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Abstract

Functional Magnetic Resonance Imaging (fMRI) is a fundamental tool in advancing
our understanding of the brain’s functionality. Recently, a series of Bayesian approaches
have been suggested to test for the voxel activation in different brain regions. In this
paper, we propose a novel definition for the global Bayes factor to test for activation
using the Radon-Nikodym derivative. Our proposed method extends the definition of
Bayes factor to an infinite dimensional Hilbert space. Using this extended definition, a
Bayesian testing procedure is introduced for signal detection in noisy images when both
signal and noise are considered as an element of an infinite dimensional Hilbert space.
This new approach is illustrated through a real data analysis to find activated areas of
Brain in an fMRI data.

Keywords: Bayes factor, functional magnetic resonance imaging, Hilbert space, Radon-Nikodym
derivative.

1. Introduction

Functional Magnetic Resonance Imaging (fMRI) measures the metabolic changes that occur
within the brain in response to a stimulus. It is a fundamental tool in advancing our un-
derstanding of human brain functionality. FMRI is a sequence of magnetic resonance images
(MRI). Each image contains a number of uniformly spaced volume elements, called pixels or
voxels given the dimension of the image, that partition the brain into equal size boxes. The
intensity of each pixel or voxel represents the spatial distribution of the nuclear spin density
in that area. Changes in brain hemodynamics are due to the neuronal activity. These changes
impact the local intensity of the MR signal. Therefore, changes in the pixel or voxel intensity
across time can be used to infer when and where a particular activity happened. In last two
decades, there have been many studies for finding activation in brain images obtained from
fMRI. Lazar (2008) provided a comprehensive summary on statistical analysis of fMRI data.
However, the drawback of traditional methods is the discretization of a continuous image in
their analysis. Furthermore, these approaches make inference on a continuous object using
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tools that is originally introduced for discrete data. In current work, we propose a method
that directly works with continuous subjects by assuming them to be infinite dimensional
random variables.

A common statistical inference approach for analytic (continuous) statistical processes is based
on the random fields theory. Level crossings (Friston, Frith, Liddle, and Frackowiak 1991; Fris-
ton, Holmes, Worsley, Poline, Frith, and Frackowiak 1994) and differential topology (Worsley,
Evans, Marrett, and Neelin 1992) are the two examples of such approach. Recently, a series
of Bayesian approaches have been suggested to test for brain activation (Penny and Friston
2003; Flandin and Penny 2007). These detection methods are limited to cases where the signal
is observed for at most countable points and the alternative is also a simple hypothesis test.
Common Bayesian non-decision theoretic tools for hypotheses testing are posterior probabil-
ity and Bayes factors (Poor 2013). Makni, Idier, Vincent, Thirion, Dehaene-Lambertz, and
Ciuciu (2008) developed a Bayesian framework to conciliate both detection and estimation
issues. Kim, Smyth, and Stern (2006) used Bayesian nonparametric methods to automatically
select the number of activated clusters in an image. Rohani, Shafie, and Noorbaloochi (2006)
proposed a Bayesian procedure to detect signals existing within noisy images when the image
is modeled as a scale space random field. In this paper, we extend the scale space results to
a general setting using the Radon-Nikodym derivative. Furthermore, we extend the defini-
tion of the Bayes factor for testing the point null hypothesis. Using this extended definition,
we introduce a Bayesian testing procedure for signal detection in noisy images when both
signal and noise are considered as an element of an infinite dimensional Hilbert space. Our
proposed method avoids errors that can happen in the discretization process and provides a
more informative result.

The rest of the paper is organized as follows. Section 2 briefly reviews the definition of the
Bayes factor for testing a sharp null hypothesis against its complement for infinite dimensional
abstract spaces. Section 3 briefly reviews the classical results of Gaussian measures on Hilbert
spaces, the equivalence and orthogonality of measures, and the derivation of the Radon-
Nikodym derivatives. Section 4 applies the Bayes factor to Gaussian modeling of images
as Hilbert valued random objects and the Bayesian method of signal detection is explained
in detail. We applied our proposed method to two models in Section 5. Finally, Section 6
concludes the paper with a short discussion.

2. Bayesian testing of a sharp (point) null hypothesis

The common sharp (point) hypothesis testing conducts the testH0 : θ = θ0 againstH1 : θ 6= θ0

(Lee 1997). Bayesian testing procedure for this procedure for a finite dimensions setting starts
with a random vector, X, with density f(x|θ). The unobserved conditioning parameter θ is
an unknown element of the parameter space Θ which is a subset of Rn. Using the two stage
Jeffreys prior (Jeffreys 1998), we let π0 = P (H0) be the prior probability assigned to H0 and
definitionine the prior probability over Θ to be

π(θ) =

{
π0, θ = θ0

(1− π0)g(θ), θ 6= θ0
,

where g(θ) is a conditional prior probability over the alternative values. The Bayes factor for
assessing a null hypothesis H0 versus an alternative H1 is definitionined as

B(x) =

P (H0|x)
P (H1|x)

P (H0)
P (H1)

. (1)

Let g(θ) to be a continuous density on {θ ∈ Θ : θ 6= θ0} or Θ. Thus, for sharp hypothesis
testing, the Bayes factor in equation (1) is equivalent to

B(x) =
f(x|θ0)

mg(x)
, (2)
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where

mg(x) =

∫
f(x|θ)g(θ)dθ.

The Bayes factor definitionined in (2) combines prior information with the sample information
in the likelihood. In other words, it can be considered as a weighted likelihood ratio of H0 to
H1. The weight function for a Bayes factor is the prior density, g, for the unknown parameter,
θ. Thus, a Bayes factor offers a way of evaluating evidence against a null hypothesis. The
interpretation of Bayes factors is similar to the usual likelihood ratio. For instance, if we
observe a value of B = 1

10 means that H1 is supported ten times as much by the data as is
H0. In addition to a Bayes factor, the posterior probability of H0 is also a relevant measure
that can be used for the same purpose. In current setup, it is easy to see that the posterior
probability is

P (H0|x) =

[
1 +

(1− π0)

π0

mg(x)

f(x|θ0)

]−1

=

[
1 +

(1− π0)

π0

1

B

]−1

. (3)

Following Grenander (1981), we extend the finite dimensional Bayes factor in equation (2) to
a more general setting where the parameter and the sample spaces are infinite dimensions. Let
(Ω,F) be a probability space, X be a random object (measurable mapping) from (Ω,F) to
(X ,F1), Θ be an abstract parameter space, and F2 be a σ-algebra of subsets of Θ. Suppose G
is a probability measure on (Θ,F2) and for each θ ∈ Θ, Pθ is the probability measure induced
by X on (X ,F1). In addition, for each A ∈ F1, let Pθ(A) ∈ F2 be a measurable function of θ.
Let PG(A) =

∫
Θ Pθ(A)G(dθ) be the marginal measure of X on (X ,F1). For a given θ0 ∈ Θ,

consider the measures Pθ0 and PG. According to the Lebesgue decomposition theorem, there
exists a set A0 ∈ F1 with PG(A0) = 0 and a nonnegative function f integrable with respect
to PG such that for any A ∈ F1 we have

Pθ0(A) =

∫
A
f(x)PG(dx) + Pθ0(A ∩A0).

The function f is the Radon-Nikodym (R-N) derivative of Pθ0 with respect to PG and denoted
by

f(x) =
dPθ0
dPG

(x).

In this setting, for testing H0 : θ = θ0 versus H1 : θ 6= θ0, we definitionine the Bayes factor to
be

B(x) =

{
∞ x ∈ A0

f(x) x /∈ A0
. (4)

Two problems that arise with this definition are how to obtain A0 and how to calculate
f . The set A0 has either Pθ0(A0) = 1 or Pθ0(A0) = 0. If Pθ0(A0) = 1, the two measures
P0 and PG are orthogonal and a perfect decision about H0 can be made. If Pθ0 and PG
are equivalent then Pθ0(A0) = 0 and f 6= 0 with PG probability of 1. Grenander (1981)
provides a simultaneous characterization of A0 and f for cases where the observation x can
be represented as a countable number of variates. In Section 4, we applied this notion to
a common signal detection problem where a Gaussian measure model is used for both the
observation and the conditional prior measure over some Hilbert spaces. In Section 3 we
provide the model and preliminary results for our approach.
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3. Gaussian measure on a Hilbert space

We are interested in characterizing the Bayes factor when observations are Hilbert valued
random objects. Let H be a real separable Hilbert space with inner product operator < ·, · >,
B be the class of all Borel subsets of H, and H∗ be the dual space of H. The characteristic
function of a measure, m, on (H,B) for h ∈ H is

ϕ(h) =

∫
H
ei<x,h>dm(x).

Assuming m to be a probability measure on H, then ϕ is a continuous positive definitioninite
functional on H and enjoys almost all properties of characteristic functions on Euclidean
spaces. Varadhan (1968), Kuo (1975), and Bogachev (1998) provided a detailed review for
the measures on Hilbert space. We need the following definitions and theorem for developing
the method proposed in Section 4.

Definition 1. If m is a measure on H, then the mean function, µ, is an element of H defini-
tionined by

< µ, h >=

∫
< x, h > dm(x), for all h ∈ H.

Definition 2. If m is a measure on H, then the covariance operator is a bilinear function on
H definitionined by

< Sh1, h2 >=

∫
< h1, x >< h2, x > dm(x).

The covariance is a symmetric positive definitioninite bilinear form and the operator S defi-
nitionining the bilinear form is a positive semidefinitioninite Hermitian operator.

A Gaussian probability measure P on H is a measure such that its characteristic function has
the form

ϕ(h) = exp(i < µ, h > −1

2
< Sh, h >),

where µ and S are the mean and covariance of P , respectively. Following, we present the
Theorems and Lemmas on the equivalence of two Gaussian measures on a Hilbert space which
are needed for further developments. Proofs of these statements can be found in Varadhan
(1968).

Theorem 1. Two Gaussian measures definitionined on a Hilbert space are either orthogonal
or equivalent.

Lemma 1. Suppose P1 = HN(µ1, S1) and P2 = HN(µ2, S2), where HN(·, ·) denotes the
normal distribution definitionined on Hibert Space. Let P ′1 = HN(0, S1) and P ′2 = HN(0, S2).
If P1 is not orthogonal to P2, then P ′1 and P ′2 are not orthogonal either.

Lemma 2. Suppose P1 = HN(0, S1) and P2 = HN(0, S2) are equivalent. Then there exists
a Hermitian bounded invertible operator T such that T − I belongs to Hilbert- Schmidt class
and

S2 = S
1/2
1 TS

1/2
1 .

Theorem 2. Let P1 = HN(0, S) and P2 = HN(µ, S). Then P1 and P2 are either equivalent
or orthogonal depending on whether or not µ is in R(S1/2), where R(S1/2) denotes the range
of operator S1/2.

Theorem 3. P1 = HN(µ1, S1) is either orthogonal to P2 = HN(µ2, S2) or is equivalent to it.
For equivalence, the following assertions are necessary and sufficient

HN(µ1, S1) is equivalent to HN(µ2, S1),

and
HN(µ2, S1) is equivalent to HN(µ2, S2).
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Suppose P1 and P2 are two Gaussian measures on H with means µ1 and µ2 and non-singular
covariance operators S1 and S2, respectively.

Theorem 4. Suppose P1 = HN(µ1, S) and P2 = HN(µ2, S) are equivalent. Then, the Radon-
Nikodym derivative of P1 with respect to P2, f(x), is

f(x) = exp

( ∞∑
i=1

(µ1i − µ2i)

λi

[
Zi(x)− µ1i + µ2i

2

])
,

where, for i = 1, 2, . . . ,∞, Zi(x) =< x, ei >, µki =< ei, µk >, and λis are eigenfunctions and
their corresponding eigenvalues of S.

Theorem 5. Suppose P1 = HN(µ, S1) and P2 = HN(µ, S2) are equivalent. Then, the Radon-
Nikodym derivative of P1 with respect to P2 denoted by f(x) is

f(x) = exp

(
−1

2

∞∑
i=1

[
(Zi(x)− µi)2(1− 1

λi
)− log λi

])
, (5)

where, for i = 1, 2, · · · ,∞, µi is the mean value of Zi(x) given P1. In equation (5), Zi(x) =∑∞
j=1 aijuj(x) where, for j = 1, 2, · · ·∞, uj(x) =< ej , x > /

√
sj with ej and sj denoting

the eigenfunctions and their corresponding eigenvalues of S1, respectively. Furthermore, λj
and gj are the eigenfunctions and eigenvalues of T , respectively, where T is such that S2 =

S
1/2
1 TS

1/2
1 , and gj =

∑∞
k=1 ajkek.

4. Signal detection

Let (T ,F ,m) be a measurable space and L2(T ,m) be a Hilbert space of squared integrable
real functions on T . Let X = Θ = L2(T ,m) and F1 and F2 be the Borel sigma field
of L2(T,m). For each θ ∈ Θ, let Pθ be a Gaussian measure with mean θ and covariance
operator, ρ. In addition, let G, the prior measure on Θ, to be a Gaussian measure with
known mean µ ∈ Θ and covariance operator, τ . Using the characteristic function approach,
it can be easily proved that the marginal measure of X, PG, is also a Gaussian measure with
the mean µ and covariance operator ρ+ τ .

For Bayesian hypothesis testing of H0 : θ = 0 versus H1 : θ 6= 0, we should know if P0 and
PG are equivalent or orthogonal. If they are orthogonal, then a perfect decision can be made
between H0 and H1. Otherwise, we need to derive the R-N derivative of P0 with respect to
PG. The following result provides a sufficient condition.

Theorem 6. If P0 = HN(0, ρ) and G = HN(µ, τ) are equivalent then P0 and PG are orthog-
onal.

Proof. Suppose P0 and PG are equivalent. Let G′ = HN(0, τ), then according to Lemma 1
and Theorem 1 P0 and PG′ are equivalent. From Lemma 2, there exists an invertible bounded
Hermitian operator T such that (T − I) is of Hilbert-Schmidt class and

ρ+ τ = ρ1/2Tρ1/2,

or
τ = ρ1/2(T − I)ρ1/2. (6)

On the other hand, since P0 and G′ are equivalent, there exists an invertible bounded Hermi-
tian operator D such that (D − I) is of Hilbert- Schmidt class and

τ = ρ1/2Dρ1/2 (7)

Comparing (6) and (7) shows both operators T − I and T − 2I are of Hilbert-Schmidt class
which is a contradiction. The following example shows that the orthogonality of P0 and G
does not yield the equivalence of P0 and PG.
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Example. Let P0 = HN(0, ρ) and G = HN(µ, ρ) where µ /∈ R(ρ1/2). In this case, according
to Theorem 2, P0 and G are orthogonal. If P0 and PG = HN(µ, 2ρ) are equivalent, then by
Theorem 3, so are P0 = HN(0, ρ) and G = HN(µ, ρ), which is a contradiction.

This example can be generalized for any P0 = HN(0, ρ) and G = HN(µ, τ), where µ /∈
R(ρ1/2). In the following theorem, we consider a special case where P0 and PG are equivalent
and the R-N derivative has a simple form of the exponential of a diagonal form. A general
form of the theorem is proved in Varberg (1967) and Chung and Rajput (1981). Here, we
give a direct proof for an special case.

Theorem 7. Let H = L2(T ,m), where T ⊂ Rn is a compact set and m is the Lebesgue
measure. In addition, let P0 = HN(0, ρ) and G = HN(0, τ), where ρ is continuous on

T ×T . Furthermore, τ(t, s) =
∑∞

i=1
λλ2i

1−λλiφi(t)φi(s), with {λi} and {φi} are eigenvalues and
the corresponding eigenfunctions of the operator induced by ρ, respectively, and λ > 0 is such
that for i = 1, 2, · · · , 1− λλi > 0. Then, P0 and PG are equivalent and

dP0

dPG
= D−1/2(λ) exp

(
−λ

2

∫
T
X2(t)dm(t)

)
, (8)

where D(λ) =
∏∞
i=1(1− λλi).

Proof. Since
∑∞

i=1 λi < ∞, 1/(1 − λλi) is bounded and therefore the series in the definition
of τ is absolutely convergent. In addition, ρ is continuous, so using the Mercer’s theorem, we
have

ρ(t, s) =

∞∑
i=1

λiφi(t)φi(s).

Thus

r(t, s) = ρ(t, s) + τ(t, s) =

∞∑
i=1

[
λλ2

i

1− λλi
+ λi

]
φi(t)φi(s)

=

∞∑
i=1

λi
1− λλi

φi(t)φi(s).

Let γij = (1− λλi)δij where δ is the Kroneker delta. Then, the operator Γ definitionined by
[γij ]

∞
i,j=1 is invertible, bounded, and since∑

i,j

(γij − δij)2 =
∑

λ2λ2
i <∞,

the (Γ− I) is a Hilbert-Schmidt operator. It can be easily proved that ρ = r1/2Γr1/2. Hence,
by Lemma 2, P0 and PG are equivalent.

To obtain the R-N derivative, note that Γ and r have the same eigenfunctions φi and their
corresponding eigenvalues are {1− λλi} and { λi

1−λλi }, respectively. Therefore, correspond to
aij , gi, si, ei, and λi in Theorem 5 are 1, φi, λi/(1 − λλi), φi, and {1 − λλi}, respectively.
Hence,

ui(X) = Zi(X) =

√
1− λλi
λi

∫
T
X(t)φi(t)dm(t),

and
∞∑
i=1

Z2
i [1− 1/(1− λλi)] = λ

∞∑
i=1

∫
T
X(t)φi(t)dm(t) = λ

∫
T
X2(t)dm(t).

If we substitute all these in (5), we get the result.

Using Theorem 4, we have the following for the case µ 6= 0.
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Theorem 8. Under the conditions of Theorem 7, if G = HN(µ, τ) with µ ∈ R(ρ1/2), we have

dP0

dPG
= D−1/2(λ)exp

[
−

(
λ

2

∫
T
X2(t)dm(t) +

∞∑
i=1

µi(1− λλi)
λi

(Zi +
µi
2

)

)]
, (9)

where µi =
∫
T µ(t)φi(t)dm(t), and Zi =

∫
T X(t)φi(t)dm(t).

5. Application to fMRI data

In this section, we apply the proposed methodology on a fMRI scan of the human brain. Note
that the main purpose of this data analysis is to show that proposed approach can be used
for fMRI data analysis.

Figure 1: The cosine component of the fMRI data.

One of the common object in using fMRI is to locate the regions of the brain that respond to
a simple visual stimulus (Kwong, Belliveau, Chesler, Goldberg, Weisskoff, Poncelet, Kennedy,
Hoppel, Cohen, and Turner 1992). In an experiment at the Montreal Neurological Institute,
a subject was given a simple visual stimulus, flashing red dots, presented through light-tight
goggles (Ouyang, Pike, and Evans 1994). The stimulus was switched off for 4 scans, then on
for 4 scans. This procedure was repeated 5 times which resulted in total of 40 scans. The time
interval between pair of scans was 6 seconds and the stimulus period was T = 48 seconds.
Hence, the data set consists of a time series of 40 2-D images, each 128× 128 pixels of size 2
mm.
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This data set has been analyzed by several researchers using the χ2 scale space method
(Worsley 2001), rotation space random field method (Shafie, Sigal, Siegmund, and Worsley
2003), and Bayesian method (Rohani et al. 2006). To apply the random field methodology,
these researchers fitted a sine wave at each fixed pixel and extracted two images. These images
were referred to as sine and cosine components of the data. The cosine component is shown
in Figure 1. Here, we apply the proposed Bayes factor method to this image to find out if
there is any sign of activation caused by the stimulus.

The Matched Filter Theorem justifies smoothing the image before any analysis with a filter of
the form of signal. The smoothing assumption is essential for methods proposed by Worsley
(2001) and Shafie et al. (2003). In order to get a smooth random field, the image is smoothed
before analyzing data with a Gaussian filter. However, in practice the shape of the signal
is not known. Therefore, smoothing with a kernel is not quite justifiable. Note that in our
approach, we do not need this smoothing procedure.

We will consider the following two models:

Model I. Let
X(t) = θ(t) + Z(t), t ∈ T ,

where T = [0, 1] × [0, 1], θ ∈ L2(T ,m), and Z is Gaussian white noise in T . Under these
assumptions, P0 = HN(0, ρ) with

ρ((t1, t2), (s1, s2)) =

{
1 t1 = s1, t2 = s2

0 otherwise

This model is the same as the one used by Siegmund and Worsley (1995). The main difference
is that here, the image is not pre-smoothed for the analysis. The model does not fit the implicit
assumptions in section 4 as white noise cannot be realized in the Hilbert space. However, the
theory can be extended to cover this case. For further information, see Balakrishnan (2012)
and Adler and Taylor (2009).

Suppose θ follows aHN(µ, τ) where
∫
µ(t)2dt <∞, then P0 = HN(0, I) and PG = HN(µ, τ+

I). It is clear that P0 and PG are equivalent and we have

f(x) = exp

[
−1

2

( ∞∑
i=1

(Zi − µi)2 ti
ti + 1

+
2µi
ti + 1

(Zi +
µi
2

)− log(ti + 1)

)]
,

where for i = 1, 2, . . . ,∞, Zi =< x, ei >, µi =< µ, ei >, and eis are the eigenvalues and
corresponding eigenfunctions of τ , respectively. For the one dimensional case, f(x) is similar
to the criterion used for the detection of random Gaussian signal in Gaussian noise in signal
processing literature. For further information, see Poor (2013). For a specific model, consider
a Brownian sheet prior with mean 0 and the following covariance function

τ((t1, t2), (s1, s2)) = min(t1, s1) min(t2, s2). (10)

Since the eigenvalues and corresponding eigenfunctions of the Brownian motion on [0, 1] are
{ 1

(i+1/2)2π2 } and {
√

2 sin ((i+ 1/2)πt)}, respectively (see Gikhman and Skorokhod (1969) page

189), the eigenvalues and eigenfunctions of τ are λij = 1
(i+1/2)2(j+1/2)2π4 and φij(t1, t2) =

2 sin ((i+ 1/2)πt1) sin ((j + 1/2)πt2), respectively. For the observed image we obtain approx-
imately 1.0045 as the Bayes factor.

Since the assumption of white noise may not be very realistic, we consider the following model.

Model II. Let
X(t) = θ(t) +B(t), t ∈ T,

where T = [0, 1]× [0, 1], θ ∈ L2(T,m) and B is the standard Brownian sheet in T . Under these
assumptions, P0 = HN(0, ρ) where ρ(t1, t2) is the same as τ in equation (10). To eliminate
trivial cases and for simplicity, we assume θ has a HN(0, τ) prior where

τ(t, s) =

∞∑
i=1

∞∑
j=1

λλ2
ij

1− λλij
φij(t)φij(s),
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and 0 < λ < 81
16 is a hyperparameter of the prior. Using Theorem 7, the discussion of model

I, and the fact that for the observed image
∫
T X(t)dm(t) = 0.39, the Bayes factor for testing

H0 : θ = 0 versus H1 : θ 6= 0 is

fλ = D−1/2(λ)exp

(
−0.39

λ

2

)
,

where D(λ) =
∏
ij(1−λλij). Approximating the log(1−x) with −x and since

∑
ij λij = 1/4,

we have

fλ ≈ exp (−0.07λ) .

This means that for the values of 0 < λ < 81/16, having HN(0, τ) as a prior for θ, we fail to
reject the null hypothesis of no signal.

6. Conclusion

Research has greatly improved our understanding of the human brain. One of the common
tools in brain image analysis is fMRI. However, relatively few studies have looked at this
imaging technique as giving an observation as an infinite dimensional Hilbert random variable.
In this paper, we extended the definition of the Bayes factor to a more general setting where
the variables of interest can be members of an infinite dimensional Hilbert space. In this
paper, our focus is to provide inferential tools for analyzing images obtained through fMRI
techniques, but the approach might be used for analyzing other kinds of images or other kinds
of data that can be expressed in the form of an image.

For the real data analysis, the Bayes factors for Models I and II find a small sign of a signal
in Figure 1, which appears to show a signal. The Bayes factors are 1.0045 for Model I, and
between 1 and about 0.70 for Model II. This would seem to suggest that this approach has low
power, at least for the cosine component of this dataset. There are three possible explanations
for why this might have happened.

i The power might be greater if the time series for each voxel was reduced to a 2-D image
using something other than the cosine component.

ii In practice, to increase the signal-to-noise ratio, images are first smoothed using a
smooth kernel. The models we have considered here, models I and II, are missing this
feature.

iii The original fMRI dataset consists of a time series of images. In our models, the time
series of the images was reduced to a 2-D image. If we consider the time series of the
images, as a time series of Hilbert valued variables, we might have better detected the
signal.

The last two explanations are the topic of our current research.
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