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Abstract

This paper describes a method for the construction of pharmacokinetic sampling win-
dows so that they are around the D-optimum time points. Here we consider the situation
where a pharmacokinetic (PK) study is accompanied by a dose-finding study in phase I
clinical trial. The D-optimal criterion is often used to determine the optimal time for
collecting blood samples so that they provide maximum information regarding the pop-
ulation PK parameters. However, collecting blood samples at the D-optimal time points
is often difficult. Instead, the sampling time point chosen from a suitable time interval or
window can ease the process. The proposed method is conceptually simple and considers
the average value and standard deviation of D-optimal time points up to create sampling
windows. Random time points can be chosen from these windows then to collect blood
samples from the next cohort. The nonlinear random-effects model has been used to
model the PK data. Also, we employ the continual reassessment method for dose allo-
cation to the patients. Comparisons of the accuracy and precision for the PK parameter
estimates obtained at the D-optimal and random time points are also presented. The
results are convincing enough to suggest the proposed method as a useful tool for blood
sample collection.

Keywords: phase I trial, D-optimum design, PK sampling windows, maximum tolerated dose,
nonlinear random effects.

1. Introduction

Clinical trials are prospective studies to evaluate the effect of interventions in humans under
pre-specified conditions. Commonly classified into four phases, clinical trials have become an
integral part of drug development. Following pre-clinical and animal studies, phase I trial is
the first-in-human experiment, and it focuses on the safety, tolerability, and PK of a drug.
Pharmacokinetics is generally defined as what the body does to the drug. It involves studying
how drugs enter the body, distribute throughout the body, and leave the body. A drug’s
pharmacokinetics are determined by the processes of absorption, distribution, metabolism,
and excretion. Also, concentrations at the site of action are determined by these processes.
After administration of a dose, the PK mechanism transforms it into plasma concentration,
and through the systematic circulation of blood, it reaches the site of action and produces an
effect.

The theory of optimal designs can guide in PK sampling. More specifically, D-optimum design
is often used to determine the optimal time points for blood sample collection. D-optimality
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is the criterion in which the generalised variance of the parameter estimates, or its logarithm,
—log |M(£)| is minimised (Atkinson, Donev, and Tobias 2007). For PK sampling, the design
variable of interest is the time point. Hence optimal time points, for the choice of D-optimal
design criterion, are the time points at which blood sample collection for measuring drug
concentration would lead the generalised variance of the parameter estimates to be minimum.
However, blood samples at the exact D-optimum times are challenging to collect. Patients
may have delays or problems to reach clinics or centers to give their blood samples on time.
Hence to avoid such constraints, we plan to create a sampling window for flexibility in the
sample collection. Various approaches are available in the literature for constructing windows.
Green and Duffull (2003) determined marginal sampling windows for a population PK model
by varying a one-time point at a time and fixing the population D-optimal time points.
As the sampling windows are estimated conditionally, the joint efficiency of the windows is
not accessible. A specified percentage reduced the sampling window design’s efficiency level
compared to the fixed D-optimal time points.

Graham and Aarons (2006) presented an alternative approach to optimise the pharmacoki-
netic sampling window design. They described a two-step procedure. During the first step,
fixed D-optimal time points are optimised for the population PK experiment, and at the
second stage, the length of the sampling windows around the fixed D-optimal time points
was optimised. Ogungbenro and Aarons (2007) provided approaches to the designs of a pop-
ulation PK experiment and a review of the existing optimal design methodologies. Another
method of Ogungbenro and Aarons (2009) modified the Graham and Aarons (2006) approach
in the sense that optimal sampling window design is determined by optimising conditional
sampling windows for each sampling time, which results in a joint loss of efficiency compared
to the fixed D-optimal time points.

Bogacka, Johnson, Jones, and Volkov (2008) described a method for constructing sampling
windows in PK experiments based on equivalence theorem for D-optimality. A fixed-effect
model was used to implement it. A similar theorem has been used for nonlinear mixed effect
models by Patan and Bogacka (2007). Although the design gives high efficiency in parameter
estimation, the equivalence theorem makes it complicated and challenging to implement.
Another method of Foo, McGree, and Duffull (2012) provided the determination of sampling
windows for parameter estimation based on Markov Chain Monte Carlo sampling techniques.
It gives time-sensitive windows around the optimal design points.

Although different methods are available in the literature for window construction, most of
them are computationally challenging. Also, none of the methods run along with a dose-
finding study. Therefore, we feel for an approach that should be computationally simple
and can be implemented in a dose-finding study. The organization of the paper is as follows.
Section 2 describes the methodology adopted in this paper. It includes the dose-finding design,
PK model, and the way of window construction. Details of the simulation study are presented
in Section 3. Finally, the conclusion appears in Section 4.

2. Methods

This section is covering the statistical methodology and models that are used for window
construction. Since the plan is to collect blood samples with a dose-finding study’s progress,
we require a dose-finding design to be used. We consider the continual reassessment method,
as described below, to determine the maximum tolerated dose (MTD). We use a nonlinear
random-effects model for modeling the PK data, as shown in Section 2.2. The procedure of
window construction is discussed afterward.

2.1. Continual reassessment method

The continual reassessment method (CRM) is a model-based approach for dose finding in
phase I clinical trials that was proposed by O’Quigley, Pepe, and Fisher (1990). The de-
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sign aims to reduce the number of patients at sub-therapeutic doses and obtain a more
accurate estimate of the MTD. For an experimental drug, assume that d ordered doses
X = {a:(l), @ x(d)} are available from pre-clinical studies, and we want to determine the
MTD to be used in the next phase. Unlike the original article where the authors utilised a
one-parameter logistic model, we use a two-parameter model as suggested by Whitehead and
Brunier (1995) and Whitehead and Williamson (1998). That is, the dose-response model to
be utilised is

exp(6 + Oox)
0) =
'l,b(:L’, ) 1+ exp(«91 + 921’) ’

(1)
where 8 = (61,02) is the vector of dose-response parameters and z is the dose given to a
cohort of size c. If we are at the kth stage of a trial, then we have k cohorts treated so far
with different doses from X. Let @ be a k x 1 dose vector with components z; and r be a

k x 1 outcome vector with 7; as the [ th row (I = 1,..., k) representing the toxic outcomes
obtained from a cohort. Then the likelihood function at the kth stage is

k
Li(8la, ) o [ [{w (21, )} {1 — (s, 0) } 7. (2)
=1

Since the maximum likelihood estimation is not possible until sufficient information is avail-
able, the Bayesian approach is employed to estimate the parameters. The posterior means of
0 = (61,02) at the kth stage are obtained as

i _ Jo0ig(8)Li(0]z,T)db
" Jo 9(0)Li(8|x,7)d6

where © is the parameter space and ¢(0) is the prior distribution of the parameters. The

choice of u; < 01 < ug and uz < 62 < uy gives a restricted parameter space as © = {6 : u; <
01 < ug,us < 0 < ug} so that

i=1,2, (3)

1 -
90) = sy 9@ (4)

The probability of toxicity at the end of stage k is then updated at each dose as

That dose is chosen for the next cohort for which the absolute difference between the estimated
probability of toxicity and the target toxicity rate v is minimum. That is,

Tht1 = arg gél)ffl |4(x,0;) — 7| (6)

A trial is continued until the fixed number of cohorts m is achieved, and the MTD is the dose
that would be allocated to the cohort m + 1 if that were in the trial. Note that the choice of
a value for « in a trial solely depends on the likely nature of the investigational drug.

2.2. PK model

The management of a drug in the body is very complex, as processes like absorption, distri-
bution, metabolism and elimination work to alter drug concentration in tissues and fluids.
To simplify this complexities, mathematical principles are helpful to the processes. The most
basic mathematical description of drug distribution and elimination is the one-compartment
model. It utilises a single central compartment and assumes that equilibrium is instanta-
neously achieved with tissues. The one-compartment PK model with first-order absorption
of a drug is defined as

yir = f(ta; 0;) + e
k. 7
= M(ekeit” - efk%'t“) +¢€; fort=1,...,candl=1,...,n, Q
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where y;; is the concentration of a drug in the blood for the ith individual observed at time
t;1, « is the dose received by the individual and 6; = 8 + b; is the vector of parameters with
B = (V,ka, k)T and b; = (b,,, bkai,bkei)T. That is, an additive model for random effects is
considered. The ¢;; denotes the random error and n is the number of measurements taken on an
individual. We assume that €; ~ N,(0,0%I,,) and b; ~ N3(0,Q), where Q = diag(c?, 05, 03).
The vector of all the population parameters to be estimated is represented by ¥ = (87, AT)T,

where A = (02,02,02,0%)T is the vector of variances.

The sampling windows that we construct require D-optimal time points. Since obtaining D-
optimal time points requires the Fisher information matrix (FIM), we need the above model’s
likelihood function. As the model is nonlinear in parameters and parameters are random,
there is no closed-form for the likelihood function. Therefore, we linearise the model using
a first-order Taylor series expansion to obtain the FIM. Details of the derivation of FIM are
available in Appendix A. The response for ith patient is measured at the times, represented
by & = (ti1,...,tin). Also, we describe the population design by & = {&1,...,&.}. The
population FIM is defined as the sum of ¢ elementary Fisher information matrices, that is,

M(¥,E) =) M(¥,&).
i=1

The derivation of M;(®,&;) is shown in Appendix A. For a single group of ¢ individuals with
identical designs, the population FIM is

M(¥,E) = cM (¥, £).

Unlike the linear models, the FIM here depends on the model parameters. The uncertainty in
a set of parameter estimators can be expressed in terms of the volume of a confidence ellipsoid.
The precision of the estimators increases as the volume decreases. The D-optimality criterion
minimises the volume of the confidence ellipsoid, which is a function of the determinant of the
covariance matrix (Atkinson et al. 2007). More specifically, a design £}, is called D-optimal
if it minimises ® p{M (¥, E)} = log |M 1 (¥, E)|. That is,

€ = arg minlog |M (2, 5)|

2.3. Sampling windows

A window is an interval for blood sample collection. The main intention is to take blood
samples at some convenient time points from intervals instead of the D-optimal ones. Let
tals- - tan be the D-optimal time points obtained at stage a of a trial (a = 1,...,m). At the
kth stage, let t.1,...,t, be the means obtained so that ¢ = 2221 tap/k, forb=1,... n. Also,

let SD(t.1),...,SD(t,) be the standard deviations such that SD(¢ ;) = \/Zszl(tab —tp)?/(k—1).
At the kth stage of a trial, a sampling window is constructed as t ,+9 SD(t), forb=1,...,n.
Here § can take positive values such as 1,2, 3, etc. Since standard deviation cannot be com-
puted unless two observations are available, we start constructing sampling windows from the
third stage. That is, k = 3,...,m, when we construct a window. Following the construction
of sampling windows, a uniform distribution is used to select the random time points from
those windows. The uniform distribution is used to ensure that any time point from a win-
dow can get selected to collect the blood samples. That is, at the kth stage, for the bth time
point, we assume that tg, ~ U(c1, c2), where ¢; and ¢y are the lower and upper limits of the
constructed sampling window for bth time point. After the random time points are obtained
from the windows at each stage of a trial, we collect blood samples from a cohort to measure
the concentrations.
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3. Simulation study

To investigate the performance of proposed window construction, we conduct a simulation
study. The details of that study and numerical findings are described below.

3.1. Simulation setup

We use theophylline data (Beal and Sheiner 1992) for the simulation study. Following the
oral doses of theophylline given to twelve subjects, serum concentrations were measured at
11-time points over the next 25 hours. Note that these data are available in R as Theoph. The
parameter estimates of the model in (7), obtained for these data, are used for data generation
in the simulation study. The dose range found in the theophylline data has been followed in
our dose-response scenarios. Since theophylline data do not contain any information on the
dose-response relationship, we have assumed four plausible relationships, as shown in Figure
1. In each scenario, we have the discrete doses as X = {3,3.5,4,4.5,--- ,6}. The scenarios
differ only in terms of the steepness in the toxicity curve. The steepness is very high in
Scenario 1, while very low in Scenario 4. Here we assume the target toxicity rate v to be 0.33.
The true MTDs in the successive scenarios are 3.5, 4, 5, and 6. Note that these MTDs are
the doses at which the probability of toxicity is closest to the target toxicity rate 0.33.
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Figure 1: Dose-response scenarios for simulation study. The respective parameter values are:
Scenario 1, 8 = (—7.3,1.88); Scenario 2, 8 = (—7.3,1.65); Scenario 3, 8 = (—7.3,1.32), and
Scenario 4, 8 = (—7.3,1.10). The dotted horizontal line indicates the target toxicity rate -y.

The mean PK parameter estimates obtained from the model fitting are V' = 0.020 L, K, =
0.080 and K, = 1.444. The variances associated with these successive parameters are o2 =
1.28E — 05, 05 = 5.46E — 05, 05 = 2.216F — 02, and the error variance is 0% = 1.43. This
single PK profile is used against each of the four dose-response scenarios in the simulation
study. Blood samples are collected at three-time points per patient; that is, the number of
patient observations is n=3. It has been found that a 4-point design is more efficient than
a 3-point design. Compared to a 4-point design, the gain in a 5-point design is not that
substantial. Also, if a 5-point design is considered, some of the sampling time points are very
similar. We choose a 3-point design as some of the optimal time points are close to those for
a 4-point design. Each trial starts with the lowest dose assigned to a cohort of ¢=3 patients.
A total of 15 cohorts in each trial is assumed, that is, m = 15. However, to assess the impact
of sample size on parameter estimates, we also investigate m = 25.
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Following the lowest dose given to a cohort, for each individual in the cohort, we generate
b; from N3(0,Q) to obtain the individual parameters as 6; = 3 4+ b;. Then we find the
concentrations at the D-optimal time points. Since the PK model is nonlinear, the FIM
depends on both design variable ¢ and the model parameters. Therefore, to find the D-
optimal time points, we need to plug in values for the parameters. Starting with some initial
values for the parameters, we replace them by the updated parameter estimates at every
stage. Note that the D-optimal time points are obtained by using PFIM3.2 (Bazzoli, Retout,
and Mentré 2010). The random errors are then generated from Ny (0, 0214) to be added to the
previously generated concentrations to obtain simulated PK responses for an individual. The
same mechanism is used to generate responses for other individuals in the cohort. Since we
want to explore the effect of time points from sampling windows on parameter estimation, we
need the generation of PK responses for the same individual at those time points. Therefore,
we use the same 6; and €; to obtain the PK responses on different occasions for an individual.
The dose-response outcomes are generated using the binomial distribution.

Below are the steps that we follow at each stage of a trial. As mentioned earlier, k represents
the stage of a trial.

Step 1: Administer the best dose z to the kth cohort. Initially, kK = 1 and the best dose is
the lowest dose.

Step 2: Determine the D-optimal time points for dose z;. Measure the drug concentration
for the cohort at these time points if 1 < k < 2.

Step 3: Construct the sampling windows as explained in Section 2.3, and measure the
concentration for the cohort at random time points taken from the windows if £ > 3.

Step 4: Observe whether the outcomes are toxic or not for the cohort. Obtain the
dose-response parameter estimates 0y following (3). Also, obtain the PK model parameter
estimates W.

Step 5: Determine the dose for the next cohort following (6).
Step 6: Set k = k 4+ 1 and repeat the steps 1-6 until the trial reaches a total of m cohorts.
Step 7: If Kk = m, determine the MTD for further investigation in the next phase.

At each stage of a trial, we estimate both the PK and dose-response parameters. The PK
parameters are estimated using the R package nlme. The dose-response parameters are es-
timated using the Bayesian approach. We consider a bivariate uniform prior distribution
for the dose-response parameters 6. A single parameter space is chosen as 0= {6:-9<
01 < —5,0 < 03 < 3}. The dose-optimisation criterion in (6) is used to determine the most
appropriate dose for the next cohort. Now for the new cohort, we generate PK responses
and dose-response outcomes. Based on the first two cohorts’ response, we update both the
PK and dose-response parameter estimates and select the dose for the third cohort. Since
sampling windows are utilised from the third stage onwards, the generated data are the same
for an individual in the first two cohorts in all the data sets. We continue the process of
dose selection for every next cohort until the trial reaches m. We have considered two, three,
four, and six standard deviations for each scenario to construct the sampling windows, that
is, 0 = 2,3,4,6. Consequently, we have five PK data sets for model fitting. One of these is
for D-optimal time points, and the other four are for time points from the windows. Also,
we collect samples at three random time points taken from the sampling region (0, 25) hours.
We do not use § = 1, as we have found it to provide too narrow windows for the time points.
A large 6 will provide a wider sampling window and consequently will provide flexibility in
choosing a time point from it. Although we have found it not to be common, the lower limit
of a sampling window may become negative, and in such a case, we assume it as 0. For a
large 6, the sampling windows may overlap. As a consequence, the random time point from
the first window may be greater than that of the second window. Similarly, the second time
point may be greater than that from the third point. Since our target is to collect blood
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samples at distinct time points, it does not matter from which window a time point comes.
Getting different time points is okay with the procedure. All the computations in this paper
are conducted using a self-written code in R (R Core Team 2020).

3.2. Simulation findings

Now we present the numerical results obtained from simulation. We have conducted 1000
simulations for each of the scenarios to investigate windows’ performance on parameter esti-
mation. Table 1 gives the distribution of MTD selection and dose allocation for the assumed
dose-response scenarios. Note that bold values in the table correspond to the true MTDs for
the respective scenario. When we consider § = 2 to get the sampling windows and m = 15,
dose 3.5 is selected in 83% of the trials as MTD in Scenario 1. This dose is allocated to
55.44% of the cohorts during the trials. Dose 4 is the true MTD in Scenario 2. This dose is
selected in 77.20% trials as the MTD and allocated to 54.62% of the cohorts. In Scenario 3,
dose 5 is selected in 64.30% trials as the MTD and allocated to 41.18% of the cohorts during
the trials. The correct MTD in Scenario 4 is 6, which is recommended in 79.10% trials. As
m increases to 25, the accuracy of MTD identification increases for the scenarios. Also, more
cohorts receive the actual MTD during a trial. Since we do not incorporate PK information
in the dose-finding study, the MTD selection and dose allocation for the scenarios are found
not to be affected by d. Therefore, Table 1 presents results only for § = 2.

Table 1: The percentage distribution of doses identified as the MTD in simulations and the
percentage of cohorts (in parenthesis) treated at these doses during the trials if 6 = 2.

Dose
Scenario m 3 3.5 4 4.5 5 5.5 6
1 15 11.40 83.00 5.60 0.00 0.00 0.00 0.00
(26.40) (55.44) (15.63) (2.01) (0.48) (0.04) (0.00)
25 7.30 91.00 1.70 0.00 0.00 0.00 0.00
(20.84) (66.92)  (10.88) (1.07) (0.28) (0.01) (0.00)
9 15 0.10 15.30 77.20 7.30 0.10 0.00 0.00
(10.20)  (17.80) (54.62) (14.14) (2.70) (0.50) (0.00)
25 0.20 10.1 86.20 3.50 0.00 0.00 0.00
(6.28)  (15.88) (64.18)  (11.48) (1.72) (0.40) (0.06)
3 15 0.00 0.10 0.70 18.90 64.30 14.70 1.30
(7.43) (0.52) (9.84) (19.68) (41.18) (17.31) (4.04)
25 0.00 0.10 0.50 15.30 75.50 7.80 0.80
(4.55) (0.40) (5.86) (18.76) (53.01) (14.33) (3.08)
4 15 0.10 0.10 0.00 0.90 1.30 18.50 79.10
(7.15) (0.14) (6.95) (2.00) (9.75) (18.10)  (55.91)
25 0.00 0.00 0.00 0.20 0.80 16.40 82.60

(4.24)  (0.07)  (4.24)  (1.27) (6.76) (18.89)  (64.52)

Along with the D-optimal time points, Table 6 provides the sampling windows and random
time points taken from those windows at successive stages of a trial for Scenario 1. There
are no sampling windows for the first two cohorts, as we start constructing windows from
the third cohort. Note that blood samples are collected at the D-optimal time points for the
first two cohorts when § = 2, 3,4, or 6. It is seen that larger values of § give more expansive
windows at the beginning. However, differences in the widths of respective intervals across ¢
decrease towards the ending cohorts.

The relative bias and coefficient of variation (CV) of PK model parameter estimates, obtained
for different choices of 9, are available in Tables 2-5 along with those obtained for D-optimal
and random time points. It would be useful to mention that the absolute bias is expressed
as a percentage of a parameter’s true value to obtain the relative bias. Similarly, the CV
for a parameter expresses the standard deviation of estimates as a percentage of the mean
estimates. Table 2 indicates that the estimates are close to the true values, as reflected
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through the relative biases for the mean PK parameters if m = 15. The relative bias for
variance components is relatively higher than those for the mean parameters in Scenario 1. In
most of the occasions, a high relative bias is found for the error variance. Generally speaking,
the CV for a parameter increases as ¢ increases. The CV is high for a% when samples are
collected at random time points. There is not much difference in the estimates if we utilise
time points randomly chosen from the windows, instead of the D-optimal time points. If we
move to m = 25, then the CV for parameters decrease.

Table 2: Relative bias and coefficient of variation of the PK parameter estimates for Scenario
1.

m |4 Ke Ka o? o3 o2 a?
Estimate 0.019 0.080 1.426 1.21E-05 5.31E-05 2.09E-02 1.72

D Relative bias 5.00 0.00 1.25 5.47 2.75 5.67  20.28
(2% 2.98 1.84 2.10 25.34 42.74 3777 60.19

Estimate 0.019 0.080 1.429 1.20E-05 5.20E-05 2.03E-02 1.37

§—2 Relative bias 5.00 0.00 1.04 6.25 4.76 8.38 4.20
- CcvV 3.48 2.07 2.40 28.38 42.31 41.57 84.82
Estimate 0.019 0.080 1.430 1.20E-05 5.35E-05 2.08E-02 1.51

§=3 Relative bias 5.00 0.00 0.97 6.25 2.01 6.12 5.59
15 - (2% 3.58 2.14 2.39 28.99 51.33 48.79 72.55
Estimate 0.020 0.080 1.429 1.19E-05 5.42E-05 2.06E-02 2.10

S—4 Relative bias 0.00 0.00 1.04 7.03 0.73 7.03  46.85
- (A% 3.40 2.24 2.62 31.33 70.26 51.83 56.94
Estimate 0.019 0.082 1429 1.18E-05 5.19E-05 2.0E-02 1.68

5=6 Relative bias 0.62 2.52 0.98 7.81 4.95 5.39 17.52
- Ccv 5.30 54.26 4.13 42.88 90.12 66.16 75.78
Estimate 0.020 0.080 1.441 1.23E-05 5.38E-05 3.35E-02 1.48

Random Relative bias 0.32 0.12 0.21 3.91 1.47 51.52 3.70
CV 2.85 1.69 9.73 24.90 29.97 234.96 28.92

Estimate 0.020 0.081 1.42  1.22BE-05 5.39E-05  2.06E-02 1.89

D Relative bias 0.70 0.68 1.24 4.69 1.28 6.76 32.39
(A% 2.21 1.31 1.55 18.35 31.97 30.11 54.17

Estimate 0.020 0.080 1.427 1.20E-05 5.42E-05 2.09E-02 1.69

§—=2 Relative bias 0.63 0.60 1.20 6.25 0.73 5.27 18.51
- (A% 2.91 1.89 2.02 23.05 46.38 40.54  65.99
Estimate 0.020 0.080 1.427 1.21E-05 5.40E-05 2.08E-02 1.66

§=3 Relative bias 0.59 0.54 1.16 5.47 1.10 5.94 16.14
25 - Ccv 2.89 1.70 1.98 23.07 38.84 41.72  63.90
Estimate 0.020 0.080 1.428 1.20E-05 5.36E-05 2.05E-02 1.73

§=14 Relative bias 0.58 0.52 1.13 6.25 1.83 7.31 20.91
- Ccv 2.99 1.88 2.23 25.52 58.26 48.62 6741
Estimate 0.020 0.080 1.430 1.18E-05 5.30E-05 2.0E-05 1.76

5—6 Relative bias 2.11 0.11 0.93 7.81 2.93 8.93 23.39
- (2% 79.62 9.47 2.87 30.03 78.21 48.46 74.44
Estimate 0.020 0.080 1.428 1.25E-05 5.38E-05 2.26E-02 1.49

Random Relative bias 0.20 0.15 1.09 2.34 1.47 2.13 3.94
CcV 2.30 1.50 4.79 18.30 32.57 90.63 24.14

Table 3: Relative bias and coefficient of variation of the PK parameter estimates for Scenario
2.

m 1% Ke K, af o‘é aé o2
Estimate 0.019 0.080 1.425 1.23E-05 5.49E-05 2.12E-02 1.72

D Relative bias 5.00 0.00 1.32 3.91 0.55 4.32 20.28

CcvV 3.10 1.71 2.09 3.17 37.51 38.32 59.01

Estimate 0.019 0.080 1.427 1.23E-05 5.17E-05 2.08E-02 1.54

§—=29 Relative bias 5.00 0.00 1.18 3.91 5.31 6.12 7.69

- CcvV 3.32 1.92 2.20 25.23 41.26 38.82 74.04
Estimate 0.019 0.080 1.427 1.23E-05 5.22E-05 2.07E-02 1.57

§—3 Relative bias 5.00 0.00 1.18 3.91 4.40 6.58 9.79

15 - CcvV 3.35 1.92 2.24 25.63 44.60 38.16 74.55
Estimate 0.019 0.080 1.429 1.22E-05 5.45E-05 2.08E-02 2.19

< 4 Relative bias 5.00 0.00 1.04 4.69 0.18 6.12 53.15
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Table 3 — Continued

m 1% Ke K, Gf o‘f arf o2
CV 3.48 1.97 2.22 27.12 38.75 40.11 54.03

Estimate 0.020 0.086 1.426 1.43E-05 5.25E-05 2.09E-02 1.75

§—=6 Relative bias 0.74 7.52 1.28 11.72 3.85 5.86 22.41
- cv 9.34 11.20 6.05 30.37 50.37 86.54 79.33
Estimate 0.020 0.080 1.443 1.25E-05 5.38E-05 2.89E-02 1.45

Random Relative bias 0.34 0.27 0.05 2.34 1.47 30.43 1.58
Ccv 2.74 1.60 15.61 22.49 27.82 140.27 25.56

Estimate 0.020 0.081 1.426 1.23E-05 5.53E-05 2.10E-02 1.81

D Relative bias 0.76 0.69 1.22 3.91 1.28 5.20 26.51
CcvV 2.14 1.31 1.57 18.50 30.79 29.88 55.82

Estimate 0.020 0.081 1.427 1.22E-05 5.36E-05 2.07E-02 1.72

s=29 Relative bias 0.52 0.69 1.16 4.69 1.83 6.53 19.97
- ()% 2.64 1.46 1.89 21.86 32.58 32.71 64.57
Estimate 0.020 0.081 1.427 1.22E-05 5.48E-05 2.07E-02 1.68

s=3 Relative bias 0.54 0.67 1.17 4.69 0.37 6.13 17.50
25 - Ccv 2.71 1.52 1.95 23.05 37.93 31.78 66.80
Estimate 0.020  0.080 1.430 1.21E-05 5.28E-05 2.04E-02 1.69

S—4 Relative bias 0.38 0.53 0.95 5.47 4.21 7.60 18.45
- Ccv 4.31 3.14 4.13 38.03 43.28 34.40 66.95
Estimate 0.020  0.080 1.429 1.22E-05 5.98E-05 2.09E-02 1.69

S=6 Relative bias 0.68 0.52 1.06 4.69 9.52 5.45 18.13
- cvV 3.43 3.70 2.78 80.98 52.13 53.57 73.97
Estimate 0.020  0.080 1.428 1.26E-05 5.36E-05 2.24E-02 1.49

Random Relative bias 0.21 0.06 1.12 1.56 1.83 1.11 3.86
CcvV 2.10 1.20 3.80 17.39 20.44 70.39 18.44

Table 4: Relative bias and coefficient of variation of the PK parameter estimates for Scenario
3.

m |4 Ke Ka o? o3 o2 a?
Estimate 0.019 0.080 1426 1.22E05 5.40E-05 2.12E-02 1.82

D Relative bias  5.00  0.00  1.25 4.69 1.10 432 27.27
cv 3.17 176 2.12 24.59 38.13 38.32  58.41

Estimate 0.02 0.080 1.429 1.23E-05 5.33E-05 2.09E-02 1.46

5—o Relative bias  0.00  0.00  1.04 3.91 2.38 5.67 2.10
= cv 3.25 1.87  2.30 25.39 37.24 38.58  85.27
Estimate 0.02 0.080 1.43 1.23E-05 5.44E-05 2.12E-02 1.59

5—3 Relative bias  0.00  0.00  0.97 3.91 0.37 432 11.19
15 = cv 331 1.94  2.38 28.97 44.23 40.63  74.42
Estimate 0.02 0.080 143 1.21E-05 5.55E-05 2.11E-02 2.68

5—4 Relative bias ~ 0.00  0.00  0.97 5.47 1.65 477 8741
= Ccv 333 210 261 28.98 70.48 46.41  45.09
Estimate 0.020 0.083 1.429 1.17E-05 5.21E-05 2.13E-02 1.85

5—6 Relative bias ~ 0.61  3.78  1.07 8.59 4.58 3.79  20.11
= CcV 506  9.32  4.62 39.26 45.35 93.63  84.01
Estimate 0.020 0.080 1.437 1.24E-05 5.40E-05 2.63E-02 1.49

Rand Relative bias  0.20  0.14  0.53 3.12 1.10 18.98 4.10
andom -y 283 152 7.4 23.14 25.86 161.19  24.85
Estimate 0.020 0081 1.426 1.2IE05 5.49E05 2.10E-02 1.87

I Relative bias ~ 0.74  0.75  1.26 5.47 0.55 5.20  30.64
cv 231 130 155 19.28 29.93 20.39  56.26

Estimate 0.020 0.080 1.427 1.22E-05 5.44E-05 2.14E-02 1.79

P Relative bias  0.53  0.59  1.18 4.69 0.37 3.05  25.39
= cVv 237 179  1.86 18.89 40.11 32.92  68.16
Estimate 0.020 0.080 1.429 1.22E-05 5.43E-05 2.15E-02 1.74

§—3 Relative bias 0.44 0.50 1.06 4.69 0.55 2.64 21.98
25 = cv 248 167  1.82 29.55 47.63 36.88  66.84
Estimate 0.020 0.080 1.429 1.22E-05 5.44E-05 2.17E-02 1.66

P Relative bias 045  0.47  1.06 4.69 0.37 1.99  16.21
= cv 2.38 160 1.89 22.24 53.31 34.24  63.92
Estimate 0.020 0.080 1.429 1.21E-05 5.20E-05 2.05E-02 1.73

PR Relative bias  0.38  0.46  1.03 5.47 4.76 721  20.98
= cv 500 271 255 33.11 48.61 50.77  65.98
Estimate 0.020 0.080 1.428 1.25E-05 5.41E-05 2.35E-02 1.48

Relative bias ~ 0.19  0.19  1.10 2.34 0.92 6.38 3.65

Random 221 118 437 17.71 1974 150.47  20.74
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Table 5: Relative bias and coefficient of variation of the PK parameter estimates for Scenario
4.

m 1% Ke Kg Uf 05 arf o’
Estimate 0.010 0.081 1.424 1.22E-05 5.50E-05 2.123E-02 1.93

D Relative bias  0.72  0.74  1.36 4.69 0.73 3.74  34.90
cv 3.14 236 241 24.54 58.35 4735  64.41

Estimate 0.019 0.080 1.428 1.23E-05 5.27E-05  2.10E-02 1.72

5= Relative bias  0.38  0.47  1.08 3.91 3.48 491  20.53
Y 296 1.84  2.00 24.90 33.94 33.05  75.09

Estimate 0.019 0.080 1.428 1.22E-05 5.19E-05 2.11E-02 1.73

5=3 Relative bias ~ 0.42  0.52  1.12 4.69 4.95 490 21.15
15 = Y 3.03 202 213 26.05 35.32 35.67  71.13
Estimate 0.019 0.080 1.429 1.23E-05 5.28E-05  2.11E-02 1.72

S—4 Relative bias 0.43 0.42 1.05 3.91 3.30 4.98 20.17
= cv 320 208 221 31.80 85.33 35.92 7254
Estimate 0.020 0.081 1.431 1.20E-05 5.22E-05  1.99E-02 1.87

56 Relative bias  0.29  1.32  0.88 6.25 4.40 10.13  30.64
= cv 13.48 53.54  3.16 37.14 93.61 55.01  82.51
Estimate 0.019 0.080 1.436 1.25E-05 5.34E-05  2.59E-02 1.51

S Relative bias ~ 0.01  0.06  0.56 2.34 2.20 16.75 5.88
andom -y 277 154 6.8 24.50 26.48 142.46  27.74
Estimate 0.010 0.081 1426 1.22E-05 5.42E-05  2.12E-02 1.93

D Relative bias ~ 0.69  0.74  1.22 4.69 0.73 4.21  35.12
cv 222 134 157 17.86 30.65 30.46  59.94

Estimate 0.019 0.080 1.428 1.23E-05 5.26E-05  2.12E-02 1.84

P Relative bias  0.49  0.54  1.04 3.91 3.66 422  28.56
= cv 244 144 175 19.24 27.02 31.22  66.15
Estimate 0.019 0.080 1.429 1.22E-05 5.26E-05  2.15E-02 1.80

5—3 Relative bias ~ 0.49 049  0.97 4.69 3.66 3.0l  25.68
25 = CcV 249 168  1.90 20.59 31.06 30.76  66.12
Estimate 0.019 0.080 1.429 1.19E-05 5.72E-05  2.14E-02 1.72

P Relative bias  0.36  0.46  1.01 7.03 4.76 3.56  20.55
= ()% 473 356  1.97 27.16 39.27 35.14  64.87
Estimate 0.020 0.081 1.430 1.17E-05 5.83E-05  2.05E-02 1.82

56 Relative bias  0.71  1.31  0.93 8.59 6.78 741 2748
= cv 25.99 4055  2.81 32.23 53.19 4321  75.31
Estimate 0.019 0.080 1.427 1.26E-05 5.39E-05  2.26E-02 1.49

Rand Relative bias  0.15  0.08  1.15 1.56 1.28 2.38 4.36
andom oy 212 114  3.74 17.17 20.58 84.86  20.40

Tables 3-5 present the relative bias and CV of parameter estimates for Scenarios 2-4, respec-
tively. The results in these cases are similar to those obtained earlier for Scenario 1. As §
increases, we do observe an increase in relative bias for some of the parameters. The CV
increases if we increase §. That is to say, accuracy and precision in the parameter estimates
are affected to some extent if we consider proposed windows to collect blood samples instead
of D-optimal time points. However, the loss in accuracy and precision is very negligible
compared to the flexibility that windows open.

4. Conclusion

This paper presents a simple way of constructing windows for PK sampling in a phase I
trial. Blood samples can be collected at time points chosen from windows when patients
or volunteers have complexity and hardship for giving samples to medical personnel at the
exact D-optimal time points. We compared the PK parameter estimates at D-optimum and
randomly chosen time points from windows. It has been found that the estimates differ over
the two approaches very little. Also, we have investigated three random time points taken
from the design region. The estimates of variance component o3 are found to be affected
often in such a case. Since the design region in our example is 0 to 25 hours, the random
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time points from sampling windows and the random time points from the design region are
very similar. Therefore, the random time points case produces very competitive estimates.
However, in case of a much broader design region than this example, any time point taken
from the region is likely to produce less accurate and efficient estimates. Four dose-response
scenarios have been studied for various values of § and m. A large value of ¢ provides more
flexibility in sampling but provides less accurate estimates of parameters. On the other hand,
with the increase in m, the accuracy of both MTD recommendations and PK parameter
estimates increases. Although the CRM has been used for dose-escalation, one can also use
other dose-finding designs. Other PK models can be used to construct windows as well. Note
that we do not use PK data to determine the MTD. The PK parameter estimates obtained at
each stage of a trial are used to find the locally D-optimum time points. To conclude, we have
shown how to construct windows to choose time points around the D-optimum time points.
The comparison of estimates for each of the scenarios ensures the accuracy and precision of
the proposed method.
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Appendix A: Fisher information matrix for the PK model

As in Alam (2015), we linearise the model in (7) using a first-order Taylor series expansion
about ¢; = (V, ke,ka,b%,bkEi,bkai)T at ¢° = (VO k9, k2,0,0,0)T, where VO, k¥ and k¥ are
some prior values of the population mean parameters. Then we obtain an approximated linear

mixed effects model of the form
yi = pi+ H;B+ Lb + ¢,
where p; is a n x 1 vector of constants. The matrix H; is defined as

O0f(ti1;9(B,b:;)) Of(ti;9(B,b:i) Of(ti;9(8,bi))
oV Ok, Okg

H; =

OF(tim:g(B.6))  Of(tin: g(B.1:))  Of (tin: 9(B. b))
v ke k4 0

The elements of H; are given as

_ _ I xkg —KO¢t; — k0t
Of (tu; 9(B, b)) T VOR(R — kD) (et = etien)
of( 8‘?ﬁ bi)) zhy ehetu — e~hatu K0t
tu; 9(B, b; _ “ — tye e
o = VE-D N\ R
_ 1.0y, _1.0g.

Of (tiu: 9(8,b;)) T ke (e Felit —e katd) 0, —kOt,

Ok, J 0 VO0RT D) - Ry + k tye e

Since 6; = 3 + b;, we also have H; = L;, where
[ Of(ti1;9(B,b:))  Of(ti;g(B,b:))  Of(ti1;9(8,b:)) T

Dby b, O,
L= : : :
Of (tin;g(B,bi))  Of (tin;g(B,bi))  Of (tin; g(B,bi))
T oy b, S
It can be shown that the approximate FIM for individual i is
L[ H'V.'H;, 0
where
{W)u}2 (W)12(Wi)ar (W)is(Wi)s1 (Pu
B 1| Wi)(Wi)s {(Wi)a2}?  (Wi)s(Wi)sa  (Pi)a2
CT 2| (W)is(Wi)si (Wi)as(Wy)se  {(W;)s3}? (Py)sz |’
(P;)1n (P;)22 (P;)33 tr (V%)

(Wi for I,k = 1,2,3 are elements of W, = L;TF‘/flLi and (P;); are diagonal elements of
P, = LTV, 2L;. Note that V; = Var(y;) & L;QL! + 0I,.
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