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Abstract

The sequential statistical decision making is considered. Performance characteristics
(error probabilities and expected sample sizes) for the sequential statistical decision rules
(tests) are analysed. Both cases of simple and composite hypotheses are considered.
Asymptotic expansions under distortions are constructed for the performance character-
istics enabling robust sequential test construction.
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1. Introduction

In many fields of statistical methodology applications, especially in medicine, finance, quality
control, problems of statistical decision making are topical (Ghosh and Sen 1991), (Jennison
and Turnbull 2000). In statistical decision making, one of the most important problems is to
construct decisions providing the requested accuracy on the basis of the minimal information
(minimal number of observations). To solve this problem, the sequential approach (Wald
1947), (Lai 2001) is used. Within this approach, the number of observations required to
provide the prescribed performance is not fixed a priori, but is considered as a random variable
that depends on random observations. To find the optimal dependency is a complicated task,
but this scheme of decision making requires a number of observations that is essentially less
than what is required by the approach based on fixed sample sizes (see Aivazian (1959)).

The assumed hypothetical probability models used in the sequential approach are quite of-
ten distorted in practice (Huber and Ronchetti 2009), (Maevskii and Kharin 2002), (Kharin
2011), (Kharin 2005). Therefore, the problem of robustness analysis (Kharin and Zhuk 1998),
(Kharin 1997), (Kharin and Vecherko 2013), (Galinskij and Kharin 1999) for sequential sta-

tistical decision making under distortions is an important one.

In (Quang 1985) the robustness analysis is given for a special hypothetical model in case of
simple hypotheses. An empirical study of robustness is performed in (Pandit and Gudaganavar
2009) for the scale parameter of gamma and exponential distributions. Here we systemize
some of the results developed by the author for quantitative robustness analysis of sequential
decision rules.
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2. Case of simple hypotheses

Let on a probability space (2, F,P) random variables x; € U = {uy, uso, ..., up } be observed,
t € N, independent in total and identically distributed. The probability distribution of each
random variable depends on parameter value § € © = {6y,0,}, 09,01 € R, 6y # 61, and
satisfy the grid condition:

Pu;0) = Ppf{ay =ul =a 7 teN, uel, (1)
where a € Q, a > 1; J(u;0): U x © — Z, is a function, satisfying the normalization

condition
S a0 =1, (2)
uelU

Concerning the parameter value 6 of the probability distribution (1) the following two simple
hypotheses are considered:
Ho: 0 =00, Hi: 0 =0;. (3)

Denote the statistic

An:An($1,l’2,...,l‘n) :Z)‘ta (4)

where A\, = log, (P(z¢;01)/P(x;60p)) = J(x4;600) — J(x4;01) € Z is the logarithm of the
likelihood ratio, calculated by the observation x;.

In the sequential probability ratio test (SPRT, Wald test) for hypotheses (3) testing after n
observations (n = 1,2,...) the decision is made according to:

d =1, 1o0)(An) + 2 Lic_ oy (An). (5)

The values d = 0 and d = 1 correspond to stopping of the observation process and acceptance
of the hypotheis Hy (if d = 0) or H; (if d = 1) by n observations. If d = 2, the observation
number (n + 1) should be made. In (5) parameters C_,Cy € Z are calculated as follows:

C- = [log,(Bo/ (1 = ao))], Cy = [log,((1 = fo)/a0)]; (6)

where g, p are the requested values of the error type I and II probabilities respectively; []
means the integer part of an argument.

Let the model described above is distorted — instead of (1) observations x1, 3, ... are obtained
from the mixture of discrete distributions:

P(u;0) = Py{z; =u} = (1 —&)P(u;0) + eP(w;0), t € N, u € U, (7)

where ¢ € [0, %) is the “contamination” probability; the “contaminating” probability distribu-
tion has the form . )

P(u;0) = a7 e U, 60, (8)
where J(u; 0): Ux© — Z is a function, different from J(-), and satisfying 3,/ a=J () =
1.

For i € (C_,C4) denote

S wets Og (I (ubo)—J(won))j—i P (Wi ), j € (C-,C4),

1)
ZuEU —00,C_ ](g(J(U

00 —
590 = T 60 + ) Pus ), j=cCo,
et Lo4 400) (9(J (1, 60) —
— J(,01)) + 1) P(u; ), j=Cui

P®(g) = (p(9)) , #(g) = 7P (9)), i € (C-, Cy);
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Z 6 J(u;00)—J(u;61)),i (U Hk‘) (S (C*>C+);
uelU

A .

7 (g) = 2izCy 2ouet Og(J(usbo)—J (usor )il (1 Ok),
k

((7, (9) = Yicc Cuet Og(I(uso)—I(upn))i (5 O,

R®)(g), QW) (g), R, Q(k} are the sub-matrices of P®)(g), P%) respectively, similar to R*),

Q™). Denote the matrix S = Iy — Q¥ —(Q® — QW) k € {0,1}.

Theorem 1. If the hypothetical model (1), (4) is distorted according to (7), (8), and |S®*)| #
0, \5’(’“)| # 0, k € {0,1}, then for the SPRT the conditional mathematical expectation of the
sample size t*) and the factual values &, B of the error type I and II probabilities for the
distorted model differ from the correspondent characteristics calculated for the hypothetical
model, by the values of the order O(¢):

k) _ (k) — ¢ ((7}(1‘3) — 7" 4 (xR (g =L QR) — Q(’ﬂ))) X
X (5%) 1xa + O(=);
G—a= €<( Oy (507 (@@ - QO)(SO) RO +

+ RO _ R(0>))

o FO = OB + 70— 2] + O,

G_p= 5((7T<1))/ (s~ (@Y = QW) ()~ RO +

L RO R(l)))(l) + (@D - 7WYB) + 78 ~ ng) +0(2).

Proof. The detailed proof is given in (Kharin 2013). O

Using this theory, the performance characteristics can be calculated for tests from a family of
sequential tests that makes possible to construct the robust sequential test by the minimax
of the risk criterion.

In (Kharin and Kishylau 2015) the results are generalized to the case of arbitrary probability
distribution of observations.

The case of inhomogeneous data — the model of time series with a trend — is analyzed in
(Kharin and Tu 2017).

The case of Markov chains is considered in details in (Kharin 2013).
3. Case of composite hypotheses

3.1. Mathematical model and notation

Let on a probability space (€2, F,P) a random sequence of independent inhomogeneous vari-
ables x1,22,... € R be observed, with p.d.f.s pi(z | 0), p2(z | 0),..., where # € © C R” is
an unknown value of the random parameters vector. The prior probability density function
p(0) of this vector in the Bayesian setting is supposed to be known. There are two composite
hypotheses on the value of 6:

Ho: 0€0g, Hi: 6€01; OgUBO; =06, @0ﬂ@1=®. (9)

Introduce the notation:
1, ses,

15(8)2{0, s ¢ 5
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1
W; :/ p(0)d8; wi(6) = — - p(6) - 16,(6), B €O, i =0,1.
Q; W.

i
Denote by

Jowi(0)p1(z1 | 0)d0 - - - [ wi(0)pn(zn | 6)db
f@ wO(G)pl (wl ‘ 0)d0 co f@ wO(H)pn(xn ‘ 0)d0

the logarithm of the generalized likelihood ratio statistic, that is calculated by n observations
LlyeeeyLp.

An :An(l'l’"')xn) :log (10)

To test the hypotheses (9), the following parametric family of Bayesian sequential tests is
used:
N =min{n e N: A, ¢ (C_,Cy)}, (11)

d=1ic, too)(An), (12)

where N is the random number of the observation that determines the stopping time, after
that observation the decision d is made according to the decision rule (12). The decision d = 4
means that the hypothesis H; is accepted, i = 0,1; C_ < 0, C; > 0 are parameters of the
test (11), (12):

— In(Bo/(1 — a0)), C = In((1 = fo) /o),

where ag, By € (0, %) are some values close to maximal admissible levels of error type I and
IT probabilities (Wald 1947). The actual values «, § of the error type I and II probabilities
may deviate from «g, Bo.

For calculation of «, f and mathematical expectations of the random variable N determined
by (11), let us use a stochastic approximation of the statistic A,,, n € N. Let m € N be a
parameter of the approximation, h = (Cy — C_)/m. Let pa, (u) be the probability density
function of the statistic (10); pa,,|a, (v | ¥) be the conditional probability density function,
n € N; let R™(#) and Q™ (#) be the blocks of the sizes m x 2 and m x m respectively for
the approximating Markov chain, Iy is the identity matrix of the size k, O(2x,,) is the matrix
of the size (2 x m), with all elements equal to 0. Let m(0) = (m;(6)) be the vector of initial
probabilities of the states 1,...,m for the approximating random sequence; my(0), mp+1(0)
be the initial probabilities of the absorbing states 0 and m + 1; 1,, be the vecor of size m,
with all components equal to 1. Denote:

0) =1, +3 [[QV6)

i=1j=1

B(6) = R(l) ) + Z H Q(J l+1)( ).

i=1j5=1

Let By;) () be the column number j of the matrix B(0), j = 1,2;t; = E{N |0 € ©;},7=0,1;
t =E{N}.

3.2. Distortions

Let the hypothetical model described above be distorted, although the Bayesian sequential test
(11), (12) is used. The test is constructed on the basis of the hypothetical probability density
functions p(0), pn(x1,...,2, | 0), but these probability density functions are simultaneously
distorted. Actually, the parameters vector 6 has the distorted probability density function

p(0) = (1 —ep) - p(0) +c9-p(0), 6 €O, (13)

where € € [0, 1) is the probability of “contamination” w.r.t. the probability density of §, and
p(0) is a “contaminating” probability density function that differs from p(6). The distorted
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conditional probability density function of observations is also a mixture of the hypothetical
pn(- | -) and the “contaminating” p, (- | -) probability density functions:

pn(xly' -y T | 9) = (1 _590) 'pn(-’xla" <y T ‘ 0) +5x 'ﬁn(l‘la"' y Tn | 0)? (14)
#eO, z1,...,z, € R, n € N,

where ¢, € [0, %) can be interpreted as the probability of an “outlier” presence (see Huber and
Ronchetti (2009)) w.r.t. the observations x1, xa, .. ..
Let 7(0), 70(6), Tm1(0), QM (9), R™ () be the elements calculated analogously to (6),
70(0), Tma1(0), Q™ (6), R™(8) by replacing the hypothetical p.d.f. p,(z1,...,z, | §) with
the “contaminating” p.d.f. p,,(z1,...,x, | €) in the probability distribution of the approximat-
ing random sequence; A (0) = 7o(0) — 7o (0), Am1(0) = Tmt1(0) — Tm+1(0); £(0) and 4, (0),
1 = 0,1, be the conditional mathematical expectation of the sample size and the conditional

probability of acceptance of the hypothesis H; respectively, provided the parameters vecor
value is 6, for the distorted model (13), (14).

3.3. Robustness analysis via asymptotic expansions of the performance char-
acteristics

Introduce the notation:

o 1 j—1 7
V- TIeMO@VO) -V o) T @M®) 1
i=1j=1k=1 k=j+1
Fy(0) = Ami(0) + (7(0) — 7T(9))’B(-+1>(9) +RM(9) — RV (0)+
00 I j—-1
Z(Z H Q(k)(Q(j)(g) H Q(k: RU+D ( )+
I=1 j=1k=1 k=j+1

[T @9 @) s) - RUTD(©))), i =0,1.
=1

Theorem 2. Let the random sequence (10) satisfies the Markov property, Y0 € ©, the prob-
ability density functions pa, (u), pa,.,|A, (v | y) be differentiable functions w.r.t. the variable
u e [C_,C4], and 3C € (0,400):

’ dpAl (u)
du

AP, an (U] Y)
du

< C, <C, u,yel[C_,C4], neN.

Then under simultaneous distortions (15), (14) the following asymptotic expansions hold for
the error type I and II probabilities &, B at €9 — 0, e, — 0, h — 0:

1
a=a+ep —- F1(0)p(6)do+

o - [, B0) = pONa8 - [ o OO+ g [, O)(506) ~ p(ONaB) - (15)
O(2) + O(e3) + O(h);

5= B+sm-W /Fo (6)d6+

oz [, 00 = pO)ds - [ 2 OpO)8+ 5= [ e (O)56) ~ p(O)as) + (16)

O(ez) + O(eg) + O(h).
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Proof. The detailed proof is given in (Kharin 2013). O

Denote by ¢;, ¢ = 0,1, the conditional mathematical expectation of the random number of
observations N provided the hypothesis H; is true, if the hypothetical model is distorted
according to (13), (14).

Theorem 3. Under the conditions of Theorem 2, the conditional expected sample sizes satisfy
the asymptotic expansions:

ti=ti+eg- V;L/z : /@i A(0)p(0)do +cg - (ti (Wi = Wi) + V;L/z : /@itw)(ﬁ(e) _p(e))d6)+ (17)

O(E2) 4+ O(e3) + O(h), i =0,1.

Theorem 4. If the conditions of Theorem 2 are satisfied, then the following asymptotic
expansion holds for the expected sample size:

F—t+e,. /@ AO)p(0)d0 + g - /@ H0)(5(0) — p(6))d + OE2) + O(h). (18)
Proof. Proofs of Theorems 3, 4 are presented in Kharin (2013). O

This theory is used to calculate the performance characteristics of the sequential tests un-
der distortions and to construct the robust sequential test (Kharin 2017). The approach is
presented in (Kharin 2016) with some numerical results.

4. Conclusion

The problem of robustness analysis for sequential statistical decision rules is considered in the
paper. The cases of simple and composite hypotheses are analyzed. Asymptotic expansions
are constructed for the performance characteristics of the sequential statistical decision rules
under distortion. Analyzing the constructed expansions and constructing the similar for
sequential test from a generalized families, robust sequential statistical decision rules can be
constructed. The results are also applied for the decision making in case of many hypotheses
(Ton and Kharin 2019).
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