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Abstract

The aim of this paper is detecting the ordering properties of the smallest claim amounts
arising from two sets of independent heterogeneous portfolios in insurance. First, we prove
a general theorem that it presents some sufficient conditions in the sense of the hazard
rate ordering to compare the smallest claim amounts from two batches of independent
heterogeneous portfolios. Then, we show that the exponentiated scale model as a famous
model and the Harris family satisfy the sufficient conditions of the proven general theorem.
Also, to illustrate our results, some used models in actuary are numerically applied.
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1. Introduction

Let X1, . . . , Xn be a set of independent and non-negative random variables such that Xi,
i = 1, . . . , n, corresponds to the hazard rate function r(x;αi, βi). Suppose that Xi denotes
the total random losses faced by the ith policyholder in an insurance period, which is called
the ith claim severity. Also, suppose that Ip1 , . . . , Ipn are independent Bernoulli random
variables independent of Xi’s, with E[Ipi ] = pi, i = 1, . . . , n; which Ipi = 1 whenever the
ith policyholder makes random claim amount Xi and Ipi = 0 whenever does not make a
claim. In this setting, Yi = IpiXi is a claim amount corresponding to ith policyholder and
(Y1, . . . , Yn) is said to be a portfolio of risks. In this respect, the parameters corresponding to
this portfolio are α1, . . . , αn, β1, . . . , βn and p1, . . . , pn. Further, consider another portfolio of
risks (Y ∗

1 , . . . , Y
∗
n ) with other corresponding parameters α∗

1, . . . , α
∗
n, β∗1 , . . . , β

∗
n and p∗1, . . . , p

∗
n.

The annual premium is the primary cost to the policyholder for assigning the risk to the
insurer which depends on the type of insurance. Determination of the annual premium is an
important purpose in insurance analysis. To determine the annual premium, some quantities
such as the number of claims, the aggregate claim amounts and the smallest and largest claim
amounts play important role.

The discovery of preferences between random future gains or losses is an interesting problem
for the actuaries. For this target, stochastic orderings are very helpful. They have been
extensively used in some areas of sciences such as management science, financial economics,
insurance, actuarial science, operation research, reliability theory, queuing theory and survival

http://www.ajs.or.at
http://www.ajs.or.at/
http://dx.doi.org/10.17713/ajs.v50i3.1025
www.osg.or.at


Austrian Journal of Statistics 55

analysis. Many stochastic orderings to compare the random variables have been introduced
in the literature. These orderings consider the comparisons of the various properties of the
random variables. Some stochastic orderings compare the location or the magnitude of ran-
dom variables such as the usual, the hazard rate, the reversed hazard rate, the mean residual
life and the likelihood ratio orderings. Some stochastic orderings compare the variability or
the dispersion of random variables such as the convex and the dispersive orderings. Some of
them are according to compare the location and the spread orderings such as the increasing
convex and the increasing concave orderings. For a comprehensive discussion on the various
stochastic orderings, we refer to Müller and Stoyan (2002), Li and Li (2013) and Shaked and
Shanthikumar (2007).

The problem of stochastic comparisons of some important functions in (Y1, . . . , Yn) and
(Y ∗

1 , . . . , Y
∗
n ), such as the number of claims,

∑n
i=1 Ipi , the aggregate claim amounts,

∑n
i=1 Yi,

the smallest, Y1:n = min(Y1, . . . , Yn), and the largest claim amounts, Yn:n = max(Y1, . . . , Yn)
in two portfolios, have been considered by many researchers. For instance, Karlin and Novikoff
(1963) worked on the number of claims and Ma (2000), Frostig (2001), Hu and Ruan (2004),
Denuit and Frostig (2006), Khaledi and Ahmadi (2008), Zhang and Zhao (2015), Barmalzan,
Najafabadi, and Balakrishnan (2015), Li and Li (2016) and Barmalzan, Najafabadi, and
Balakrishnan (2018) worked on the aggregate claim amounts.

Over the past few years, the comparisons of the smallest and largest claim amounts arising
from two sets of heterogeneous portfolios have been more considered.

Balakrishnan, Zhang, and Zhao (2018) investigated the comparisons of the largest and the
sample range of claim amounts arising from two sets of heterogeneous portfolios in the sense
of the usual, the hazard rate and the reversed hazard rate orderings, when the severities in
portfolios are independent.

Nadeb, Torabi, and Dolati (2020b) worked on the comparisons of the largest claim amounts in
two heterogeneous portfolios in the sense of the usual stochastic ordering, when the existing
severities in each portfolio are dependent.

Barmalzan, Najafabadi, and Balakrishnan (2017) discussed on ordering the largest and small-
est claim amounts in the sense of the usual stochastic ordering and the hazard rate ordering
when the severities belong to the scale model.

Barmalzan and Najafabadi (2015) discussed on the stochastic comparisons between the small-
est claim amounts in two portfolios in the sense of the convex transform ordering, which is a
well-known criterion to compare the skewness and coefficient of variations of probability dis-
tributions, and right-spread ordering whenever the severities follow the Weibull distribution.

Barmalzan, Najafabadi, and Balakrishnan (2016) considered the Weibull distribution as the
distribution of severities and discussed on the stochastic comparisons between the smallest
claim amounts in two portfolios in the sense of the usual stochastic ordering, the hazard rate
ordering and the likelihood ratio ordering.

Recently, Nadeb, Torabi, and Dolati (2020a) considered the transmuted-G model as a suitable
model for severities in insurance analysis and worked on the stochastic comparisons between
the largest and smallest claim amounts in two portfolios in the sense of the usual, reversed
hazard rate and hazard rate orderings.

Motivated by the importance of the smallest claim amounts and some of the articles mentioned
above, we concentrate on the stochastic comparisons of the smallest claim amounts from two
sets of independent heterogeneous portfolios. The current paper provides the hazard rate
ordering, which compares the magnitude of the random variables, to compare the smallest
claim amounts in two portfolios related to the insurance companies.

The rest of the paper is organized as follows. In Section 2, we recall some definitions and
lemmas which are useful to prove our main results. In Section 3, stochastic comparisons of the
smallest claim amounts from two independent heterogeneous portfolios of risks in a general
model in the sense of the hazard rate ordering are studied. Some numerical examples are also
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illustrated to observe the validity of the results.

2. The basic definitions and some prerequisites

In this section, we recall some definitions and useful lemmas which are helpful to prove the
main results. Throughout the paper, we use the notations R = (−∞,+∞) and rX(x) for the
hazard function corresponding to the random variable X.

Let X and Y be two non-negative random variables with the hazard rate functions rX(.) and
rY (.), respectively. In the following, we state the definition of the hazard rate ordering.

Definition 1. The random variable X is said to be smaller than Y in the hazard rate ordering
(denoted by X ≤hr Y ) if rX(x) ≥ rY (x) for all x ∈ R.

All results of this paper deal with comparison of two hazard rate functions in the basis of
comparing the parameter vectors or matrices. To compare the parameter vectors or matrices,
we use the concepts of majorization of vectors and matrices. In the following, we state
the concepts of majorization and weak majorization for comparing the vectors. We use the
notation x1:n ≤ x2:n ≤ . . . ≤ xn:n to denote the increasing arrangement of the components of
a vector x = (x1, . . . , xn).

Definition 2. The vector x is said to be

(i) weakly submajorized by the vector y (denoted by x �w y) if
∑n

i=j xi:n ≤
∑n

i=j yi:n for
all j = 1, . . . , n,

(ii) weakly supermajorized by the vector y (denoted by x
w
�y) if

∑j
i=1 xi:n ≥

∑j
i=1 yi:n for

all j = 1, . . . , n,

(iii) majorized by the vector y (denoted by x
m
�y) if

∑n
i=1 xi =

∑n
i=1 yi and

∑j
i=1 xi:n ≥∑j

i=1 yi:n for all j = 1, . . . , n− 1.

The concepts of majorization and weak majorization were provided in the previous definition
in order to compare two numerical vectors. The following lemma provides the comparison
of two multivariate real-valued function in the basis of comparison of the input values of the
function.

Lemma 1 (Marshall, Olkin, and Arnold (2011), Theorem 3.A.7). Let φ be a continuous real
valued function on the set D = {x : x1 ≥ x2 ≥ . . . ≥ xn} and continuously differentiable
on the interior of D . Denote the partial derivative of φ with respect to ith argument by
φ(i)(z) = ∂φ(z)/∂zi. Then,

φ(x) ≤ φ(y) whenever x �w y on D

if and only if

φ(1)(z) ≥ φ(2)(z) ≥ . . . ≥ φ(n)(z) ≥ 0,

i.e. the gradient 5φ(z) ∈ D+ = {x : x1 ≥ x2 ≥ . . . ≥ xn ≥ 0}, for all z in the interior of D .
Similarly,

φ(x) ≤ φ(y) whenever x
w
�y on D

if and only if

0 ≥ φ(1)(z) ≥ φ(2)(z) ≥ . . . ≥ φ(n)(z),

i.e. the gradient 5φ(z) ∈ D− = {x : 0 ≥ x1 ≥ x2 ≥ . . . ≥ xn}, for all z in the interior of D .
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To compare two real-valued functions that their input values are matrices, we need to some
concepts to compare the matrices. Therefore, we firstly recall the concepts of permutation
matrix, T -transform matrix and doubly stochastic matrix, and then state the multivariate
majorization of matrices.

Definition 3. A square matrix

(i) is called a permutation matrix if each row and each column has a single unit, and all
other entries are zero;

(ii) is called a T -transform matrix if is of the form Tω = ωIn + (1− ω)Π, where 0 ≤ ω ≤ 1,
In is an n×n identity matrix and Π is a permutation matrix that just interchanges two
coordinates;

(iii) P = [pij ] is called a doubly stochastic matrix if pij ≥ 0, for i, j = 1, . . . , n,
∑n

i=1 pij =
1, j = 1, . . . , n, and

∑n
j=1 pij = 1, i = 1, . . . , n.

Now, we state the concepts of majorization for comparing the matrices.

Definition 4. Let A = [aij ] and B = [bij ] be two m × n matrices with the rows aR1 , . . . ,a
R
m

and bR1 , . . . , b
R
m, respectively. Then

(i) A is said to be chain majorized by B, denoted by A� B, if there exists a finite set of
n× n T -transform matrices Tω1 , . . . , Tωk , such that A = BTω1 × . . .× Tωk ;

(ii) A is said to be majorized by B, denoted by A < B, if there exist a n × n doubly
stochastic matrix P , such that A = BP ;

(iii) A is said to be row majorized by B, denoted by A
row
< B, if aRi

m
� bRi , for i = 1, . . . ,m;

(iv) A is said to be row weakly submajorized by B, denoted by A<
w
B, if aRi �w bRi , for

i = 1, . . . ,m.

The following implications are hold between the different types of majorization of matrices:

A� B ⇒ A < B ⇒ A
row
< B ⇒ A<

w
B.

For more details on the mentioned topics, one may refer to Marshall et al. (2011).

Also, we define two required spaces as the following which are used in the paper.

S −
n =

{
(x,y) =

[
x1 . . . xn
y1 . . . yn

]
: (xi − xj)(yi − yj) ≤ 0, i, j = 1, . . . , n

}
,

S +
n =

{
(x,y) =

[
x1 . . . xn
y1 . . . yn

]
: (xi − xj)(yi − yj) ≥ 0, i, j = 1, . . . , n

}
.

3. Main results

In this section, the smallest claim amounts from two independent heterogeneous portfolios of
risks in the sense of the hazard rate ordering are compared. Some examples are also presented
for illustration the validity of the results.

The following theorem provides a comparison between the smallest claim amounts in two
independent heterogeneous portfolios of risks for a general model.
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Theorem 1. Let X1, . . . , Xn (X∗
1 , . . . , X

∗
n) be independent and non-negative random variables

with Xi ∼ r(x;αi, βi) (X∗
i ∼ r(x;α∗

i , βi)), i = 1, . . . , n. Further, suppose that Ip1 , . . . , Ipn
(Ip∗1 , . . . , Ip∗n) is a set of independent Bernoulli random variables, independent of the Xi’s
(X∗

i ’s), with E[Ipi ] = pi (E[Ip∗i ] = p∗i ), i = 1, . . . , n. Assume that the following conditions
hold:

(i) r(x;α, β) is increasing [decreasing] and convex in α for any β and any x > 0;

(ii) ∂r(x;α,β)
∂α is decreasing (increasing) in β for any α and any x > 0.

Then, for (α,β) ∈ S −
n (S +

n ) and (α∗,β) ∈ S −
n (S +

n ), we have

n∏
i=1

p∗i ≤
n∏
i=1

pi and (α1, . . . , αn) �w [
w
�](α∗

1, . . . , α
∗
n) =⇒ Y ∗

1:n ≤hr Y1:n.

Proof. Without loss of generality, assume that β1 ≤ . . . ≤ βn (β1 ≥ . . . ≥ βn). For (α,β) ∈
S −
n (S +

n ) and (α∗,β) ∈ S −
n (S +

n ), we have α1 ≥ . . . ≥ αn and α∗
1 ≥ . . . ≥ α∗

n. The hazard
rate function of Y1:n can be written as the below:

rY1:n(x) =

(
1−

n∏
i=1

pi

)
I[x=0] +

n∑
i=1

r(x;αi, βi)I[x>0],

where I[.] denotes the indicator function. First, suppose that x = 0. Clearly,
n∏
i=1

p∗i ≤
n∏
i=1

pi

implies that rY1:n(0) ≤ rY ∗
1:n

(0). Second, suppose that x > 0. In this case, let

rY1:n(x) = Ψ(α),

where

Ψ(α) =
n∑
i=1

r(x;αi, βi).

The partial derivative of Ψ(α) with respect to αi is given by

∂Ψ(α)

∂αi
=
∂r(x;αi, βi)

∂αi
≥ [≤]0,

which the inequality is obtained by condition (i). Since r(x;α, β) is convex in α and ∂r(x;α,β)
∂α

is decreasing (increasing) in β, thus for 1 ≤ i < j ≤ n, we have

∂r(x;αi, βi)

∂αi
≥ ∂r(x;αj , βi)

∂αj
≥ ∂r(x;αj , βj)

∂αj
.

Therefore, we immediately conclude that

∂Ψ(α)

∂αi
− ∂Ψ(α)

∂αj
=
∂r(x;αi, βi)

∂αi
− ∂r(x;αj , βj)

∂αj
≥ 0.

In the view of Lemma 1, the condition (α1, . . . , αn) �w [
w
�](α∗

1, . . . , α
∗
n) implies that

Ψ(α) ≤ Ψ(α∗),

which completes the proof.
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The proportional hazard rate (PHR) model and the scale model are very important models
that has been extensively used in reliability theory, actuarial science and the other fields; see
for example Cox (1972), Finkelstein (2008), Kumar and Klefsjö (1994), Balakrishnan et al.
(2018), Nelson (1990) and Barmalzan et al. (2017). The both models are special cases of
a model called the exponentiated scale model. A random variable X is said to follow the
exponentiated scale model, if its survival function can be written as

F̄ (x;α, β) = [F̄ (βx)]α, α, β > 0,

where F̄ (x) is a baseline survival function. The exponentiated scale model reduces to the
PHR model if β = 1 and it reduces to the scale model if α = 1.

The three following theorems provide comparisons between the smallest claim amounts in two
independent heterogeneous portfolios of risks, whenever the severities follow the exponentiated
scale model.

The following result deals with the comparison of the smallest claim amounts in two portfolios
of risks, in the sense of the hazard rate ordering based on the comparison of α and α∗ via
the weak submajorization. It discusses the impact of the geometric mean of the occurrence
probabilities and change of the parameters, on the smallest claim amounts. We find out that
more geometric mean of the occurrence probabilities and less parameter vector in the sense
of weak submajorization imply more minimum amount of the potential claims.

Theorem 2. Let F̄ (x;αi, βi) = [F̄ (βix)]αi and F̄ (x;α∗
i , βi) = [F̄ (βix)]α

∗
i , for i = 1, . . . , n.

Under the setup of Theorem 1, suppose that the function xr(x) is decreasing (increasing) in
x. Then, for (α,β) ∈ S −

n (S +
n ) and (α∗,β) ∈ S −

n (S +
n ), we have

n∏
i=1

p∗i ≤
n∏
i=1

pi and (α1, . . . , αn) �w (α∗
1, . . . , α

∗
n) =⇒ Y ∗

1:n ≤hr Y1:n.

Proof. Clearly, we have r(x;α, β) = αβr(βx), where r(x) denotes the hazard function corre-
sponding to the baseline distribution. It is easily obtained that r(x;α, β) holds the condition
(i) of Theorem 1. Moreover, the decreasingness (increasingness) property of xr(x) implies the
condition (ii) of Theorem 1. Thus, the required result is obtained.

The next theorem provides a comparison of the smallest claim amounts in two portfolios
of risks, in the sense of the hazard rate ordering based on the comparison of β and β∗ via
the weak submajorization. It evaluates the impact of the geometric mean of the occurrence
probabilities and change of the parameters, on the smallest claim amounts. It is observed
that more geometric mean of the occurrence probabilities and less parameter vactor in the
sense of weak submajorization imply more the potential smallest claim amounts.

Theorem 3. Let F̄ (x;αi, βi) = [F̄ (βix)]αi and F̄ (x;αi, β
∗
i ) = [F̄ (β∗i x)]αi , for i = 1, . . . , n.

Under the setup of Theorem 1, suppose that the function xr(x) is increasing and convex in
x. Then, for (α,β) ∈ S +

n and (α,β∗) ∈ S +
n , we have

n∏
i=1

p∗i ≤
n∏
i=1

pi and (β1, . . . , βn) �w (β∗1 , . . . , β
∗
n) =⇒ Y ∗

1:n ≤hr Y1:n.

Proof. By interchanging α and β in Theorem 1 and some simple algebraic computations, it is
easily seen that the conditions of Theorem 1 is derived under the assumptions of this Theorem
on the function xr(x). Hence, the proof is completed.

Remark 1. Note that Theorem 3 includes the scale model when αi = 1, i = 1, . . . , n, as a
special case. Thus, we conclude Theorem 4 of Barmalzan et al. (2017).
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The following theorem provides a comparison between the smallest claim amounts in two
portfolios of risks, in the sense of the hazard rate ordering based on the comparison of the
parameter matrices (α,β) and (α∗,β∗) via the row weak submajorization. It discusses the
impact of the geometric mean of the occurrence probabilities and change of the parameters,
on the smallest claim amounts.

Theorem 4. Let F̄ (x;αi, βi) = [F̄ (βix)]αi and F̄ (x;α∗
i , β

∗
i ) = [F̄ (β∗i x)]α

∗
i , for i = 1, . . . , n.

Under the setup of Theorem 1, suppose that the function xr(x) is increasing and convex in
x. Then, for (α,β) ∈ S +

n and (α∗,β∗) ∈ S +
n , we have

n∏
i=1

p∗i ≤
n∏
i=1

pi and

[
α1 . . . αn
β1 . . . βn

]
<
w

[
α∗

1 . . . α
∗
n

β∗1 . . . β
∗
n

]
=⇒ Y ∗

1:n ≤hr Y1:n.

Proof. Let V1:n, Z1:n and W1:n be the smallest claim amounts from the portfolios

(Ip∗1Xα∗
1:n,β

∗
1:n
, . . . , Ip∗nXα∗

n:n,β
∗
n:n

),

(Ip∗1Xα1:n,β∗
1:n
, . . . , Ip∗nXαn:n,β∗

n:n
),

(Ip1Xα1:n,β1:n , . . . , IpnXαn:n,βn:n),

respectively. It can be verified that Y ∗
1:n

hr
=V1:n and Y1:n

hr
=W1:n. On the other hand, Theorem

2 and Theorem 3 imply that V1:n ≤hr Z1:n and Z1:n ≤hr W1:n, respectively. Hence, the
required result is obtained.

Since the weak submajorization is implied by the chain majorization, the majorization and
the row majorization, thus the result of Theorem 4 is also obtained under these majorizations.

Burr distribution is a useful distribution to depict the claim amounts. This distribution
first introduced by Singh and Maddala (1975); while it seems that it was first considered by
Burr (1942). To observe some applications of this distribution in actuary, one may refer to
Hogg and Klugman (1983) and Cummins, Dionne, McDonald, and Pritchett (1990). Also,
for more details, one may refer to Hogg and Klugman (1984) and Kleiber and Kotz (2003).
A random variable X has the Burr distribution with the shape parameters α and λ and the
rate parameter β, denoted by X ∼ Burr(α, β, λ), if its survival function is given by

F̄ (x;α, β, λ) =
(

1 + (βx)λ
)−α

, x > 0, α, β, λ > 0,

where α only affects the right tail, whereas λ affects both tails. Clearly, the Lomax distribution
which was introduced by Lomax (1954) is a special case of the Burr distribution for λ = 1.

The following theorem assumes the Burr distribution as the distribution of the severities in
two portfolios of risks and provides a comparison of the smallest claim amounts between two
portfolios.

Theorem 5. Let Xαi ∼ Burr(αi, βi, λ) and Xα∗
i
∼ Burr(α∗

i , βi, λ), for i = 1, . . . , n. Under the
setup of Theorem 3, for (α,β) ∈ S +

n and (α∗,β) ∈ S +
n and any λ > 0, we have

n∏
i=1

p∗i ≤
n∏
i=1

pi and (α1, . . . , αn) �w (α∗
1, . . . , α

∗
n) =⇒ Y ∗

1:n ≤hr Y1:n.

Proof. It can be easily verified that xr(x) = λxλ

1+xλ
is increasing in x. Hence, Theorem 2

immediately completes the proof.

The following example provides a numerical example to illustrate the validity of Theorem 5.
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Example 1. Let Xαi ∼ Burr(αi, βi, 2) (Xα∗
i
∼ Burr(α∗

i , βi, 2)), for i = 1, 2, 3. Further, suppose
that Ip1 , Ip2 , Ip3 (Ip∗1 , Ip∗2 , Ip∗3) is a set of independent Bernoulli random variables, independent
of the Xαi ’s (Xα∗

i
’s), with E[Ipi ] = pi (E[Ip∗i ] = p∗i ), for i = 1, 2, 3. We take (α1, α2, α3) =

(4, 0.7, 0.2), (α∗
1, α

∗
2, α

∗
3) = (4.2, 0.6, 0.3), (β1, β2, β3) = (5, 3.5, 1.2), (p1, p2, p3) = (0.2, 0.3, 0.4),

and (p∗1, p
∗
2, p

∗
3) = (0.25, 0.35, 0.25). It is clear that the conditions of Theorem 5 are satisfied.

So, we have Y ∗
1:n ≤hr Y1:n. Figure 1 represents the function rY ∗

1:n
(x) − rY1:n(x), which agrees

with the intended result.

0 5 10 15 20

0.0
0.5

1.0
1.5

Figure 1: Plot of the function rY ∗
1:n

(x)− rY1:n(x) corresponding to Example 1.

The following example illustrates that the conditions (α,β) ∈ S +
n and (α∗,β) ∈ S +

n are the
important conditions and can not be dropped.

Example 2. Under the same setup in Example 1, we take (α∗
1, α

∗
2, α

∗
3) = (4.2, 0.3, 0.6) with the

other unchanged values. It is clear that (α∗,β) /∈ S +
n , but it can be easily verified that the

other conditions of Theorem 5 are satisfied. Figure 2 represents the function rY ∗
1:n

(x)−rY1:n(x),
which changes the sign.

0 5 10 15 20

0.0
0

0.0
5

0.1
0

Figure 2: Plot of the function rY ∗
1:n

(x)− rY1:n(x) corresponding to Example 2.

Barmalzan et al. (2018) considered the Marshall-Olkin extended exponential distribution as
the claim amount distribution in portfolios of risks and compared the aggregate claim amounts
in two heterogeneous portfolios. Marshall-Olkin distribution, which was introduced by Mar-
shall and Olkin (1997) is a spacial case of a wide range family of distributions, called Harris
family. Aly and Benkherouf (2011) used the Harris distribution which has been introduced
by Harris (1948), and generated the Harris family. A random variable X is said to follow the
Harris family, denoted by X ∼ Harris(α, β), if its survival function is given by

F̄ (x;α, β) =

(
βF̄α(x)

1− (1− β)F̄α(x)

)1/α

, α, β > 0,
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where F̄ (x) is a baseline survival function.

The following theorem provides a comparison of the smallest claim amounts in two heteroge-
neous portfolios of risks by assuming that the severities in two portfolios belong to the Harris
family.

Theorem 6. Let Xαi ∼ Harris(αi, βi) and Xα∗
i
∼ Harris(α∗

i , βi), for i = 1, . . . , n. Further
assume that 0 < βi ≤ 1, for i = 1, . . . , n. Under the setup of Theorem 1, for (α,β) ∈ S +

n

and (α∗,β) ∈ S +
n , we have

n∏
i=1

p∗i ≤
n∏
i=1

pi and (α1, . . . , αn)
w
�(α∗

1, . . . , α
∗
n) =⇒ Y ∗

1:n ≤hr Y1:n.

Proof. Obviously, we have r(x;α, β) = r(x)
1−(1−β)F̄α(x)

. It can be verified that r(x;α, β) imply

the condition (i) of Theorem 1. Moreover, the assumption 0 < β ≤ 1 implies the condition
(ii) of Theorem 1. Thus, the proof is completed.

The following example gives a numerical example to illustrate the validity of Theorem 6.

Example 3. Let Xαi ∼ Harris(αi, βi) (Xα∗
i
∼ Harris(α∗

i , βi)), for i = 1, 2, 3, with the base-
line gamma distribution with the shape parameter 2 and the scale parameter 1 in each two
sets. Further, suppose that Ip1 , Ip2 , Ip3 (Ip∗1 , Ip∗2 , Ip∗3) is a set of independent Bernoulli random
variables, independent of the Xαi ’s (Xα∗

i
’s), with E[Ipi ] = pi (E[Ip∗i ] = p∗i ), for i = 1, 2, 3.

We take (α1, α2, α3) = (1.1, 1.6, 2.5), (α∗
1, α

∗
2, α

∗
3) = (1, 1.7, 2.3), (β1, β2, β3) = (0.1, 0.3, 0.6),

(p1, p2, p3) = (0.1, 0.05, 0.15), and (p∗1, p
∗
2, p

∗
3) = (0.2, 0.05, 0.05). It is clear that the condi-

tions of Theorem 6 are satisfied. So, we have Y ∗
1:n ≤hr Y1:n. Figure 3 represents the function

rY ∗
1:n

(x)− rY1:n(x), which coincides with the intended result.
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0.0
0
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0.0
4

0.0
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Figure 3: Plot of the function rY ∗
1:n

(x)− rY1:n(x) corresponding to Example 3.

Conclusion

We know that the smallest and largest claim amounts provide useful informations for the
insurance companies to determine the annual premium. Therefore, we consider the smallest
claim amounts to study. In this paper, under some conditions, we studied the stochastic
comparisons between the smallest claim amounts in the sense of the hazard rate ordering,
when the severities are independent and heterogeneous, and they belonging to a general
model. Based on the published articles in this field, it is known that the scale and PHR
models are very applicable in insurance analysis and actuary. In continuation of our discussion,
we investigated the case that the severities belong to the exponentiated scale model which
includes the both scale model and the PHR model. In this model and under some certain
conditions, we observed that more geometric mean of the occurrence probabilities and less
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parameter matrix in the sense of row weak submajorization, potentially imply more smallest
amount of the claims. Then we considered the Burr distribution and the Harris family as a
model for the severities and compared the smallest claim amounts. These results can provide
useful perspective for the insurance companies in order to determine the annual premiums.
It is necessary to mention that all results of this paper are also valid for comparison of series
systems in the sense of the hazard rate ordering when the starting random shocks may impact
the components.

As a possible generalization, it will be of interest to investigate the ordering properties of the
smallest claim amounts when each portfolio be interdependent; i.e. the existing severities in
the portfolio are dependent. We are working on this problem and hope to present our findings
in a future paper.
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