ under a squared error loss function can be

obtained as
ﬁ Zf\i1 Oih(a, \i | data)

(0 N) = 0= : 15
! ) ﬁ Zf\i1 h(ai, A; | data) (15)
Step 5: Obtain the posterior variance of g(a, §) = 6 as
1 M N2
y a7 2iz1 (0i — 0)h(ay, A; | dat
V(g | data)) = M 2=t 0 = 0)"h(ai, A | data) -

7 2ol s h(ai, i | data)

We now obtain the credible interval of 6 using the idea of Chen and Shao (1999). Let us denote
(0 | data) and I1(0 | data) as the posterior density and posterior distribution functions of 6,
respectively. Also let #(®) be the -th quantile of 0, i.e.,

0 = inf{0;11(0 | data) > B}, 0<p<1.

Observe that for a given 6%, II(0* | data) = E{Ip<¢- | data}, where Iy<g~ is the indicator
function. Therefore, a simulation consistent estimator of II(0* | data) can be obtained as

i S Tg,<p-hlai, i | data)

I1(6* | data) = 17
(O dat) = S e, | data) "
For i =1,..., M, let {(;)} be the ordered values of ;, and
_ hlag), Ay | data)
M h(au, Ai | data)’
be the associated weight, then we have
0 ‘ 0" < 9(1)
H(G* | data) = Z;’:l W 9(1) <0 < 0(i+1) (18)
1 0" > 0(ar)-
Therefore, (%) can be approximated by
A 0 8=0
0o _ { W = Z, (19
70 Siiwy < B< Y w )

To obtain a 100(1 — )% HPD credible interval for #, consider intervals of the form
N A 1H[A=B)M]
R, - <9<m,9<” T >> (20)

for j =1,2,...,M — [(1 — B)M], where [a] denotes the largest integer less than or equal to
[a]. Finally, among all R; choose that interval which has the smallest length.

5. Simulation studies

In this section we compare the performance of the different methods through a simulation
study. We estimate the unknown parameters using the MLE, Bayes estimators obtained
by Lindley’s approximations, and also by the Bayes estimators obtained by using MCMC
technique. The simulation study is carried out for different sample size and with different
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Table 1: The average estimates (A.E) and the associated MSE for «

(n,T) R MLE Bayes(Lindley) Bayes(MCMC)
prior 1 prior 2 prior 1 prior 2
20 AE 2.1113 2.1789 2.1068 2.1249  2.0919
MSE 0.1848 0.2078 0.1646 0.1325  0.0953
(30, 1.5) 25 AE 2.1091 2.0665 2.0948 2.1119  2.0992
MSE 0.1503 0.1382 0.1035 0.1463  0.1210
30 AE 2.1057 2.1356  2.0855 2.1062  2.0826
MSE 0.1519 0.1638  0.1231 0.1211  0.1163
20 AE 2.1394 2.1244  2.0993 2.1253  2.1256
MSE 0.1696 0.2187  0.1453 0.1218  0.0671
(30, 2.5) 25 AE 2.0999 2.1224  2.0851 2.0687 2.0639
MSE 0.1317 0.1708  0.1287 0.1054  0.0261
30 AE 2.0996 2.0466 2.1142 1.9790 1.9985
MSE 0.1306 0.3042  0.1625 0.1142  0.0184
35 AE 2.0586 2.0540  2.0209 2.0495  2.0262
MSE 0.0820 0.0740 0.0727 0.0667  0.0318
(50,1.5) 40 AE 2.0633 2.0738  2.0604 2.0424 1.9912
MSE 0.0791 0.1017  0.0752 0.0520  0.0275
50 AE 2.0623 2.0822  2.0609 2.0136  2.0124
MSE 0.0764 0.0847  0.0809 0.0709  0.0152
35 AE 2.0793 2.0795  2.0430 2.0196 2.0149
MSE 0.0747 0.0741  0.0649 0.0481 0.0032
(50,2.5) 40 AE 2.0682 2.0799  2.0847 2.0085 2.0068
MSE 0.0737 0.0722  0.0839 0.0296  0.0017
50 AE 2.0287 2.0525 2.0376 2.0013  2.0008
MSE 0.0691 0.0891 0.0547 0.0154  0.0006

choices of R, T values. For a particular set of hybrid censored data, the MLEs and Bayes
estimators are obtained as described before. Both non-informative and informative priors are
used for the shape and scale parameters. In case of non-informative prior we take a = b =
c=d = 0. We call it as Prior 1. Note that as the hyper-parameters go to zero, the prior
density becomes inversely proportional to its argument and also becomes improper. This
density is commonly used as an improper prior for parameters in the range of zero to infinity.
It should also be mentioned that when a = b = 0, w(«|a,b) is not log-concave, but the
posterior density function go(« | data) is still log-concave. For the informative prior, we chose
a=2b=1c=d=1We call it as Prior 2. For computing different point estimators
we generated 1000 samples from the IW distribution with @« = 2 and A\ = 1. The averages
and mean squared errors (MSE) of estimators of & and A are presented in Tables 1 and 2,
respectively.

We also compute the 95% asymptotic confidence intervals based on MLEs. For comparison
purposes, we compute the 95% HPD credible intervals from the Gibbs samples. We report the
average confidence/credible lengths in Table 3. In Table 3, the first and second row represent
the result for av and A, respectively.

Some of the points are quite clear from Tables 1 and 2. In Tables 1 and 2, it is observed that
the approximate Bayes estimators of unknown parameters based on Lindley’s approximation
match quite well with the Bayes estimators using MCMC method.

In most of the cases, the Bayes estimates obtained by using Lindley’s approximation of A
based on prior 1 perform better than the MLEs of A, but while for « it is the other way.
But in case of prior 2, the Bayes estimates using Lindley’s approximation of («, A) perform
marginally better than the MLEs for all cases considered. It is also observed that in most
of cases the performance in terms of average bias and the MSE of Bayes estimates obtained
by using MCMC procedure under Prior 1 are close to that of the corresponding behaviour
of the MLEs or the Bayes estimates obtained by Lindley’s approximations. But while using
informative prior (Prior 2), the performance of the Bayes estimates by using MCMC are much
better than the other estimates. Therefore, if the prior information are available, we should
use the Bayes estimates, otherwise MLEs may be used to avoid the computational cost.
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Table 2: The average estimates (A.E) and the associated MSE for A

(n,T) R MLE Bayes(Lindley) Bayes(MCMC)
prior 1 prior 2 prior 1 prior 2
20 AE 1.0464 0.9793 1.0119 1.0570 1.0537
(30,1.5) MSE 0.0514 0.0456 0.0472 0.0528  0.0425
25 AE 1.0298 1.0164 1.0170 0.9971  0.9993
MSE 0.0487 0.0406 0.0335 0.0452  0.0418
30 AE 1.0264 1.0122 1.0216 1.0371 1.0283
MSE 0.0461 0.0526  0.0418 0.0487  0.0395
20 AE 1.0107 1.0326 1.0071 1.0203 1.0237
(30,2.5) MSE 0.0467 0.0401  0.0445 0.0392  0.0359
25 AE 1.0275 1.0055  1.0449 1.0159  0.9787
MSE 0.0451 0.0591 0.0774 0.0309  0.0287
30 AE 1.0282 1.0673 1.0342 0.9958  0.9864
MSE 0.0437 0.0504 0.0418 0.0377  0.0261
35 AE 1.012 1.0002 1.0167 1.0423 1.0337
(50,1.5) MSE 0.0284 0.0258  0.0229 0.0276  0.0246
40 AE 1.0153 0.9944 1.0144 1.0334 1.0221
MSE 0.0271 0.0243  0.0226 0.0262  0.0241
50 AE 1.0267 1.0131 1.0175 1.017  1.0263
MSE 0.0266 0.0230  0.0278 0.0243  0.0240
35 AE 1.0159 1.0032 1.0013 1.0446 1.0373
(50,2.5) MSE 0.0260 0.0287 0.0259 0.0216  0.0207
40 AE 1.0221 1.0037  0.9903 1.0245 1.0327
MSE 0.0280 0.0255  0.0482 0.0219  0.0135
50 AE 1.0228 1.0322 1.0253 1.0087  1.0074
MSE 0.0262 0.0416  0.0261 0.0204  0.0018

For all the methods, and for both the estimators, it is observed that for fixed n as R or T
increases in most of cases the average biases, and the MSE decrease, it verifies the consistency
properties of the estimates.

Now, considering the confidence intervals and credible lengths, it is observed that the asymp-
totic results of the MLE work quite well. It can be seen that the average confidence lengths
is quite close to the average credible intervals, mainly for large n and R. But, in most of
the cases, the average lengths of the credible intervals are slightly shorter than the confidence
intervals. From Table 3 it is observed that the results obtained using informative priors are
not significantly different than the corresponding results obtained using non-proper priors.
Finally, note that Bayes estimates are most computationally expensive, followed by MLE.

6. Illustration

Consider the following data giving the maximum flood levels (in millions of cubic feet per
second) of the Susquehenna River at Harrisburg, Pennsylvenia over 20 four-year periods (1890
— 1969). These data are taken from Dumonceaux and Antle (1973).

0.654 0.613 0.315 0.449 0.297 0.402 0.379 0.423 0.379 0.324
0.269 0.740 0.418 0.412 0.494 0.416 0.338 0.392 0.484 0.265

Before progressing, first we want to check whether the IW distribution fits the data or not.
For this purpose, we have used the complete data. The MLEs and Bayes estimates of («,0)
based on the complete sample are (4.3143, 2.7905) and (4.1861, 2.7657), respectively. The
Kolmogorov-Smirnov distance between the empirical distribution function and the fitted dis-
tribution functions when the parameters are obtained by MLEs, and the associated p-value
are 0.1060 and 0.8557, respectively. Since the p-value is quite high, we cannot reject the null
hypothesis that the data are coming from the IW distribution. We have just plotted the
empirical cumulative distribution function and the fitted cumulative distribution function in
Figure 1. It shows that IWD fit the data very well. Now, we have created two artificially
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Table 3: The average confidence/credible lengths for the MLE and Bayes estimates of o and
A

(n,T) R MLE Bayes(MCMC)
prior 1 prior 2

20 1.4718 1.3986 1.3864
0.8106 0.8230  0.79180

(30,1.5) 25 1.4338 1.3891 1.3828
0.7978 0.7663  0.7565

30 1.4422 1.3911 1.3872

0.7996 0.7508  0.7500

20 1.4384 1.4024 1.3835

0.7891 0.8013  0.7812

(30,2.5) 25 1.2730 1.1916 1.2014
0.7873 0.7818  0.7416

30 1.2533 1.1885 1.1762

0.7788 0.7417  0.7469

35 1.1985 1.1842 1.1873

0.6144 0.6327  0.5990

(50,1.5) 40 1.0917 1.0916 1.0913
0.6147 0.5986  0.5295

50 1.0889 1.0862  1.0885

0.6164 0.6069  0.6014

35 1.0450 1.0381 1.0399

0.6022 0.5499  0.5427

(50,2.5) 40 0.9934 1.0057  0.9831
0.5968 0.5259  0.5082

50 0.9483 0.9129  0.9210

0.5958 0.5024  0.5169

the type-I hybrid censored data sets from the above uncensored data set, using the following
censoring schemes:

Scheme 1: R = 18,7 = 0.5.
In this scheme, it is observed that the R-th failure does not take place before time point 7'
For this scheme, the hybrid censored sample is:

0.265 0.269 0.297 0.315 0.324 0.338 0.379 0.379 0.392 0.402
0.412 0.416 0.418 0.423 0.449 0.484 0.494

From the above sample data, the MLEs of o and 6 are 4.2726 and 2.6565, respectively.
Since we do not have any prior information available, we use non-informative priors, i.e.,
a=b=c=d=0on both o and 8 to compute Bayes estimatores. Now using Algorithm
of section 4.2, we generate 1000 MCMC samples and based on them we compute the Bayes
estimates of a and 6 as 4.5665 and 2.8148, respectively. The 95% asymptotic confidence
intervals of o and 6 based on the empirical Fisher information matrix are (2.7207, 5.8244)
and (2.3623, 2.9507) respectively. Moreover, the 95% HPD credible intervals of o and 6 are
(2.4603, 5.2454), and (2.2977, 2.8928), respectively.

Scheme 2: R = 14,T = 0.45. In this scheme, it is observed that the R-th failure took place
before T'. In this case, the hybrid sample is:

0.265 0.269 0.297 0.315 0.324 0.338 0.379 0.379 0.392 0.402
0.412 0.416 0.418 0.423

Based on the sample, the MLEs and Bayes estimates of o and 6 are (3.6933, 2.5446) and
(3.8607, 2.7158) respectively. The 95% asymptotic confidence intervals of « and 6 are (2.2233,
5.1635) and (2.2088, 2.8804) respectively. We also compute the 95% HPD credible intervals
of @ and 0 and they are (2.3481, 5.2153), and (2.2718, 3.0145), respectively.
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Figure 1: The empirical and fitted distributions

7. Conclusion and discussion

The inverse Weibull distribution is found to be very appropriate over Weibull distribution
when data indicates the non-monotone hazard rate. There are various real life examples
where data don’t shows the monotone hazard rate. For example, Langlands, Pocock, Kerr,
and Gore (1997) have studied breast cancer data and observed that the mortality increases
initially, reaches to a peak after some time and then declines slowly. Such types of data can be
modelled through inverse Weibull distribution. Since last decade, many authors have studied
the classical as well as Bayesian estimation procedures for the estimation of the unknown
parameters of inverse Weibull distribution under different types censoring schemes. We men-
tioned some references in the Introduction for more information. By the way, estimation
of the inverse Weibull distribution parameters under type-I hybrid censoring has not been
developed yet.

In this paper we considered the classical and Bayesian inference of the inverse Weibull dis-
tribution based on type-I hybrid censored data. The maximum likelihood estimators of the
parameters can be obtained by using an iterative procedure. Hence the Bayesian inference
seems to be the natural choice for the analysis of certain survival data. The prior belief of the
model was represented by the independent gamma priors on the shape and scale parameters.
The squared error loss function was used as it is appropriate when large errors of the estima-
tion are considered to be more serious compared to other loss functions. It was observed that
the Bayes estimators and the HPD credible intervals can not be obtained in explicit form.
We proposed two approximations which can be implemented very easily. We compared the
performance of the Bayes estimators with the MLEs by Monte Carlo simulations and a real
life example. It was observed that the performances are quite satisfactory.

In practice, it is very important to choose the optimum censoring scheme from a class of pos-
sible schemes to obtain the highest amount of information about the unknown parameters.
Here possible schemes mean, for fixed sample size n, different choices of R and T'. Indeed,
introducing an effective procedure to obtain the optimum censoring scheme can be an inter-
esting topic for future research. Also, it may be of interest to obtain the one and two sample
predictive posteriors of future observations in the presence of type-I hybrid censored sample.
In addition, the inferential results of some life time models under type-I hybrid censored data
with random removals remain open. More work is needed in those directions.
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Appendix A

For the two-parameter case, using the notation (A1, A2) = («, \), the Lindley’s approximation
can be written as,

1
g=g(A, )+ 5 A+ 130B12 + log B21 + 121C12 + 112C91 | + p1Ai2 + p2Aa,

where,

IIL(A\, A2) .. L 0
A:ZZU)ZJTZ_% ll]: ( - 2)aza]:0717273az+]:37 bi = P

i=1 j=1 OMON, O

dg 0%g

Y=o YT g, P Inm(A1, A2), Ay = wiTii + w;Tji

2
B;j = (w;Ti; + ijij)T’i’ia Cij = 3w + wj(TiiTjj + 2Tij)7

here L(.,.) is the log-likelihood function of the observed data, m(A1, A2) is the joint prior
density function of (A1, A2) and 7;; is the (i,j)-th element of the inverse of the observed Fisher
information matrix. Moreover, A1 and )y are the MLEs of (A1, A2), respectively and all the
quantities are evaluated at ( Ay, Ag).

Now we have

)TL*T"

T
L(a, A | z) = o/ Ne A iz oF H z0 (1 — e
i=1
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Therefore, we obtain

2r  (n— r)u_3‘3‘e_;\“7d 3(n — r)u—?’de—?j\uﬂi N 2(n — T)U—Sde—?,j\u*d
)

loz =

3 1 —etu? (1— efﬁ\u—d)Q (1- 67:\11,_‘3‘)3
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30 = &3 B 1— efj\u—a
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The elements of the Fisher information matrix are obtained in section 4. By using (6),
75 = V%, where i,j = 1,2.

Now when g(«a, \) = «, then

’w1:1,’w220, ’LUZ'j:O, for i,j:1,2.

Therefore,
2
A =0,B12 = 7i1, Bo1 = 1722, C12 = 3111712,

2
Co1 = (To2T11 + 2731), A12 = 711, A21 = Ti2.

Now the first part of Lindley’s approximation follows by using

d—1 b—1
p=——-cp=——-—a
« A

For the second part, note that g(a, A) = A, then
w1 = 0,’[1)2 = l,wij = 0, for i,j = 1,2.

Therefore,
2 2
A =0, Bia = Ti2711, Ba1 = Ty, C12 = (11722 + 2715)

Co1 = 319721, A12 = T21, A21 = To2.

therefore the second part follows immediately.
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Appendix B

The conditional density of « given the data is

r

1 —1,-b +1
g2(a | data) attrlemba T patd
CES Ve I+

The logarithm of gs(«|data) without the additive constant is

In go(a|data) = —(r + ¢)In (d + Zm?) +(a+r—1)In(e) —ba+ (a+1) Zln(zi),

i=1 =1

Using Lemma 1 of Kundu (2007), it follows that

d ~ .

Therefore the result follows.
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