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Abstract

The problem of checking the linearity of a regression relationship is addressed. The
test uses nonparametric estimation techniques. The null hypothesis is that the regression
function is linear; it is tested against the non-specic alternatives hypotheses. This test is
based on a Hermite transform characterization of conditional expectations. A statistical
test is derived, the distribution of this statistic under the null hypothesis of linearity is
determined. A power study using simulation shows the new statistic to be more sensitive
to non-linearity.
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1. Introduction

Let (X,Y ) be a pair of real-valued random variables. In many situations, the linear model
is insufficient to explain the relationship between the response variable Y and its associated
covariates X. A natural generalization is to model the mean nonparametrically in the covari-
ates. Suppose (Xi, Yi)i=1,...,n are an independent and identically distributed random variables
as (X,Y ), where Y is variable response and X is the covariates. Consider the following non
parametric regression model

Yi = ϕ(Xi) + εi, i = 1, ..., n (1)

where ϕ is assumed to be unknown. The function ϕ : R→ R defined by ϕ(x) = E(Y |X = x)
is called the regression function of Y on X. The set of values (X1, ..., Xn) is called the design.
The random design setting stands in contrast to the fixed design setting, where the covariates
X1, ..., Xn are fixed (non-random), with only the responses Y1, ..., Yn being treated as random.
The covariance structure of the design points is completely known and need not be estimated.
The residual εi are i.i.d. random variables with E(εi) = 0 and var(εi) = σ2.

Nonparametric regression analysis relaxes the assumption of linearity, substituting the as-
sumption of a smooth regression function. The cost of relaxing the assumption of linearity is
much greater computation than in the case of ordinary least squares estimation and, in some
instances, a more difficult-to-understand result. A variety of methods are available to esti-
mate ϕ, based on non parametric regression models. These methods have been proposed to
make the specification of the conditional mean function as flexible as possible. The standard

http://www.ajs.or.at
http://www.ajs.or.at/
http://dx.doi.org/10.17713/ajs.v51i1.1047
www.osg.or.at


Austrian Journal of Statistics 17

approaches include splines, wavelets, moving averages, running medians, local polynomials,
regression trees, neural networks, and other methods like the kernel regression estimators.

Testing the unknown regression function appearing in a nonlinear model has not received much
attention in the statistical literature, like the estimation of this non-parametric regression
function. The most closely related articles in our literature is the test developed by Mohdeb
and Mokkadem (1998) based on the Fourier coefficients. They consider a nonparametric
regression with regular et deterministic design, in other words they assume that Xi = i

n , ϕ is
a function from [0, 1] to R and the observations Yi are given by

Yi = ϕ

(
i

n

)
+ εi i = 1, 2, ..., n (2)

where εi are i.i.d. with mean zero and variance σ2. They obtain the asymptotic behavior of
their proposed test, that is the level and the asymptotic power of the test.

Pearson (1905), developed the test for linearity of regression expressed in terms of the corre-
lation coefficient r and η the correlation ratio. Correlation ratio is a coefficient of non-linear
association. In the case of linear relationship, the correlation ratio that is denoted by η
becomes the correlation coefficient. In the case of non-linear relationship, the value of the
correlation ratio is greater, and therefore the difference between the correlation ratio and the
correlation coefficient refers to the degree of the extent of the non-linearity of relationship.
The likelihood ratio test statistic is considered by Gallant (1975) for the hypothesis H : θ = θ0
against A : θ 6= θ0 using the nonlinear regression model Y = ϕ(X, θ) + ε with normal errors
and unknown variance. A test of normality based on the Hermite polynomials was proposed
by Bontemps and Meddahi (2005).

The tests for both the linearity hypothesis and the fit of a regression model have been proposed
in some works. Actually, power and consistency have been proven frequently. Let us recall
that, testing against a linear regression model literature is very extensive and still growing;
we refer to González-Manteiga and Crujeiras (2013), which provided an excellent summary
of existing procedures. The literature of these tests are wide, we point out Weihrather (1993)
proposed a method for testing the quality of the fit of a linear regression model. Practically,
the test statistic is based on a distance measurement between the adjustment of the linear
model and the adjustment of the nonparametric model. The properties of the completed sam-
ples are studied by way of a simulation experiment with respect to the power of the test in
special alternatives. Concerning the Härdle and Mammen (Hardle, Mammen et al. 1993) test
assumes the non-parametric approach Y = m(X) + e where the only available information
is provided through the sample {(X1, Y1), ..., (Xn, Yn)}. The terms e stands from a random
error with a zero mean. Their goal is to test the hypothesis H0 : m(.) linear, using measure-
ments of the gap between parametric and non-parametric approaches. This test is based on
the integrated quadratic difference between parametric adjustment and nonparametric ad-
justments. It is worth noting that the power of the test has not studied in their work. We
mention also the work of Stute and Manteiga (1996). This paper proposed statistics based
on some distance between nonparametric and parametric estimation. It is carried out by a
minimum-distance criterion, instead of maximum likelihood estimation. Eubank and Spiegel-
man (1990) procured the test by fitting a spline smoothing together with the residuals of
linear regression. They investigated the use of nonparametric regression procedure to test the
adequacy of a parametric linear model. The authors consider that the model in such setting
are of dependent variable and from a sum of a linear part of a function in a known design
points (xi, l(xi) ), where l is unknown function up to an error (written as y = atx+ l(x) + e).
The function l is assumed to belong to a general class of functions. The tests are established
from non-parametric regression adjustments to the residuals of linear regression. Simulation
experiments involving a test based on fitting cubic smoothing splines to residues reveal that
this test has good power properties against several alternatives. However, their test is limited
by the assumption of normality on the error term. Azzalini and Bowman (1993) examined the
problem of verifying the linearity of a regression relationship through the idea of smoothing a
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residual plot. The authors apply the pseudo-likelihood ratio approach in the context of linear
regression. The true regression function is estimated by non-parametric smoothing and then
compared to an adjusted parametric model. Any deviation is assessed by a pseudo-likelihood
ratio test. A power study has been examined, which shows that the new statistic is more
sensitive to non-linearity compared to that of the Durbin-Watson statistic. Bierens (1982)
introduced two coherent model specification tests. The first one is simple, but rather coarse;
the second is more involved and laborious test. These tests are based on a characterization by
Fourier transform of the conditional expectations. The author used a family of exponential
functions to generate an infinite number of moment conditions that are necessary to assess the
consistency of the conditional moment test. However, calculating the statistical test requires
computing a maximum over an infinite set, which can impose a significant computational load
in practice. To overcome the problem, the author proposed to draw randomly a sequence of
elements of the infinite set and calculate the maximum. Zheng (1996) proposed a test that
combines the idea of the conditional moment test and the methodology of nonparametric
estimates. The author used the kernel method to construct a moment condition which can be
used to distinguish between the hypotheses, null, and alternative. The test has an advantage
over tests based on measuring the distance between parametric and non-parametric models.
Actually, it imposes very few regularity conditions, beyond those generally required on nonlin-
ear least squares. Most tests have the inconvenience of the inconsistency with deviations from
the parametric model, the general alternatives, or an alternative with infinite dimensions.

The main purpose of our paper is to provide a new test for linearity in the regression model
with random design. The approach is testing the linearity of ϕ from the data (X1, Y1), ..., (Xn, Yn),
without estimating it. The statistic is based on the Hermite transform. We proceed as in
Djeddour, Mokkadem, and Pelletier (2007) adapting the specificities.

The outline of this paper is as follows. Section 2 introduces the test construction. In Section
3 the main results are presented. In Section 4 we check the accuracy of the test on simulated
data. Section 5 a conclusion has been drawn. An appendix provides main mathematical proofs
in Section 6. The Section 7 is an appendix gives some definitions of Hermite polynomials.

2. A proposed test for linearity

2.1. Hermite polynomials

We use here the family of orthogonal polynomials on the real line. Generally the polynomial
p(x) is written in terms of the monomials xj . This is known as the natural form of the poly-
nomial. The trouble with the natural form is that the monomials are very highly correlated.
The idea behind orthogonal polynomials is to select the basic polynomials pj(x) to be as
different from each other as possible. Two polynomials pi and pj are said to be orthogonal if
pi(X) and pj(X) are uncorrelated as X varies over some distribution.

1. Legendre polynomials are uncorrelated when X is uniform on (−1, 1).

2. Chebyshev polynomials are uncorrelated when X is Beta (1/2, 1/2) on (−1, 1).

3. Laguerre polynomials are uncorrelated when X is gamma on (0,∞).

4. Hermite polynomials are uncorrelated when X is standard normal on (−∞,∞).

There are many ways to approximate functions. However, polynomial approximation is,
relatively straightforward for many purposes. The theorem of Weierstrass (Queffélec and
Zuily 2007) state that a function, continuous in a finite closed interval, can be approximated
with a preassigned accuracy by polynomials.
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Remark 1. The Hermite polynomials are thus orthogonal with respect to the standard normal

probability density function 1√
2π
e−

x2

2 with mean zero 0 and variance 1.

The Hermite transform has drawn significant attention, since it exhibits some important
properties and high suitability for several applications in different research fields e.g. in
astrophysics (Leonis 1980; Öztürk and Gülsu 2014).

Definition 2. Hermite polynomials are a series of polynomials. They are defined as:

Hn(x) = (−1)n exp(x2/2)
dn exp(x2/2)

dxn

Hn(x) is a polynomial of degree n.

One of the remarkable properties of polynomials Hn(x) is that the derivative of one of them
is equal to the antecedent polynomial multiplied by a constant factor, ie:

dHn(x)
dx = nHn−1(x).

The other is a relation of recurrence linking three consecutive polynomials:

Hn(x)− xHn−1(x) + (n− 1)Hn−2(x) = 0.

The set of two relations is characteristic of polynomials Hermite; the only sequence of poly-
nomials that satisfies the two equations is the sequence of Hermite polynomials.

Approximation of functions by polynomials is basic for a great many numerical techniques.
Most numerical analysis texts include a treatment of polynomial approximation. There are
many purposes for which polynomial approximation is in statistics. One of them is to model
a nonlinear relationship between a response variable and an explanatory variable, as we will
see in the sequel. Recall that if E(ϕ(X)) = 0 and E(ϕ(X)2) <∞ for X ∼ N(0, 1), ϕ(X) can
be expanded in Hermite polynomials, that is,

ϕ(X) =
∞∑
k=1

ck
k!
Hk(X). (3)

and

ck = E(ϕ(X)Hk(X)) , k ≥ 1

Observe that the expansion (3) starts at k = 1, since

c0 = E(ϕ(X)H0(X)) = E(ϕ(X)) = 0

Denote by k0 ≥ 1 the Hermite rank of ϕ, namely the index of the first non-zero coefficient in
the expansion (3). Formally k0 = min{k ≥ 1, ck 6= 0}.

Hermite transform is an integral transform, which uses Hermite polynomials Hn(x) as kernels
of the transform. The Hermite transform of a function ϕ(x) is

1√
2π

∫ ∞
−∞

e−x
2/2Hn(x)ϕ(x)dx.

We can generalize the study in the case of p explanatory variables by using Hermite polynomial
in Rp. For α = (k1, ..., kn) ∈ Zn≥0, we define the Hermite polynomial Hα by
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Hα(x) = Hk1(x1) · · ·Hkp(xp), x = (x1, ..., xp) ∈ Rp.

Because the collection of all Hermite polynomials Hk is an orthonormal basis for the Hilbert
space L2(γ1), we have that the collection of all Hermite polynomials Hα is an orthonormal
basis for the Hilbert space L2(γp). For γp the standard Gaussian measure on Rp, with mean
0 ∈ Rp and covariance operator IRp , the collection

{
Hα : α ∈ Zn≥0

}
is an orthonormal basis for

L2(γp). The disadvantage is the application of the moment formulas of Hermite polynomials
which in this case are very painful to handle.

2.2. Test construction

In the following, we consider the regression with a single explanatory variable. This allows
us to avoid too heavy calculations which do not enhance the subject. Let X real-valued
random variable with the density of probability f on R, assuming it exists and defined by

f(x) = 1
2π exp

(
−x2

2

)
(see Remark 1). The problem is to construct a test of the hypothesis

H0 : ϕ linear against the alternative H1 : ϕ non-linear

Let Hk(x) be the Hermite polynomials and ck(ϕ) the Hermite coefficients of ϕ defined by:

ck =

∫ ∞
−∞

Hk(x)ϕ(x)f(x)dx ∀k (4)

where ϕ is the true but unknown regression function. We assume that fϕ ∈ L2(R) where the
space L2(R) of square-integrable functions with respect to the Lebesgue measure on the real
line are natural domains on which to define the Hermite transform and Hermite series.

The procedure we consider here is the following. In particular, we are interested in testing for
non-linearity in regression models. Then under H0, the process yi is linear in mean conditional
on x. The approach takes place for the hypotheses

H0 : ϕ(x) = xtθ for some θ ∈ R2.

with xt denoting the transpose of x. The alternative of interest is the negation of the null,
that is,

H1 : ϕ(x) 6= xtθ for all θ ∈ R2

In regression problems, the mean relationship, as the first-order quantity, is generally of much
more interest than higher order properties such as constant variance or normality.

If ϕ is linear, we write it as

ϕ(x) = αx+ β

We establish the Hermite coefficients of ϕ according to (4); this gives

ck = α

∫ ∞
−∞

xHk(x)f(x)dx+ β

∫ ∞
−∞

Hk(x)f(x)dx. (5)

We can write it as follows:

ck = αγk + βδk
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with

γk =

∫ ∞
−∞

xHk(x)f(x)dx

=
1√
2π

∫ ∞
−∞

H1(x)Hk(x)e−
x2

2 dx =

{
0 if k 6= 1
1 if k = 1

and

δk =

∫ ∞
−∞

Hk(x)f(x)dx

=
1√
2π

∫ ∞
−∞

Hk(x)e−
x2

2 dx

= 0 ∀k

Then test that ϕ is linear is equivalent to test if ck is zero. In this setting, we test the null
hypothesis

∞∑
k=1

|ck|2 = 0. (6)

for k ≥ 2. Let

ĉk =
1

n

n∑
j=1

Hk(Xj)Yj (7)

be the empirical estimators of ck and let m = m(n) be a sequence such that m(n) → ∞ as
n→∞ (this allows to consider only a pack of ck in (6) eg m = n/10 or m = n/2 or m = n).
We want to test (6), to this end we construct the statistic

T̃m,n =
m∑
k=1

|ĉk|2 (8)

We reject H0 when T̃m,n is large.

3. Main results

To simplify matters and without loss of generality, we will assume σ to be known and equal
to 1. If σ 6= 1 but known, this will not change the conclusions but it will weigh down the
development of the calculations. It suffices to replace E(ε2i ) by σ2 instead of 1. If σ is not
known it is necessary to estimate it and to take into account its law to find the law of the
statistic of test. It is not addressed in this work.

We consider first the case of regression of a response variable on a single covariate, with
observed values y = (yi, ..., yn) and x = (x1, .., xn) respectively, expressed in the model (1)
where ϕ is assumed to be unknown and where the εi are independent random variables with
mean 0 and standard deviation 1. Our aim is to assess whether model (1) can be reduced to
the simple linear form yi = αx + βxi + εi (i = 1, ..., n) with least squares estimators of the
intercept and slope parameter.

Proposition 3. Under H0, we have

Eĉk = 0 with k ≥ 2 (9)

Proposition 4. Under H0, we show that

var(ĉk) =
k!

n
× (α2(2k + 1) + 1) (10)
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We can write

E
(
|ĉk|2

)
=

1

n2

n∑
j=1

n∑
j′=1

E
(
Hk(Xj)YjHk(Xj′)Yj′

)
=

1

n

n∑
j=1

E
(
H2
k(Xj)Y

2
j

)
+

1

n2

n∑
j 6=j′

E
(
Hk(Xj)YjHk(Xj′)Yj′

)
The empirical Hermite coefficients are defined as (7). Under H0, this can be write as

ĉk =
1

n

n∑
j=1

[Hk(Xj) (αXj + εj )]

=
α

n

n∑
j=1

Hk(Xj)Xj +
1

n

n∑
j=1

Hk(Xj)εj

= ĉk1 + ĉk2

We prove the following theorems.

Proposition 5. At fixed k, we demonstrate that

ĉk1√
α2k!/n

∼ N(0, 1) (11)

Proposition 6. We show that the term ĉk2 = 1
n

∑n
j=1Hk(Xj)εj converges to 0 in probability.

By combining the result of proposition (5) and result of proposition (6), we conclude to the
asymptotic normality of ĉk (at k fixed).

Proposition 7. Under H0, we have

cov(ĉk, ĉl) = α2 × k!

n
if k = l + 2

= varĉk if k = l

= 0 elsewhere (12)

The variance matrix is written as:

nΣ =

2!(5α2 + 1) 0 α24! 0 0 · · · 0
0 3!(7α2 + 1) 0 α25! 0 · · · 0

α24! 0 4!(9α2 + 1) 0 α26! · · · 0

0 α25! 0 5!(11α2 + 1) 0 · · ·
...

0 0 α26! 0 6!(13α2 + 1) · · · α2m!
· · · · · · · · · · · · · · · · · · 0
0 0 · · · 0 α2m! 0 m!((2m+ 1)α2 + 1)


It is positive definite because there is no almost sure affine relation between the components
of the random vector. Since ĉk are correlated with each other, instead of taking T̃m,n (defined
by 8) as a test statistic, one can use the following test statistic

Tm,n = CtmΣ−1Cm.

From what precedes, we can state the following theorem.
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Theorem 8. Under H0, the test statistic Tm,n ∼ χ2(m− 1), where m is fixed.

Proof. The following proof characterizes the behavior of our statistics under the null hypoth-
esis. Let Cm = (ĉ2, ..., ĉm)t. Concerning the asymptotic law of Cm; let x2, . . . , xm, real fixed
and be V = (x2 . . . xm)t. It must be shown that V tCm =

∑m
k=2 xk ĉk converges in distribution

to N(0, V tΣV ). We deduce that Cm converges in law towards N(0,Σ), from there it comes
that Tn = CtmΣ−1Cm converges in law towards χ2(m− 1).

Martingale theory is used to obtain a central limit theorem for Cm-statistics. By posing
ξm,k = xk ĉk m = 2, 3, ... k = 2, ...,m. For a triangular array we can introduce the row-sums

Sm =

m∑
k=1

ξm,k m = 1, 2, ...

Furthermore
m∑
k=2

E
(
ξ2m,k1|ξm,k|>ε

)
= E

[
x2k ĉ

2
k1|xk ĉk|>mε

]
As E

(
V tCm

)
= V tΣ−1V < +∞, it’s immediate that for any ε > 0,

limm→+∞E
[
x2k ĉ

2
k1|xk ĉk|>mε

]
= 0 (13)

The martingale Central Limit theorem then assures that
∑m

k=2
xk ĉkconverges in law to an

N(0, V tΣV ). We deduce that Cm converges in distribution to Nm−1(0,Σ).

Recall that a sequence of random vectors (Un)n of Rm−1 converges in law towards a random
vector U if and only if xtUn converges in law towards xtU for all x ∈ Rm−1 (from the
characterization of the law convergence using the characteristic functions). To be able to use
the test statistic Tm,n for testing we must calculate it using sample and compare with the
quantile of the distribution under H0. Rejection of this null hypothesis generally leads to
the belief of the existence of non-linear trend. Despite its mathematical convenience, there
is no special reason to believe a simple linear trend function would be suitable to model the
complex system. According to the central limit theorem, when m is ”large” (m > 100), the
law of a variable of χ2, a sum of independent random variables, can be approximated by a
normal law of expectation (m− 1) and of variance 2(m− 1). Under the null hypothesis H0,
we deduce that for m large, Tm,n will be normally distributed with mean zero and with a
given variance. Under alternative hypothesis H1 that the Hermite cœfficients ĉk 6= 0, it is
possible that for m large, Tm,n will be normally distributed with a given variance which is a
very complicated function. Despite the seemingly usually setting, the answer to this question
is highly non-trivial.

4. Numerical results

4.1. Case studies

A necessary condition for an effective analysis of statistical data is that statistical models
summarize the data with precision. Nonparametric regression does not specify the form of
the regression function before examining the data. This theory might suggest that y depends
on x, but it is unlikely to tell us that the relationship is linear.

This section features some simulation experiments of the test statistics which are performed
out to assess the usefulness and the accuracy of the results obtained in Section 3. First
we suppose that yi = αxi with α = 0.8, we generate a random variable X according to the
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Gaussian ditribution N(0, 1), we get (y1, y2....yn). In order to verify that the ĉk are Gaussian,
we plot the histogram of a single coefficient namely ĉ3. For k = 3 fixed, that is

ĉ3 =
1

n

n∑
j=1

H3(Xj)Yj

which follows a normal distribution with the size of the sample n = 40000, this is shown in
Figure 1:

 

Figure 1: : Histogram of ĉ3 statistic

Figure 1 displays the histogramme of the statistic ĉ3, from which it is clear that there is
convincing evidence of normality.

We present some results in order to glimpse a brief description of the test performance under
H0. The test statistic Tm,n is calculated on a set of simulated data with different sizes n and
m and for different values of α. Let

y = αx (14)

We follows the steps below:

1. we generate a random variable X which follows a law N(0, 1). We get (y1, y2....yn), for
α fixed.

2. we calculate recursively the Hermite polynomials

3. we evalute Ĉm

Table 1 reports the test statistics calculated for different values of α, m and n, for the 5%
critical value.
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Table 1: Test statistic Tm,n based on different m, n and α under linearity

m = 21 m = 33 m = 45

α n Tm,n Tm,n Tm,n
-2 50 23.13 34.11 45.71
-1.5 70 22.88 34.42 45.88
-1 100 22.39 34.10 45.59
0.4 120 22.63 34.17 45.82
0.5 150 22.52 34.07 45.84
0.8 170 21.73 34.24 45.63
1.7 200 23.06 34.13 45.48
8 200 22.44 34.04 45.83

Reading the quantiles on the χ2 table, give us: χ2
(m−1,0.05) = 31.41 for m = 21, χ2

(m−1,0.05) =

46.19 for m = 33 and χ2
(m−1,0.05) = 60.48 for m = 45. From the table we notice for all setting,

that Tm,n < χ2
(m−1,0.05) , then we accept H0 significantly at the level 5%; i.e ϕ linear, that’s

what we expected. The results in table 1 show that if the null is true then the test statistics
are less the quantile of the chi-square distribution at m − 1 degrees of freedom, setting the
risk at 5%.

In the afterpart, we investigated results test under H1. Let

y = a exp(bx) (15)

For that we do a simulation that follows the steps below:

1. we generate a random variable X which follows a law N(0, 1). We get (y1, y2....yn), for
α, β fixed.

2. we calculate recursively the Hermite polynomials

3. we evalute Ĉm

Several values of the statistic Tm,n are computed for different m, n and α.

Table 2: Test statistic Tm,n based on different m, n and α under non-linearity

α n m Tm,n χ2
(m−1,0.05)

-1.5 50 21 33.61 31.41
-2 70 33 49.51 46.19
1.7 100 45 62.06 60.48
0.8 120 60 81.02 77.93
0.4 150 75 96.521 95.08
-1 170 88 112.32 109.77
0.5 200 99 135.72 122.11

From the table, we notice that Tm,n > χ2
(m−1,0.05) , so we reject H0 significantly at the level

5%; i.e ϕ is non-linear, that’s what we expected.

4.2. Simulation study

In this section, we demonstrate the performance of our test by some numerical examples. The
first set of examples concerns the linear model. We applied the test in the form described in
section 3. Moreover, in order to see the sensitivity of the results for the choice of n and m, we
have applied the test several times, namely for different values of n and m. The results are
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presented in Table 3. The test is evaluated with replications. The simulation are repeated 500
times for each setting and we calculate the average Tm,n at each setting and then compare
the average Tm,n with the chi-square value. The test statistic Tm,n is calculated on datasets
with different size n and m and for different values of α accordind to (14). We get

Table 3: Test statistics under the linearity assumption

α = −2 m = 21 m = 33 m = 45 α = 0.5 m = 21 m = 33 m = 45

n Tm,n Tm,n Tm,n n Tm,n Tm,n Tm,n
50 19.2533 32.1525 40.1096 50 19.1691 33.0432 44.5460
100 21.2145 34.1309 42.0944 100 21.3601 33.2094 44.1103
150 21.3175 33.2865 43.5910 150 22.2145 34.1309 46.0944
200 22.3490 34.8427 45.0174 200 23.340 36.2765 48.3591

α = 1.7 m = 21 m = 33 m = 45

n Tm,n Tm,n Tm,n
50 21.6901 35.3385 43.6143
100 22.2601 34.2641 46.3710
150 23.9813 37.0461 48.9156
200 24.4398 38.1034 54.6018

According to the chi-square table we have:χ2
(m−1,0.05) = 31.41 for m = 21, χ2

(m−1,0.05) = 46.19

for m = 33 and χ2
(m−1,0.05) = 60.48 for m = 45. From the Table 2, we notice that Tm,n <

χ2
(m−1,0.05) , so we accept H0 significantly at the level 5%; i.e ϕ is linear, that’s what we

expected. In Table 3 we see that the test statistics of tests are rather sensitive for the choice
of m.

Some additional numerical work has been carried out. The second set of examples concerns
the non-linear model. The test is evaluated with replications. The simulation are repeated
500 times for each setting and we calculate the average Tm,n at each setting and then compare
the average Tm,n with the chi-square value. The test statistic Tm,n is calculated on datasets
with different size n and m depending on the value of n and for different values of α accordind
to (15).

Table 4: Test statistics under the non-linearity assumption

α = −2 m = 21 m = 33 m = 45 α = 0.5 m = 21 m = 33 m = 45

n Tm,n Tm,n Tm,n n Tm,n Tm,n Tm,n
50 30.5320 45.7331 54.6814 50 29.6534 39.7614 60.5713
100 30.2657 42.2570 67.5193 100 30.0716 48.2309 59.0467
150 31.1375 48.6103 69.6392 150 32.7147 51.3572 63.8631
200 33.8342 66.3265 71.0361 200 44.4396 60.9123 67.632

α = 1.7 m = 21 m = 33 m = 45

n Tm,n Tm,n Tm,n
50 26.8371 41 53.8745
100 31.4529 39 59.0925
150 43.9635 47 61.5420
200 50.0248 56 65.9562

According to the chi-square table we have:χ2
(m−1,0.05) = 31.41 for m = 21, χ2

(m−1,0.05) = 46.19

for m = 33 and χ2
(m−1,0.05) = 60.48 for m = 45. From the Table 2, we notice that often

Tm,n > χ2
(m−1,0.05) , so we reject H0 significantly at the level 5%; i.e ϕ is non-linear, that’s

what we expected.

The test was evaluated in terms of the power. For the power performance, we has select a
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Table 5: The empirical size and empirical power of the test based on 500 independent repli-
cations (in %)

n|m n = 50|m = 21 n = 100|m = 45 n = 150|m = 75 n = 200|m = 99

size power size power size power size power

α = −2 1.2 10.9 2.4 32.2 2.7 45.6 2.6 40.4
α = 0.5 2.5 6.2 2.1 47.1 1.2 57.8 1.1 57.8
α = 1.7 1.8 21.3 1.2 54.6 2.1 41.2 1.8 66.2

simulation setting and generate 500 data sets under the alternative hypothesis and for each
data calculate the test statistic. Then we calculate the number of times the null hypothesis
is rejected.

For Type I error, we follow the same approach but the data is generated from the null
hypothesis and we calculate the proportion of times the null hypothesis is rejected. We get

We call by empirical size, the percentage of falsely rejecting the null hypothesis H0. On the
other hand, the empirical power represents the percentage of rejection of H0 when we arbitrary
choose a false model. The results in Table 5 numerically confirm the results announced. We
notice that the test is moderately powerful but theType I errorr is very often small. We deduce
that the consistency of our procedure is numerically convincing, which is in accordance with
we expected.

5. Conclusion

In this work, we developed a linearity test of a linear regression model using the use of Hermite
polynomials. A nonparametric regression methodology with random design is performed. We
have considered simple linear regression, but the procedure also applies to multiple regression,
we emphasize that the results can be extended to multiple regression. For example, other
models can be treated with several predictor variables which can have a general linear. This
would seem to complicate the analysis and even the interpretations.

Hermite polynomials led the use of the Gaussian density function for the random explanatory
variable X. The method does not work for categorical predictors because qualitative variables
cannot have a Gaussian density which is continuous.

Extensions to this situation should be possible using other polynomials and will be explored in
future research. These polynomials can be those of Legendre when X is uniform over (−1, 1),
Chebyshev with X of Beta probability distribution (1/2, 1/2) over (−1, 1) or Laguerre are
when X is of gamma distribution on (0,∞).

The proposed test was found to have reasonable properties in a simulation study. A small
power study was carried out to compare the performances of the test. Some properties of the
proposed test were discussed. Applications to simulated data suggested that the proposed
test can improve the estimate of the function de regression.

Appendix 1: Proofs

Proof of Proposition 3

We have

ĉk =
1

n

n∑
j=1

Hk(Xj)Yj (16)
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Under H0,

ĉk =
1

n

n∑
j=1

Hk(Xj) (αXj + εj )

= α× 1

n

n∑
j=1

XjHk(Xj +
1

n

n∑
j=1

Hk(Xj)εj

with k ≥ 2

E |ĉk| = E (Hk(Xj)Yj)

= E [Hk(Xj) (αXj + εj )]

= αE (XjHk(Xj)) + εj Hk(Xj))

= αE(H1(Xj)Hk(Xj)) + Eεj × E(Hk(Xj)

= 0

Proof of Proposition 4

To describe the technical development, we write

E
(
|ĉk|2

)
=

1

n2
E

 n∑
j=1

Hk(Xj)Yj

n∑
j′=1

Hk(Xj′)Yj′


=

1

n2

n∑
j=1

n∑
j′=1

E
(
Hk(Xj)YjHk(Xj′)Yj′

)
=

1

n

n∑
j=1

E
(
H2
k(Xj)Y

2
j

)
+

1

n2

n∑
j 6=j′

E
(
Hk(Xj)YjHk(Xj′)Yj′

)
(17)

In other words we have under H0

E
(
|ĉk|2

)
=

1

n2

n∑
j=1

E
(
H2
k(Xj) (αXj + εj )2

)
+

1

n2

n∑
j 6=j′

E
(
Hk(Xj) (αXj + εj )Hk(Xj′)

(
αXj

′ + εj′
))

=
1

n

n∑
j=1

E
(
H2
k(Xj)

(
α2X2

j + 2αεjXj + ε2j
))

+
1

n2

n∑
j 6=j′

E
(
Hk(Xj)Hk(Xj′)

(
εjεj′ + αXjεj + αXj′εj′ + α2XjXj′

))
(18)

To handle this problem, there are two parts.

The first term of (18) : 1
n

∑n
j=1E

(
H2
k(Xj)

(
α2X2

j + 2αεjXj + ε2j

))
Knowing that Eεn = 0

Eε2n = 1; we calculate E
(
H2
k(Xj)

(
α2X2

j + 2αεjXj + ε2j

))
:

E
(
H2
k(Xj)

(
α2X2

j + 2αεjXj + ε2j
))

= α2E
[
X2
jH

2
k(Xj)

]
+ 2αEεj × E

(
XjH

2
k(Xj)

)
+ Eε2j × E

(
H2
k(Xj)

)
= α2E

(
X2
jH

2
k(Xj)

)
+ E

(
H2
k(Xj)

)
= α2E

(
X2
jH

2
k(Xj)

)
+ E

(
H2
k(Xj)

)
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We have E
(
H2
k(Xj)

)
= k!, we calculate E

[
X2
jH

2
k(Xj)

]
. According to the formula 4.23 in

(Declercq (1998)), we get

E
(
X2
jH

2
k(Xj)

)
= E

(
H2

1 (Xj)H
2
k(Xj)

)
= k!

k∑
l=0

(
k

l

)(
1

l

)(
2l

l

)

By posing sk =
∑1

l=0

(
k
l

)(
1
l

)(
2l
l

)
= 2k + 1. We deduce

E
(
H2
k(Xj)

(
α2X2

j + 2αεjXj + ε2j
))

= α2E
[
X2
jH

2
k(Xj)

]
+ E

[
H2
k(Xj)

]
= α2(2k + 1)k! + k!

and

E
(
|ĉk|2

)
=
k!

n
(α2(2k + 1) + 1) (19)

The second term (18): 1
n2

∑n
j 6=j′ E

(
Hk(Xj)Hk(Xj′)

(
εjεj′ + αXjεj + αXj′εj′ + α2XjXj′

))
We use the fact that Xj and Xj′ are independent for j 6= j′

(
Hk(Xj)Hk(Xj′)

(
εjεj′ + αXjεj + αXj′εj′ + α2XjXj′

)
= εjεj′Hk(Xj)Hk(Xj′)

+αXjHk(Xj)Hk(Xj′)εj + αXj′Hk(Xj)Hk(Xj′)εj′ + α2XjXj′Hk(Xj)Hk(Xj′)

)

First we calculate the expectation of
(
Hk(Xj)Hk(Xj′)

(
εjεj′ + αXjεj + αXj′εj′ + α2XjXj′

))
:

I) Eεj × Eεj′ × E
(
Hk(Xj)Hk(Xj′)

)
= 0

II)α E
(
XjHk(Xj)Hk(Xj′)

)
× Eεj = 0

Idem for the term III)

IV ) α2E
(
Xj′Hk(Xj)

)
E
(
XjHk(Xj′)

)
= 0 since k 6= 1

We conclude that

E
(
Hk(Xj)Hk(Xj′)

(
εjεj′ + αXjεj + αXj′εj′ + α2XjXj′

))
= 0 (20)

Combining the first term of (17) and the second term (17) we have

var(ĉk) =
k!

n
((2k + 1)α2 + 1) (21)

Proof of Proposition 7

We suppose that k 6= l and under H0, we can write

cov(ĉk, ĉl) = E

 1

n

n∑
j=1

Hk(Xj)Yj ×
1

n

n∑
j′=1

Hl(Xj′ )Yj′


=

1

n

n∑
j=1

E
(
Hk(Xj)Hl(Xj)Y

2
j

)
+

1

n2

n∑
j 6=j′

E
(
Hk(Xj)YjHl(Xj′)Yj′

)
(22)
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a-First term of (22): 1
n

∑n
j=1E

(
Hk(Xj)Hl(Xj)Y

2
j

)
E
(
Hk(Xj)Hl(Xj)Y

2
j

)
= E

(
[Hk(Xj)Hl(Xj)]

(
α2X2

j + 2αεjXj + ε2j
))

= E
([
α2X2

jHk(Xj)Hl(Xj) + 2αεjXjHk(Xj)Hl(Xj) + ε2jHk(Xj)Hl(Xj)
])

= α2E
(
X2
jHk(Xj)Hl(Xj)

)
+ Eε2j × E [Hk(Xj)Hl(Xj)]

= α2E
(
X2
jHk(Xj)Hl(Xj)

)
+ E (Hk(Xj)Hl(Xj))

= α2E
[
X2
jHk(Xj)Hl(Xj)

]
We know that if k 6= l then E [Hk(Xj)Hl(Xj)] = 0. We have X2

j = H2(Xj) + 1, from where

E
(
X2
jHk(Xj)Hl(Xj)

)
= E ((H2(Xj) + 1)Hk(Xj)Hl(Xj))

= E (H2(Xj)Hk(Xj)Hl(Xj)) + E (Hk(Xj)Hl(Xj))

= E (H2(Xj)Hk(Xj)Hl(Xj))

We have to calculate E (H2(Xj)Hk(Xj)Hl(Xj)) . We use the result given in (Declercq (1998)):
for m ≤ n ≤ p that is

E (Hm(Xj)Hn(Xj)Hp(Xj)) =

(
m

k

)(
n

k

)
k!p! (23)

and p ≤ m+ n, k = 1
2(m+ n− p).

We set m = 2; 2 ≤ l ≤ k ⇒ u = 1
2(2 + l − k)

E (H2(Xj)Hk(Xj)Hl(Xj)) =

(
2

u

)(
l

u

)
u!k!

=
2

(2− u)!u!
× l!

(l − u)!u!
u!k!

=
2k!l!

(2− u)!u!(l − u)!

Suppose k ≤ 2 + l⇒ u = 1
2(2 + l − k) ≥ 0. Two cases arise : u = 0 and u = 1.

• u = 0⇒ k − l = 2⇒ k = l + 2

E (H2(Xj)Hk(Xj)Hl(Xj)) = C0
2C

0
k0!l! =

2k!l!

(2)!0!(l)!
=
k!l!

l!

= k!

From where

α2E
(
X2
jHk(Xj)Hl(Xj)

)
= α2k! if k = l + 2 (24)

• u = 1 ⇒ 1
2(2 + k − l) = 1 ⇒ k − l = 0 ⇒ k = l we supposed k 6= l since if k = l it is

the variance that is already calculated above.

• For k ≤ l we complete, by symmetry, the matrix of variance.

b-Second term (22): 1
n2

∑n
j 6=j′ EHk(Xj)YjHl(Xj′)Yj′
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E
(
Hk(Xj)Yj ×Hl(Xj′ )Yj′

)
= EHk(Xj)Hl(Xj′)

(
ε2j +Xjαεj +Xj′αεj +XjXj′α

2
)

= Eε2jEHk(Xj)Hl(Xj′) + αEεj × E
(
XjHk(Xj)Hl(Xj′)

)
+αEεj × E

(
Xj′Hk(Xj)Hl(Xj′)

)
+ α2E

(
XjXj′Hk(Xj)Hl(Xj′)

)
= α2EXjXj′Hk(Xj)Hl(Xj′)

= α2EXjHk(Xj)EXj′Hl(Xj′)

= 0

Proof of Theorem 5

We use the theorem:

Let (Xi)i be a sequence of independent random variables, of the same law and square inte-
grable (and not constant). Note µ = EX1, σ

2 := varX1 with σ > 0 Sn :=
∑n

j=1Xj . Then

Sn − ESn√
varSn

=
Sn − nµ
σ
√
n
∼ N(0, 1). (25)

First we pose Zj = Hk(Xj)Xj = H̃k(Xj) are independent because the Xj are independent.
We have

ĉk1 =
α

n

n∑
j=1

Zj (26)

The expectation and the variance of ĉk1 are calculated:

• Eĉk1 = αEZ1 = 0. Indeed

µ = EZ1 = E (XjHk(Xj))

= E (H1(Xj)Hk(Xj)) = 0

• α2varZ1 = α2k!. Since k ≥ 2

α2V arZ1 = α2E
[
H2

1 (Xj)H
2
k(Xj)

]
= α2k! (27)

So we deduce that

ĉk1 ∼ N
(

0,
α2k!

n

)
(28)

at k fixed.

Proof of Proposition 6

We have

ĉk2 =
1

n

n∑
j=1

Hk(Xj)εj (29)

The sequence {Xn, n ∈ N} converges in probability to X if ∀ε > 0, limn→+∞ P (| Xn −
X |> ε) = 0. Let X be a random variable of expectation µ and of finite variance σ2. The
inequality of Bienayme-Chebyshev is expressed as follows: for every positive real positive α,
P (| Xn − µ |≥ δ) ≤ σ2

δ2
. If we calculate, at fixed k

E(Hk(Xj)εj) = E(Hk(Xj))E(εj)

= 0
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since E(εj) = 0, and

var(Hk(Xj)εj) = E(Hk(Xj)εj)
2

= E(H2
k(Xj)E(εj)

2 = k!

⇒

var

 1

n

n∑
j=1

Hk(Xj)εj

 =
1

n
× k! (30)

P

∣∣∣∣∣∣ 1n
n∑
j=1

Hk(Xn)εn

∣∣∣∣∣∣ ≥ δ
 ≤ k!

nδ2
→ 0 (31)

when n→∞ at fixed k.

lim
n→+∞

P

∣∣∣∣∣∣ 1n
n∑
j=1

Hk(Xn)εn

∣∣∣∣∣∣ ≥ δ
 = 0 (32)

We conclude that 1
n

∑n
j=1Hk(Xj)εj converges in probability to 0 when n→∞.

Appendix 2: The Hermite polynomials

Hermite polynomials are defined by : H0(x) = 1 and according to Rodrigues’ formula

Hn(x) = (−1)ne
x2

2
dne−

x2

2

dxn

for n = 1, 2, ...

The equation Hn(x) = 0 has all its roots real. We have

∫∞
−∞ e

−x2

2 Hn(x)dx = 0 ∀n.

except for n = 0,

∫∞
−∞ e

−x2

2 Hn(x)Hm(x)dx = 0

for n 6= m, and

∫∞
−∞ e

−x2

2 H2
n(x)dx = n!

The system

{
e−

x2

2 Hk(x)√
2nn!
√
π

}
is orthonormed in (−∞,∞), it is complete with respect to the

functions square integrable i.e

1√
2π

∫ ∞
−∞

e−
1
2
x2Hn(x)Hm(x)dx = n!δn−m. (33)

A sequence of orthogonal polynomials in the space L2(R, dµ), where the measure µ is given
by
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dµ(x) = 1√
2π
e
−x2

2 dx.

Hermite polynomials also verify the following recurrence relation: Hn+1(x) = xHn(x) −
nH

′
n(x) and H

′
n(x) = nHn−1(x). The only sequence of polynomials that satisfies the two

equations is the sequence of Hermite polynomials. We thus find the first of these polynomials

H0 = 1, H1(x) = x, H2(x) = x2 − 1, H3(x) = x3 − 3x, ...
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