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Abstract

The paper considers the estimation problem of the autoregressive parameter in the
first-order autoregressive process with Gaussian noises when the noise variance is un-
known. We propose a non-asymptotic technique to compensate the unknown variance,
and then, to construct a point estimator with any prescribed mean square accuracy. Also
a fixed-width confidence interval with any prescribed coverage accuracy is proposed. The
results of Monte-Carlo simulations are given.
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1. Introduction

The problem of constructing a fixed-width confidence interval with any prescribed accuracy
by a finite sample size might be complicated enough even for the process with independent
observations. For the case of Gaussian independent variables with an unknown variance, Stein
(1945) proposed a two-stage sequential procedure to construct such interval for an unknown
mean.

The models of stochastic processes described by a stochastic difference and stochastic differen-
tial are widely used in the problems of optimal control and prediction, in finance mathematics,
in the time series analysis. To estimate unknown parameters, the maximum likelihood method
and the least squares method are used. The quality of the obtained estimators is studied usu-
ally in the asymptotic statement, when the number of observations tends to infinity.

The problem of estimation with any prescribed accuracy of the first-order autoregressive
process parameter was considered in Borisov and Konev (1977). A sequential estimator was
proposed. The choice of a stopping instant guarantees the upper bound of the mean square
accuracy. To construct this estimator one needs to know the variance of the noises. Note
that Lai and Siegmund (1983) proposed a similar procedure but only asymptotic properties
of the estimator were investigated. The sequential estimator of an unknown parameter of a
diffusion-type process with any prescribed mean square accuracy was described in Novikov
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(1972). In Dmitrienko and Konev (1994), a two-stage procedure to construct the estimator
of an unknown parameter if the noise variance is unknown was introduced. At the first stage,
the upper bound of the variance is obtained. It should be noted that if the absolute value of
the autoregressive parameter is close to unity, the estimator Dmitrienko and Konev (1994)
exceeds manifold the variance; hence, the estimation time increases dramatically.

In Konev and Vorobeychikov (2017), the sequential estimation procedure of Borisov and
Konev (1977) was modified; it allows obtaining a point autoregressive parameter estimator
with a non-asymptotic Gaussian distribution and constructing a fixed-width confidence inter-
val with any prescribed probability of coverage. We propose to use this estimator to construct
a modified three-stage estimation procedure for AR(1) process with an unknown noise vari-
ance. Unlike Dmitrienko and Konev (1994), we use an additional stage to obtain an estimator
of an unknown autoregressive parameter and then improve the upper bound of an unknown
variance. It leads to the decrease of the estimation time as compared with Dmitrienko and
Konev (1994).

The confidence interval for the parameter in the autoregressive process was proposed in Chow
and Robbins (1965), Lee and Sriram (1999), Sriram (2001), Wei, Hao, and Ching (2018). The
properties of the estimators were investigated in the asymptotic statement, as the number of
observations tends to infinity. In our paper, we construct a fixed-size confidence interval with
any prescribed coverage probability. The presented results of the simulation demonstrate a
good quality of the algorithm.

2. Problem statement

Consider the first-order autoregressive model AR(1) defined as follows:

xk = θxk−1 + bεk, k = 1, 2, . . . (1)

where θ and b are unknown real parameters, εk are independent identically distributed random
variables, Eεk = 0, Eε2

k = 1. The first problem is to construct a point estimator for θ with the
prescribed mean-square deviation on the basis of the observations {xk}. The second problem
is to construct a fixed-width confidence interval with any prescribed coverage accuracy using
this point estimator. We solve the problem under certain constraints imposed on the noise
density function fε(x), which are specified in the next section.

3. Three-stage sequential point estimator

We propose a three-stage procedure to estimate the parameter the θ in model (1), based on
the modified sequential least-squares method. At the first stage, we estimate the autoregres-
sive parameter using the least squares method. At the second stage, we construct a special
multiplier to compensate an unknown noise variance. At the third stage, we estimate the
autoregressive parameter.

To compensate the unknown noise variance, we need a pilot estimator of the unknown au-
toregressive parameter θ; we use the usual least-squares estimator

θ̂ =

∑t
k=1 xk−1xk∑t−1
k=1 x

2
k−1

. (2)

The compensating factor has the following form

Γl = Cf (l)
t+l∑

k=t+1

(
xk − θ̂xk−1

)2
, (3)
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where the factor Cf (l) is determined by the density function of the noise

Cf (l) = E

(
l∑

k=1

ε2
k

)−1

. (4)

In the case of the Gaussian distribution, Cf (l) = 1/(l − 2); so, according to Dmitrienko and
Konev (1994) the parameter l should be not less that 3, to provide the limited expectation of
the multiplier 1/Γl. However, we recommend to take l ≥ 10, which makes the estimator (3)
more stable.

The following theorem establishes an important property of the multiplier Γ resulting in the
non-asymptotic properties of the proposed estimator.

Theorem 1. Let the noise density function, fε(y), be a symmetric function, fε(t) = fε(−t),
and let fε(t) decrease in the interval [0,+∞). Then

P

{
l∑

i=t+1

(
xk − θ̂xk−1

)2
≤ z

}
≤ P

{
l∑

k=t+1

b2ε2
k ≤ z

}
. (5)

Proof. To prove the theorem, we need an auxilary result first presented in Anderson (1956).

Theorem 2. Let C be a convex set, symmetric about the origin. Let f(y) ≥ 0 be a function
such that: (i) f(t) = f(−t), (ii) {t : f(t) ≥ u} is a convex for any u, (iii)

∫
C

f(t)dt < ∞.

Then, for 0 ≤ k ≤ 1 ∫
C

f(y + x)dy ≤
∫
C

f(y + kx)dy. (6)

Introduce the following notation for the sum in (5)

SN =
N∑

i=t+1

(
xk − θ̂xk−1

)2
. (7)

Let FN be a sigma-algebra generated by {x0, ε1, ..., εN}, and FNK be a sigma-algebra generated
by {εK , ..., εN}; then, using properties of the conditional expectation together with (1), we
have

P {St+l ≤ z} = EP {St+l ≤ z| Ft+l−1} = EP
{(

xt+l − θ̂xt+l−1

)2
≤ z − St+l−1

∣∣∣∣Ft+l−1

}
= EP

{(
bεt+l + (θ − θ̂)xt+l−1

)2
≤ z − St+l−1

∣∣∣∣Ft+l−1

}

Note that St+l−1 and (θ − θ̂)xt+l−1 are adapted to the σ−algebra Ft+l−1, whereas εt+l does
not depend on the σ−algebra. Let us introduce the notations

D = max {0, z − St+l−1} , C =

[
−
√
D

b
,

√
D

b

]
.

Here C is a convex. If the noise density function fε(t) meets the conditions of Theorem 1
then it satisfies the conditions of Theorem 2. Applying Theorem 2 for k = 0, we obtain

EP
{(

bεt+l + (θ − θ̂)xt+l−1

)2
≤ z − St+l−1

∣∣∣∣Ft+l−1

}
= E

∫
C

fε(t+ (θ − θ̂)xt+l−1)dt

≤ E
∫
C

fε(t)dt = EP
{
b2ε2

t+l ≤ z − St+l−1

∣∣Ft+l−1

}
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Now we introduce the notation V N
K =

N∑
k=K

b2ε2
k and prove that for any K = t+ l, ..., t,

P
{
V t+l
K+1 + SK ≤

1

y

}
≤ P

{
V t+l
K + SK−1 ≤

1

y

}
. (8)

We have just obtained this result for K = t + l. Suppose the statement is true for K =
t+ l, ...,M + 1 and consider it for K = M .

P
{
V t+l
M+1 + SM ≤ z

}
= P

{
V t+l
M+1 +

(
bεM + (θ − θ̂)xM−1

)2
+ SM−1 ≤ z

}
= EP

{(
bεM + (θ − θ̂)xM−1

)2
≤ z − V t+l

M+1 − SM−1

∣∣∣∣FM−1,F t+lM+1

}
.

As (θ− θ̂)xM−1 and SM−1 are adapted to FM−1 and V t+l
M+1 is adapted to F t+lM+1, we can apply

Theorem 2 and obtain

EP
{(

bεM + (θ − θ̂)xM−1

)2
≤ z − V t+l

M+1 − SM−1

∣∣∣∣FM−1,F t+lM+1

}
≤ EP

{
bε2
M ≤ z − V

t+l
M+1 − SM−1

∣∣∣FM−1,F t+lM+1

}
.

It implies (8) for K = M ; hence, it is true for any K which implies the Theorem.

The following theorem provides an important property of the compensating factor Γ (3) which
allows us to bound from above the standard deviation of the proposed estimator.

Theorem 3. Let the noise density function fε(y) be a symmetric function, fε(t) = fε(−t),
and let fε(t) decrease in the interval [0,+∞). Then for the compensating factor Γ (3)

E
1

Γl
≤ 1

b2
. (9)

Proof. Let us estimate E 1
Γl

. Using (3) and (7), we have

E
1

Γ
=

1

Cf (l)
E

(
t+l∑

i=t+1

(
xk − θ̂xk−1

)2
)−1

=
1

Cf (l)
ES−1

t+l. (10)

Using properties of the expectation, we obtain

ES−1
t+l =

+∞∫
0

P
{
S−1
t+l ≥ y

}
dy =

+∞∫
0

P
{
St+l ≤

1

y

}
dy.

According the result of Theorem 2

ES−1
t+l =

+∞∫
0

P
{
St+l ≤

1

y

}
dy ≤

+∞∫
0

P

{
t+l∑

i=t+1

b2ε2
k ≤

1

y

}
dy =

1

b
E

(
t+l∑

i=t+1

ε2
k

)−1

=
Cf (l)

b2
.

Using this result in (10), we obtain

E
1

Γ
≤ 1

Cf (l)

Cf (l)

b2
=

1

b2
.

which implies the Theorem.
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At the third stage we construct an estimator for the parameter θ on the basis of the improved
sequential point estimator proposed in Konev and Vorobeychikov (2017), which is a special
modification of the least squares (maximum likelihood) estimators. For each H > 0 we
introduce the stopping instance

τ = τ(H) = inf

{
n ≥ 1 :

n∑
k=t+l+1

x2
k−1

Γl
≥ H

}
(11)

and define a sequential estimator by the following formula

θ∗(l,H) =
1

H̃

τ∑
k=t+l+1

√
βk
xk−1xk

Γl
, (12)

where βk = 1 if k < τ and βτ = ατ , ατ is the correction factor, 0 < ατ ≤ 1, uniquely defined
by the equation

τ−1∑
k=t+l+1

x2
k−1

Γl
+ ατ

x2
τ−1

Γl
= H,

and

H̃ =
τ∑

k=t+l+1

√
βk
x2
k−1

Γl
.

Theorem 4. In the conditions of Theorem 1, stopping instant (11) is finite with the probability
one. The mean square deviation of estimator (12) is bounded from above

E (θ∗(l,H)− θ)2 ≤ 1

H
. (13)

Proof. Using (1) in (12), we obtain

θ∗(l,H)− θ =
1

H̃

τ∑
k=t+l+1

√
βk
xk−1(xk − θxk−1)

Γl
=

b
√
H

H̃
√

Γl
m(H), (14)

m(H) =
1√
H

τ∑
k=t+l+1

√
βk
xk−1εk√

Γl
.

Note that, according to Theorem 6.1 in Konev and Vorobeychikov (2017), the conditional
distribution of m(H) subject to Fτ+l is the standard Gaussian distribution. Taking into
account inequalities (9) and H ≤ H̃ we obtain

E (θ∗(l,H)− θ)2 = E

( b
√
H

H̃
√

Γl

)2

·
(
E
[
m2(H)|Fτ+l

]) = E

(
b2H

H̃2Γl

)
≤ 1

H
.

Hence the Theorem.

Finally, we construct a fixed-width confidence interval covering the parameter θ with the
prescribed probability α.

Theorem 5. Let the noises εk in model (1) have the standard Gaussian distribution. Then
for any C > 0 and 0 < α < 1 the confidence interval for estimator (12) is defined as follows

P {θ∗(H)− C ≤ θ < θ∗(H) + C} ≥ 1− α, (15)

where

α = 2

+∞∫
0

(
1− Φ(C

√
Hy)

) (1/2)l/2

Γ(l/2)

(
y

Cf (l)

)l/2−1

e
− y

2Cf (l)dy, (16)

Γ(l/2) is the gamma-function and the parameter H is found from (16).
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Proof. Consider the deviation θ∗(H)− θ. Using (14) one has

θ∗(H)− θ =
b
√
H

H̃
√

Γl
m(H).

For the confidence interval of the deviation, we have

P {|θ∗(H)− θ| < C} = EP {|θ∗(H)− θ| < C| Ft+l} = EP

{
|m(H)| < CH̃

√
Γl

b
√
H

∣∣∣∣∣Ft+l
}
.

As H̃ ≥ H, we have

P {|θ∗(H)− θ| < C} ≥ EP
{
|m(H)| < C

√
HΓl
b

∣∣∣∣Ft+l} .
Let us denote the distribution function of Γl/b

2 as Gl(y). Then

P {|θ∗(H)− θ| < C} ≥
+∞∫
0

P
{
|m(H)| < C

√
Hy
∣∣Ft+l} dGl(y)

= 1−
+∞∫
0

Gl(y)dP
{
|m(H)| < C

√
Hy
∣∣Ft+l} .

According to Theorem 1,

Gl(y) = P

{
t+l∑

i=t+1

(
xk − θ̂xk−1

)2
<

yb2

Cf (l)

}
≤ P

{
t+l∑

k=t+1

ε2
k <

y

Cf (l)

}
;

consequently,

P {|θ∗(H)− θ| < C} ≥ 1−
+∞∫
0

P

{
t+l∑

k=t+1

ε2
k <

y
Cf (l)

}
dP
{
|m(H)| < C

√
Hy
∣∣Ft+l}

=
+∞∫
0

P
{
|m(H)| < C

√
Hy
∣∣Ft+l} dP

{
t+l∑

k=t+1

ε2
k <

y
Cf (l)

}
.

As εk are standard Gaussian random variables, the sum of their squares has the χ2(l) distri-
bution. According to Theorem 6.1 in Konev and Vorobeychikov (2017),

P
{
|m(H)| < C

√
Hy
∣∣∣Ft+l} = 2Φ(C

√
Hy)− 1,

where Φ(x) is the standard Gaussian distribution function. This fact allows constructing the
confidence interval for θ

P {|θ∗(H)− θ| < C} ≥
+∞∫
0

(
2Φ(C

√
Hy)− 1

) (1/2)l/2

Γ(l/2)

(
y

Cf (l)

)l/2−1

e
− y

2Cf (l)dy,

where Γ(l/2) is the gamma-function. This implies the Theorem.

4. Simulation results

In this section, we report and discuss the results of Monte Carlo experiments. Table 1 presents
selected data obtained by the simulations. For our study, we set

θ = ±0.1,±0.3,±0.5,±0.7,±0.9,±0.99.
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Table 1: Parameter estimation for AR(1)
H t l θ b ∆2

1 τ1 ∆2
2 τ2

100 10 10 -0.99 1 0.0011 209.02 0.0072 11.48
100 10 10 -0.90 1 0.0034 134.14 0.0090 36.10
100 10 10 -0.70 1 0.0064 127.02 0.0100 73.89
100 10 10 -0.50 1 0.0073 124.34 0.0094 101.69
100 10 10 -0.10 1 0.0099 126.93 0.0097 136.66
100 10 10 0.10 1 0.0095 130.61 0.0093 133.49
100 10 10 0.50 1 0.0087 124.99 0.0089 104.00
100 10 10 0.70 1 0.0069 131.29 0.0083 74.50
100 10 10 0.90 1 0.0033 141.62 0.0088 36.49
100 10 10 0.99 1 0.0009 211.04 0.0076 11.61
100 10 15 0.99 1 0.0011 183.61 0.0075 11.61
100 10 15 0.99 2 0.0007 211.75 0.0070 11.89
100 10 15 0.90 2 0.0032 120.50 0.0092 35.74
500 10 15 0.99 2 0.0001 1098.30 0.0017 33.60

For each θ, 1000 replications were run. The quantities recorded in Table 1 are: H – the
threshold in the sequential sampling rule; t – the number of observations to obtain a pilot
estimator of θ; θ – the autoregressive parameter; l – the number of observations to estimate
the unknown variance; ∆2 – the mean square deviation for θ∗(l,H); τ2 – the mean numbers
of observations. We also compared our results with the estimator described in Dmitrienko
and Konev (1994), here ∆1 – the mean square deviation for the estimator Dmitrienko and
Konev (1994); τ1 – the mean numbers of observations.

The simulation demonstrates that for both procedures the estimators of θ are in good agree-
ment with the real value of the parameter; the mean square deviation is about 1/H, as
Theorem 4 states. But if the autoregressive parameter is close to the bound of the stabil-
ity region, the estimator Dmitrienko and Konev (1994) needs much more observations as
compared to the proposed procedure. If the autoregressive parameter is close to zero, the
estimator Dmitrienko and Konev (1994) and θ∗(l,H) use near the same sample size.

So, our procedure can be used for the estimation of the autoregressive parameter in AR(1)
and for the construction of a fixed-width confidence interval with any prescribed coverage
accuracy.
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