Performance Evaluations of Gaussian Spatial Data Classifiers Based on Hybrid Actual Error Rate Estimators
DOI:
https://doi.org/10.17713/ajs.v49i4.1122Abstract
Discrimination and classification of spatial data has been widely mentioned in the scientific literature, but lacks full mathematical treatment and easily available algorithms and software. This paper fills this gap by introducing the method of statistical classification based on Bayes discriminant function (BDF) and by providing original approach for the classifier performance evaluation. Supervised classification of spatial data with response variable modelled by Gaussian random fields (GRF) with continuous or discrete spatial index is studied. Populations are assumed to be with different regression parameters vectors. Classification rule based on BDF with inserted ML estimators of regression and scale parameters is studied. We focus on the derived actual error rate (AER) and the approximation of the expected error rate (AEER) for both types of models. These are used in the construction of hybrid actual error rate estimators that are spatial modifications of widely applicable D and O estimators applied in cases of independent observations.
Simulation experiments are used for comparison of proposed AER estimators by the minimum of unconditional mean squared error criterion for both types of GRF models.
Published
How to Cite
Issue
Section
Copyright (c) 2020 Austrian Journal of Statistics

This work is licensed under a Creative Commons Attribution 3.0 International License.
The Austrian Journal of Statistics publish open access articles under the terms of the Creative Commons Attribution (CC BY) License.
The Creative Commons Attribution License (CC-BY) allows users to copy, distribute and transmit an article, adapt the article and make commercial use of the article. The CC BY license permits commercial and non-commercial re-use of an open access article, as long as the author is properly attributed.
Copyright on any research article published by the Austrian Journal of Statistics is retained by the author(s). Authors grant the Austrian Journal of Statistics a license to publish the article and identify itself as the original publisher. Authors also grant any third party the right to use the article freely as long as its original authors, citation details and publisher are identified.
Manuscripts should be unpublished and not be under consideration for publication elsewhere. By submitting an article, the author(s) certify that the article is their original work, that they have the right to submit the article for publication, and that they can grant the above license.