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Abstract

This research focuses on assessing the goodness of fit for the Gompertz model in the
presence of right and interval censored data with covariate. The performance of the
maximum likelihood estimates was evaluated via a simulation study at various censoring
proportions and sample sizes. The conclusions were drawn based on the results of bias,
standard error and root mean square error at different settings. Following that, another
simulation study was carried out to compare the performance of the proposed modifica-
tions to the Cox-Snell residuals for both censored and uncensored observations at different
combinations of sample sizes and censoring levels. The results show that standard error
and root mean square error values of the parameter estimates increase with the increase
in censoring proportions and decrease in the number of sample size. This indicates that
the estimates perform better when sample sizes are larger and censoring proportions are
lower. The performance of the proposed modifications of the Cox-Snell residuals showed
that they perform slightly better than existing method.

Keywords: Gompertz model, right censored, covariates, Cox-Snell residuals, proposed modi-
fications.

1. Introduction

Survival analysis consists of statistical procedures used for analysis of data where the outcome
variable is time until an event occurs and is often referred to as time to event data. Survival
analysis has become a popular tool in observational and experimental studies primarily in the
public health, epidemiology, medical and biological sciences (Klein and Moeschberger 2003;
Lee and Wang 2003).
Traditional statistical procedures are not equipped to handle the censored observations which
is a special type of missing data that occurs in survival analyses when subjects do not ex-
perience the event of interest during the follow-up time. Moreover, survival data are not
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symmetrically distributed or non-normality and typically it will tend to be positively skewed
(Collett 2003).

Censoring occurs when we have some information about individual survival time but do not
know the survival time exactly. While, for exact or uncensored observations reported when
the survival times recorded for the person’s that died during the study period which is the
times from the start of the experiment until the death. The three most common censoring
in survival analysis are right censoring, left censoring and interval censoring. Right censoring
occurs when true survival time is equal to or greater than observed survival time or in other
way, we can say that the individual is still alive at a given time. Left censoring arises when
the individual has experienced the event of interest prior to the start of the study but the
exact time of occurrence is unknown. In interval censoring, the true survival time lies within
a known time interval instead of being observed exactly (Klein and Moeschberger 2003; Lee
and Wang 2003; Kleinbaum and Klein 2012). Interval censored data is very common in
medical research where inspection on patients are conducted on different time intervals. So,
the lifetime is only known to fall within an interval, Li < ti < Ri, where Li and Ri are known
as left and right endpoints. In this study, we focus on both right and interval censoring.

Although there are well known methods for estimating unconditional survival distributions,
most interesting survival modeling examines the relationship between survival and one or
more predictors known as covariates. Residuals are a widely used tool to assess the adequacy
of a model. When modeling survival data, it is not as easy to define a residual as for a general
linear model. It is common practice to use Cox-Snell residuals to check for overall goodness
of fit in survival models (Cox and Snell 1968). Therefore, a set of different residuals has
therefore been proposed.

In this paper, we have considered the Gompertz distribution with covariate in the presence of
right and interval censored data to study extensively on the performance of this model. A sim-
ulation study is carried out to evaluate the maximum likelihood estimation (MLE) procedure
for the parameters of the Gompertz model at various censoring proportions and sample sizes
by computing the values of bias, standard error (SE) and root mean square error (RMSE).
Following that, we had proposed several modifications to the Cox-Snell residuals and analyzed
comprehensively their performance at different sample sizes and censoring proportions.

Originally, the Gompertz distribution was developed by a British actuary, (Gompertz 1825),
in modeling human mortality and establish actuarial tables. This famous Gompertz theo-
retical law of mortality states that the death rates increased exponentially with age. Over
the past one and a half centuries, many researchers have contributed to the studies of sta-
tistical methodology and characterization of this distribution for instance Garg, Rao, and
Redmond (1970) studied on the properties of the Gompertz distribution and compare the
estimates through the least-squares method and maximum-likelihood estimation. Gordon
(1990) considered on the maximum likelihood estimates for the parameters of the mixture of
two Gompertz distributions when censoring occurs. Subsequently,Witten and Satzer (1992)
addressed the issue of parameter sensitivity of a new method for estimating the model pa-
rameters of the Gompertz mortality rate model. Wilson (1994) compared the Gompertz,
Weibull and Logistics functions in the analysis of mortality data. Chen (1997) developed an
exact confidence interval and an exact joint confidence region for the parameters of the Gom-
pertz distribution. While, Wu, Hung, and Tsai (2004) proposed unweighted and weighted
least squares estimates for parameters of the Gompertz distribution under complete set of
data and first failure censored data. Lenart (2012) discussed on the comparison method of
moments and maximum likelihood estimates from a Gompertz distribution. Kiani, Arasan,
and Midi (2012) deliberated on performance of the Gompertz model with time-dependent
covariate in the presence of right censored data and applied two confidence interval estima-
tion techniques known as Wald and Jackknife. Kiani and Arasan (2013) was extended the
Gompertz model to incorporate time-dependent covariate in the presence of interval-, right-,
left-censored and uncensored data. Abu-Zinadah (2014) implemented the maximum likeli-
hood method of estimation for estimating the parameters and performed the goodness-of-fit
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tests for testing the three-parameters exponentiated Gompertz distribution based on complete
and type II censored sampling. Later, El-Din, Abdel-Aty, and Abu-Moussa (2016) estimated
the parameters for Gompertz distribution by finding the maximum likelihood method and
Bayesian method under three different loss functions. Currently, de Andrade, Chakraborty,
Handique, and Gomes-Silva (2019) studied five-parameter model based on a new general-
ization of the extended Gompertz distribution known as exponentiated generalized extended
Gompertz distribution.

Weissfeld and Schneider (1990) conferred on the methods for detecting influential observations
for the Weibull model fit to censored data which include the methods of one-step deletion diag-
nostics, influence functions and curvature diagnostics. Results from Leung, Elashoff, and Afifi
(1997) summarised that various methods used to deal with censored data which includes com-
plete data analysis, the imputation techniques, analysis based on dichotomized data and the
likelihood-based approach. Farrington (2000) had applied several diagnostic tools such as Cox-
Snell, Lagakos (or martingale), deviance, and Schoenfeld residuals for use with proportional
hazards models for interval-censored survival data. Sparling, Younes, Lachin, and Bautista
(2006) were presented a parametric family of regression models for interval-censored event-
time (survival) data that accommodates both fixed and time-dependent covariates. Prinja,
Gupta, and Verma (2010) devised that problem of interval censoring arises when time to
event may be known only up to a time interval which the situation occurs in a case where the
assessment of monitoring is done at a periodical frequency. Kiani and Arasan (2018) discussed
on the survival model with doubly interval censored data and time dependent covariate where
the life-time is the elapsed time between two related events which means that the first event
and the second event are interval censored. Sakurai and Hattori (2018) developed a model-
checking procedure based on the cumulative martingale residuals for the interval-censored
observations.

2. Methodology

2.1. Gompertz model with right and interval censored data and covariate

Let T be a non-negative continuous random variable which denotes the survival time. The
probability density function of the Gompertz is given by,

f(t; γ;λ) = λe
[γt+λ

γ
(1−eγt)]

; t ≥ 0, λ > 0, γ > 0. (1)

The corresponding survivor function is given by,

S(t; γ;λ) = e
[λ
γ
(1−eγt)]

. (2)

The hazard function is

h(t; γ;λ) = λeγt. (3)

The effect of covariates on survival time can be incorporated to the hazard function by letting
the parameter λ be a function of the covariates,

λ = eβ
′x. (4)

For data set with a covariate xi where i = 1, 2, ..., n, the hazard function for ith subject can
be expressed as,

h(ti; γ;λ) = λie
γti . (5)

where

λi = eβ0+β1xi . (6)
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Therefore, the hazard function is

h(ti;xi;β; γ) = λie
γti ,

= eβ0+β1xi .eγti ,

= eβ0+β1xi+γti .

(7)

The probability density function is

f(ti;xi;β; γ) = λe
[γti+

λ
γ
(1−eγti )]

,

= eβ0+β1xi .e
[γti+

eβ0+β1xi
γ

(1−eγti )]
,

= e
β0+β1xi+γti+

eβ0+β1xi
γ

(1−eγti )
.

(8)

with the corresponding survivor function given by

S(ti;xi;β; γ) = e
[λ
γ
(1−eγti )]

,

= e
[ e
β0+β1xi

γ
(1−eγti )]

.
(9)

The parameters of this model can be estimated by the method of maximum likelihood (MLE)
where θ = (β0, β1, γ) is the vector of parameters.

2.2. Maximum likelihood estimation

To incorporate right and interval censored data to the likelihood function, we need to define
the following indicator variables for ith observation,

δEi =

{
1, if the ith observation is complete

0, otherwise.

δRi =

{
1, if the ith observation is right censored

0, otherwise.

δIi =

{
1, if the ith observation is interval censored

0, otherwise.

Then the likelihood function for the full sample consisting of complete, right censored and
interval censored data is,

L(θ) =
n∏
i=1

[f(ti)]
δEi [S(tRi)]

δRi [S(tLi) − S(tRi)]
δIi ,

=

n∏
i=1

[
e
β0+β1xi+γti+

eβ0+β1xi
γ

(1−eγti )
]δEi[

e
eβ0+β1xi

γ
(1−eγtRi )

]δRi
×
[
e
eβ0+β1xi

γ (eγtRi − eγtLi )

]δIi
.

(10)

and log-likelihood function is,

l(θ) =

n∑
i=1

δEi

[
β0 + β1xi + γti +

eβ0+β1xi

γ
(1 − eγti)

]
+ δRi

[
eβ0+β1xi

γ
(1 − eγtRi )

]
+ δIi

[
e
eβ0+β1xi

γ (eγtRi − eγtLi )

] (11)
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The inverse of the observed information matrix, [i(β̂0, β̂1, γ̂)]−1 can be obtained from the
second partial derivative of the log-likelihood function evaluated at β̂0, β̂1 and γ̂ which provides
the estimates for the variance and covariance.

3. Simulation study and results

3.1. Assessing performance of the parameter estimates

A simulation study using 1000 samples each with n=30,40,50,80 and 100 were conducted
for this model for both censored and uncensored observations with fixed covariates, xi. The
covariate values were simulated independently from the standard normal distribution. The
values of -5, 0.3 and 0.5 were chosen as the parameters of β0, β1 and γ to mimic real life
survival data. A sequence of random numbers, ui, from the standard uniform distribu-
tion on the interval (0, 1) was generated to produce lifetimes ti for i = 1, 2, ..., n subjects.
The censoring time, ci was generated from exponential distribution where the value µ would
be adjusted to obtain the desired approximate censoring proportion (cp) for the data with
cp = 0%, 10%, 20%, 30%, 40% and 50%. The simulated survival time is considered censored if
ti > ci, and will be replaced by the corresponding censoring time. The survival time ti was
generated by,

ti =
1

γ
log

[
1 − γlog(1 − µi)

eβ0+β1xi

]
. (12)

In order to evaluate the performance of the estimator at different combination of sample sizes
and censoring proportions, the bias, standard error (SE) and root mean square error (RMSE)
of the parameter were calculated. The bias, SE and RMSE were computed by,

bias = E(θ̂) − θ, (13)

SE =

√
E(θ̂ − E(θ̂))2, (14)

RMSE =
√
SE2 + bias2 (15)

Table 1: Summary table for bias of the parameters for various n and cp.

Estimates n Censoring Proportion

0% 10% 20% 30% 40% 50%
30 -0.2721 -0.2607 -0.2614 -0.2628 -0.2632 -0.2696
40 -0.1556 -0.1472 -0.1135 -0.1088 -0.1019 -0.0964

β̂0 50 -0.1474 -0.1295 -0.1010 -0.0720 -0.0541 -0.0311
80 -0.1011 -0.0682 -0.0507 -0.0134 0.0454 0.0884
100 -0.0691 -0.0458 -0.0232 -0.0032 0.0278 0.0727
30 0.0265 0.0281 0.0314 0.0386 0.0357 0.0315
40 0.0174 0.0184 0.0122 0.0138 0.0136 0.0134

β̂1 50 0.0155 0.0128 0.0118 0.0092 0.0071 0.0134
80 0.0104 0.0076 0.0065 0.0085 0.0070 0.0059
100 0.0053 0.0037 0.0033 0.0027 0.0042 0.0035
30 0.0402 0.0410 0.0444 0.0487 0.0510 0.0572
40 0.0244 0.0253 0.0257 0.0269 0.0282 0.0299

γ̂ 50 0.0218 0.0213 0.0206 0.0210 0.0217 0.0263
80 0.0146 0.0132 0.0124 0.0114 0.0088 0.0087
100 0.0109 0.0099 0.0094 0.0083 0.0078 0.0055
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Based on the Table 1, the bias values show an erratic pattern as the sample size and the
censoring proportion increase. While, in Table 2, we can see that the standard error values
increase as the censoring proportions increase. The Table 3 indicates that the root mean
square error values also increase as the censoring proportion increase. This indicates that
poorer performance for the parameter estimates at smaller sample sizes and higher censoring
proportions, whereas larger sample sizes and lower censoring proportions would have higher
accuracy and efficiency of the parameter estimates.

Table 2: Summary table for standard error (SE) of the parameters for various n and cp.

Estimates n Censoring Proportion

0% 10% 20% 30% 40% 50%
30 0.7270 0.7596 0.8136 0.8946 0.9419 1.0274
40 0.5841 0.6003 0.6460 0.6670 0.7003 0.7302

β̂0 50 0.5380 0.5547 0.5825 0.6148 0.6455 0.7610
80 0.4232 0.4391 0.4445 0.4781 0.5168 0.5660
100 0.3667 0.3760 0.3875 0.4040 0.4317 0.4611
30 0.2246 0.2375 0.2548 0.2880 0.3069 0.3432
40 0.1891 0.1971 0.2240 0.2322 0.2444 0.2601

β̂1 50 0.1656 0.1723 0.1812 0.1998 0.2148 0.2695
80 0.1192 0.1295 0.1328 0.1501 0.1707 0.1960
100 0.1089 0.1153 0.1211 0.1243 0.1342 0.1443
30 0.0919 0.0961 0.1050 0.1172 0.1242 0.1356
40 0.0742 0.0772 0.0846 0.0883 0.0940 0.0988

γ̂ 50 0.0680 0.0710 0.0749 0.0801 0.0847 0.1028
80 0.0534 0.0558 0.0568 0.0619 0.0683 0.0763
100 0.0462 0.0478 0.0501 0.0522 0.0566 0.0615

Table 3: Summary table for root mean square error (RMSE) of the parameters for various n
and cp.

Estimates n Censoring Proportion

0% 10% 20% 30% 40% 50%
30 0.7763 0.8031 0.8546 0.9323 0.9780 1.0622
40 0.6045 0.6181 0.6559 0.6758 0.7077 0.7365

β̂0 50 0.5578 0.5696 0.5912 0.6190 0.6478 0.7616
80 0.4351 0.4444 0.4473 0.4783 0.5188 0.5729
100 0.3731 0.3788 0.3882 0.4040 0.4326 0.4668
30 0.2262 0.2392 0.2567 0.2906 0.3090 0.3447
40 0.1899 0.1980 0.2244 0.2326 0.2448 0.2604

β̂1 50 0.1663 0.1728 0.1816 0.2000 0.2149 0.2699
80 0.1196 0.1297 0.1330 0.1503 0.1708 0.1961
100 0.1090 0.1153 0.1212 0.1243 0.1343 0.1444
30 0.1003 0.1045 0.1140 0.1269 0.1343 0.1472
40 0.0781 0.0813 0.0884 0.0923 0.0982 0.1032

γ̂ 50 0.0714 0.0741 0.0777 0.0828 0.0874 0.1061
80 0.0553 0.0574 0.0581 0.0630 0.0688 0.0768
100 0.0475 0.0488 0.0509 0.0528 0.0571 0.0617

3.2. Assessing model fit

Modification of Cox-Snell residuals

Cox-Snell residuals, rCi, is widely used in the analysis of survival data as discussed by Cox
and Snell (1968) to assess a model’s goodness-of-fit. A log-cumulative hazard plot of residuals
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is obtained by plotting the Cox-Snell residual against the cumulative hazard function to assess
the model’s fit. A well fitting model will exhibit a linear line through the origin with a unit
gradient. It should be noted that it will take a particularly ill-fitting model for the Cox-Snell
residuals to deviate significantly from this. One criticism of Cox-Snell residuals is that they do
not account for censored observations, therefore the adjusted Cox-Snell residuals were devised
by Crowley & Hu (1977) in Collett (2003) whereby the standard Cox-Snell residual, rCi could
be used for uncensored observations and rCi + ∆ whereby ∆ = log(2) = 0.693, is used to
adjust the residual. The Cox-Snell residuals for the ith individual, i = 1, 2, ..., n is given by,

rci = −logŜi(ti). (16)

The modified Cox-Snell residuals by proposed to account for censored data. Crowley & Hu
(1977) in Collett (2003) found that the addition of unity to a Cox-Snell residual for a censored
observation inflated the residual to too great an extent. Thus, by using the median value of
the excess residual, a second version of the modified Cox-Snell residual is,

r′ci =

{
rci, for uncensored observations,

rci + 0.693, for censored observations.

In this research we propose two modifications to the Cox-Snell residuals as follows

r2ci =

{
rci, for uncensored observations,

rci + g, for censored observations.

and

r3ci =

{
rci, for uncensored observations,

rci + h, for censored observations.

where g is the geometric mean of data and h is the harmonic mean of data.

Simulation study

A simulation using 1000 samples each with n=30,40,50,80 and 100 using cp = 0%, 10%, 20%, 30%,
40% and 50% was conducted to compare the residual values. A number of plots based on
residuals were used in the graphical assessment of the adequacy of a fitted model. Plot of
ln[−ln(Ŝ(rci))] vs ln(rci) should be a straight line through the origin with unit slope if the
data fits the model. Several modification of the Cox-Snell residuals were used and compare
the performance for censored and uncensored data.

• Cox-Snell residuals, rci

• Modified Cox-Snell, r1ci

• Replace the median with geometric mean of existing data, r2ci

• Replace the median with harmonic mean of existing data, r3ci

The table indicates that as number of sample size increase, the intercept become closer to zero.
Similarly as sample size increase, the slope become closer to 1. While for both r and R2 values
closer to 1 indicates a strong relationship. However, when the censoring proportions becomes
higher, expected values for intercept and slope go further than zero and 1 respectively. The
range for r and R2 values also become wider as it across higher censoring proportions.



64 Assessing the Goodness of Fit of the Gompertz Model

Table 4: Range of intercept for various residuals.

Residuals

n cp CS MCS GMCS HMCS
Min Max Min Max Min Max Min Max

0 -0.4434 0.7074 -0.4418 0.7074 -0.4434 0.7074 -0.4418 0.7074
10 -0.5032 0.7052 -0.4999 0.7052 -0.5114 0.7052 -0.5049 0.7052

30 20 -0.6071 0.6679 -0.6342 0.5596 -0.6837 0.6134 -0.6093 0.6403
30 -0.6334 0.4586 -0.7819 0.1847 -0.8994 0.3294 -0.6353 0.3862
40 -0.7406 0.4449 -1.2023 -0.0020 -0.9491 0.2479 -0.7360 0.5308
50 -0.9274 0.4460 -1.4811 -0.2882 -1.1982 0.2061 -0.9098 0.4677
0 -0.5565 0.2631 -0.5572 0.2643 -0.5566 0.2649 -0.5572 0.2643
10 -0.5791 0.2900 -0.5976 0.2600 -0.6056 0.2680 -0.5847 0.2914

40 20 -0.5437 0.3003 -0.5904 0.2216 -0.6064 0.2489 -0.5639 0.2713
30 -0.5494 0.3688 -0.6542 0.1358 -0.6540 0.2357 -0.5591 0.3518
40 -0.5860 0.3167 -0.8675 0.0495 -0.7389 0.2180 -0.5888 0.3161
50 -0.6118 0.3271 -1.1443 -0.0634 -0.9202 0.0743 -0.6406 0.2747
0 -0.3182 0.3307 -0.3221 0.3258 -0.3229 0.3258 -0.3221 0.3258
10 -0.3590 0.3941 -0.3957 0.2789 -0.3849 0.3463 -0.3740 0.3702

50 20 -0.3897 0.4280 -0.6187 0.1486 -0.5100 0.3132 -0.3943 0.3981
30 -0.3899 0.4063 -0.6582 0.0570 -0.5415 0.2698 -0.3931 0.3760
40 -0.5227 0.3872 -0.7811 -0.0991 -0.6901 0.1930 -0.5253 0.3778
50 -0.6747 0.5454 -1.2366 -0.2627 -0.8577 0.3193 -0.6355 0.6042
0 -0.3636 0.2743 -0.3636 0.2743 -0.3636 0.2743 -0.3636 0.2743
10 -0.4382 0.2880 -0.4961 0.1998 -0.4959 0.2367 -0.4442 0.2644

80 20 -0.4574 0.2349 -0.6484 0.0305 -0.6066 0.1300 -0.4670 0.2032
30 -0.5841 0.2167 -0.9153 -0.1032 -0.7510 0.0702 -0.5791 0.2005
40 -0.7151 0.1712 -1.1495 -0.2600 -0.8868 0.0140 -0.6750 0.1465
50 -0.8315 0.1559 -1.2902 -0.4159 -0.9629 -0.0568 -0.7651 0.1675
0 -0.2159 0.2431 -0.2159 0.2431 -0.2159 0.2431 -0.2159 0.2431
10 -0.2165 0.2427 -0.2506 0.2281 -0.2515 0.2281 -0.2325 0.2423

100 20 -0.2763 0.3475 -0.4533 0.1048 -0.3803 0.2437 -0.2793 0.3481
30 -0.3245 0.3263 -0.5296 0.0500 -0.4251 0.1984 -0.3236 0.3332
40 -0.4460 0.3178 -0.8253 -0.0609 -0.6152 0.1008 -0.4406 0.3179
50 -0.5708 0.3374 -1.1290 -0.2312 -0.7591 0.1781 -0.5705 0.3383
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Table 5: Range of slope for various residuals.

Residuals

n cp CS MCS GMCS HMCS
Min Max Min Max Min Max Min Max

0 0.4518 1.1746 0.4518 1.1671 0.4518 1.1746 0.4518 1.1671
10 0.5005 1.1745 0.4008 1.1699 0.4128 1.1727 0.5020 1.1913

30 20 0.5203 1.1195 0.4130 1.1246 0.4629 1.1590 0.5299 1.2217
30 0.5164 1.1159 0.3868 1.0473 0.4819 1.2140 0.5213 1.1200
40 0.5080 1.1996 0.3893 1.2689 0.5248 1.5320 0.5459 1.2295
50 0.4581 1.3049 0.3382 1.3125 0.4956 1.5140 0.5038 1.2179
0 0.6707 1.2382 0.6699 1.2378 0.6702 1.2382 0.6699 1.2378
10 0.6635 1.2103 0.6635 1.2187 0.6635 1.2175 0.6652 1.2018

40 20 0.6193 1.1785 0.6007 1.1928 0.6086 1.1908 0.6258 1.2304
30 0.6042 1.2047 0.5728 1.2083 0.5983 1.2083 0.6063 1.2102
40 0.5809 1.2084 0.5368 1.2056 0.5819 1.2192 0.5781 1.1920
50 0.5109 1.1698 0.4696 1.2414 0.5695 1.3510 0.5288 1.1929
0 0.5105 1.1695 0.5102 1.1759 0.5102 1.1759 0.5102 1.1759
10 0.5256 1.1914 0.4819 1.1724 0.4891 1.1792 0.5292 1.2249

50 20 0.5682 1.1771 0.4746 1.1771 0.5006 1.2103 0.5708 1.2180
30 0.5665 1.2120 0.4691 1.1382 0.5050 1.1783 0.5697 1.2862
40 0.5783 1.2510 0.4402 1.2160 0.4958 1.2446 0.5821 1.2826
50 0.5423 1.2425 0.4126 1.2887 0.4994 1.3424 0.5419 1.2497
0 0.6704 1.2657 0.6704 1.2657 0.6704 1.2657 0.6704 1.2657
10 0.6664 1.3532 0.6569 1.3518 0.6597 1.3509 0.6725 1.3724

80 20 0.6414 1.3483 0.6180 1.3304 0.6486 1.3889 0.6650 1.3821
30 0.5991 1.3061 0.5834 1.3893 0.6416 1.4014 0.6290 1.2800
40 0.5776 1.4413 0.5310 1.4953 0.6240 1.5625 0.6050 1.4266
50 0.5535 1.4246 0.5043 1.4914 0.6290 1.5658 0.6104 1.4051
0 0.6736 1.1872 0.6736 1.1872 0.6736 1.1872 0.6736 1.1872
10 0.6826 1.2226 0.6590 1.1969 0.6639 1.1970 0.6885 1.2013

100 20 0.6522 1.2321 0.6274 1.1625 0.6510 1.1830 0.6756 1.2387
30 0.6321 1.3164 0.6234 1.2145 0.6551 1.2303 0.6625 1.2910
40 0.6201 1.2692 0.5933 1.2423 0.6575 1.3040 0.6534 1.4306
50 0.6069 1.3254 0.5473 1.2571 0.6798 1.4521 0.6255 1.3462
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Table 6: Range of r for various residuals.

Residuals

n cp CS MCS GMCS HMCS
Min Max Min Max Min Max Min Max

0 0.7086 0.9879 0.7086 0.9879 0.7086 0.9879 0.7086 0.9879
10 0.6320 0.9892 0.5912 0.9863 0.5763 0.9865 0.6300 0.9883

30 20 0.6995 0.9857 0.5536 0.9833 0.5253 0.9769 0.6986 0.9846
30 0.7545 0.9889 0.5864 0.9886 0.5063 0.9920 0.7548 0.9826
40 0.7288 0.9814 0.6088 0.9851 0.5535 0.9753 0.7342 0.9763
50 0.7327 0.9764 0.6019 0.9838 0.5075 0.9749 0.7411 0.9750
0 0.8800 0.9902 0.8802 0.9904 0.8801 0.9904 0.8802 0.9904
10 0.8889 0.9922 0.8889 0.9928 0.8889 0.9923 0.8910 0.9914

40 20 0.8907 0.9904 0.8624 0.9939 0.8548 0.9915 0.8749 0.9939
30 0.8965 0.9893 0.8280 0.9892 0.8014 0.9873 0.8674 0.9904
40 0.8695 0.9891 0.8398 0.9888 0.7950 0.9859 0.8658 0.9893
50 0.8348 0.9830 0.7724 0.9829 0.7841 0.9851 0.8416 0.9860
0 0.7737 0.9914 0.7728 0.9913 0.7731 0.9913 0.7728 0.9913
10 0.7799 0.9912 0.7673 0.9896 0.7587 0.9897 0.7730 0.9896

50 20 0.8230 0.9883 0.7598 0.9873 0.7034 0.9882 0.8182 0.9903
30 0.8290 0.9922 0.7466 0.9879 0.6880 0.9907 0.8263 0.9905
40 0.8204 0.9927 0.7230 0.9903 0.6646 0.9876 0.8176 0.9907
50 0.8159 0.9850 0.5685 0.9862 0.6194 0.9851 0.8110 0.9878
0 0.7955 0.9968 0.7955 0.9968 0.7955 0.9968 0.7955 0.9968
10 0.7979 0.9962 0.7791 0.9961 0.7788 0.9961 0.7955 0.9963

80 20 0.7999 0.9952 0.7496 0.9951 0.7453 0.9963 0.8072 0.9957
30 0.7934 0.9935 0.7168 0.9949 0.7129 0.9953 0.8005 0.9963
40 0.7662 0.9923 0.6898 0.9864 0.6551 0.9909 0.7839 0.9918
50 0.7449 0.9924 0.6655 0.9892 0.6352 0.9888 0.7737 0.9902
0 0.9079 0.9951 0.9079 0.9951 0.9079 0.9951 0.9079 0.9951
10 0.9018 0.9944 0.9011 0.9942 0.8991 0.9942 0.9018 0.9945

100 20 0.9161 0.9947 0.8795 0.9943 0.8739 0.9940 0.9172 0.9942
30 0.9147 0.9942 0.8734 0.9954 0.8671 0.9937 0.9189 0.9945
40 0.8925 0.9934 0.8363 0.9935 0.8048 0.9937 0.9051 0.9945
50 0.8814 0.9926 0.7691 0.9901 0.7725 0.9916 0.8819 0.9932
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Table 7: Range of R square for various residuals.

Residuals

n cp CS MCS GMCS HMCS
Min Max Min Max Min Max Min Max

0 0.697770 0.987440 0.697770 0.987436 0.697770 0.987440 0.697770 0.987436
10 0.618353 0.988805 0.576048 0.985776 0.560573 0.986021 0.616338 0.987874

30 20 0.688421 0.985184 0.537647 0.982726 0.508295 0.976072 0.687429 0.984035
30 0.745409 0.988324 0.571064 0.988172 0.488007 0.991697 0.745687 0.981917
40 0.718706 0.980692 0.594314 0.984564 0.537006 0.974398 0.724345 0.975429
50 0.722784 0.975442 0.587157 0.983185 0.489245 0.973992 0.731506 0.973194
0 0.876751 0.989948 0.876980 0.990166 0.876812 0.990151 0.876980 0.990166
10 0.885874 0.992027 0.885874 0.992614 0.885874 0.992084 0.888045 0.991197

40 20 0.887683 0.990177 0.858691 0.993767 0.850850 0.991266 0.871507 0.993702
30 0.893604 0.988998 0.823379 0.988911 0.795997 0.986989 0.863790 0.990096
40 0.864034 0.988741 0.835486 0.988464 0.789410 0.985558 0.860477 0.989044
50 0.830379 0.982441 0.766298 0.982393 0.778252 0.984652 0.837160 0.985614
0 0.768924 0.991171 0.767971 0.991125 0.768287 0.991160 0.767971 0.991125
10 0.775234 0.991007 0.762369 0.989416 0.753523 0.989453 0.768131 0.989416

50 20 0.819201 0.988062 0.754662 0.987031 0.697061 0.987945 0.814363 0.990096
30 0.825339 0.992022 0.741201 0.987684 0.681348 0.990477 0.822573 0.990301
40 0.816560 0.992531 0.717126 0.990133 0.657451 0.987331 0.813693 0.990440
50 0.811932 0.984582 0.559555 0.985941 0.611270 0.984772 0.807013 0.987454
0 0.792855 0.996725 0.792855 0.996724 0.792855 0.996725 0.792855 0.996724
10 0.795313 0.996153 0.776185 0.996046 0.775949 0.996098 0.792888 0.996249

80 20 0.797255 0.995098 0.746365 0.995031 0.742034 0.996268 0.804742 0.995641
30 0.790696 0.993427 0.713132 0.994786 0.709131 0.995243 0.797891 0.996212
40 0.763132 0.992224 0.685788 0.986239 0.650649 0.990746 0.781099 0.991691
50 0.741628 0.992342 0.661203 0.989110 0.630503 0.988623 0.770766 0.990114
0 0.906933 0.995087 0.906933 0.995087 0.906933 0.995087 0.906933 0.995087
10 0.900811 0.994303 0.900055 0.994094 0.898096 0.994155 0.900780 0.994440

100 20 0.915230 0.994669 0.878275 0.994195 0.872588 0.993929 0.916357 0.994125
30 0.913772 0.994150 0.872123 0.995328 0.865699 0.993610 0.918021 0.994494
40 0.891353 0.993316 0.834587 0.993446 0.802796 0.993645 0.904082 0.994466
50 0.880151 0.992479 0.766697 0.989959 0.770193 0.991537 0.880645 0.993152
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Figure 1: Comparison of residuals for estimated values of intercept.
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Figure 2: Comparison of residuals for estimated values of slope.

4. Conclusion

Based on the bias, standard error and root mean square error, we can conclude that poorer
performance for the parameter estimates at higher censoring proportions and smaller sample
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sizes. This indicates that the estimates perform better when sample sizes are larger and cen-
soring proportions are lower.

We can conclude that higher number of sample size make intercept closer to zero and slope
closer to one. While for the range for r and R2 values becomes wider as the censoring
proportion increases. Based on results, we can see that proposed modification of the Cox
Snell residual using geometric mean perform slightly better than the existing methods.
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