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Abstract

The aim of this paper is to present the estimation procedure for the step-stress partially
accelerated life test model under the generalized progressive hybrid censoring scheme.
The uncertainties are assumed to be governed by Lindley distribution. The problem
with point and interval estimation of the parameters as well as the acceleration factor
using maximum likelihood approach for the step-stress partially accelerated life test model
has been considered. A simulation study is conducted to monitor the performance of
the estimators on the basis of the mean squared error under the considered censoring
scheme. The expected total time of the test under an accelerated condition is computed
to examine the effects of the parameters on the duration of the test. In addition, a graph
of the expected total time of the test under accelerated and un-accelerated conditions is
provided to highlight the effect due to acceleration. One real data set has been analyzed
for illustrative purposes.

Keywords: accelerated life test, generalized progressive hybrid censoring, maximum likelihood
estimates, total expected number of failures, total time of the test.

1. Introduction

In recent years, the rapid increase in the popularity of the accelerated life test (ALT) is due
to its wide range of applicability. To sustain the pressure of the global competitive market,
significant efforts have been made by manufacturers to develop products to comply with
industry standards, satisfying high reliabilities as per customers’ need. Today, the challenge
is to evaluate reliabilities of said products under time and cost constraints. The ALT is a
turning point in tackling such problems by applying additional load (stress) to the products to
shorten the testing period and provide information about lifetime distribution more quickly.
In accelerated testing conditions, the product is subjected to more a severe environment
compared to the typical operating environment, which triggers the failures sooner, with the
purpose of quantifying the life characteristics of the products.

In ALTs, all units are subjected to higher than usual stress levels. Conversely, in a modified

http://www.ajs.or.at
http://www.ajs.or.at/
http://dx.doi.org/10.17713/ajs.v50i1.1004
www.osg.or.at


106 Statistical Analysis for GPH Censored Data under SSPALT Model

ALT, which is referred to as the partial accelerated life test (PALT), units are tested at both
accelerated and normal conditions. The goal of PALTs is to gather more failure data within
a limited time without applying high stress to all test units. The PALTs are extensively
used in areas with time deficits and those that are of an economical nature. The information
obtained by such tests can be utilized to estimate the failure behavior of the units under
normal conditions. A proper statistical modelling of PALTs was conducted by DeGroot and
Goel 1979, where the authors considered the tempered random variable model for PALTs.
Nelson 1990 suggested a multitude of ways in which stress under accelerated conditions can
be applied. The most popular among these are constant stress and step stress. The choice
of stress loading depends on the nature of the unit utilized in the service, as well as other
limitations. In constant stress accelerated tests, each unit is exposed to fixed stress until
a pre-specified time or upto the occurrence of the fixed number of failures. In step stress
accelerated tests, the units are subjected to successive high levels of stresses at prefixed times
or upto the occurrence of the fixed number of failures. A test consisting of two stress levels,
one that starts with a normal stress level at a fixed point of time and changes to other stress
level, is referred to as a step stress partially accelerated life test(SSPALT).

In life testing experiments, censoring is a common feature that may occur naturally or is the
result of a constraint. Among the conventional Type-I, Type-II, and hybrid censoring schemes,
the latter, which was introduced by Epstein (1954), is quite popular in life testing experiments.
The details of statistical inferences and applications for the exponential distribution under
hybrid censoring is presented in Balakrishnan (1996) and Childs et al. (2003). In conventional
censoring schemes, the surviving units can be removed only at the terminal point of the
experiment. However, certain situations exists wherein the removal of live units are not
localized, except for the terminal points of the experiment, but the allowance of intermediate
removals are equally important. Kundu and Joarder (2006) and Childs et al. (2008) have
considered the Type-I progressive hybrid censoring scheme(Type-I PHCS) in the context of
life testing experiments in which n identical units are tested with progressive censoring schemes
(R1, R2, ···, Rm) and the experiment is terminated at time T ∗ = min{Xm:m:n, T}, where T ∈
(0,∞) and 1 ≤ m ≤ n are fixed in advance and X1:m:n ≤ X2:m:n ≤ ··· are the observed ordered
failure times from the experiment. One can navigate through Balakrishnan and Aggarwala
(2000) and Balakrishnan (2007) for the observations regarding the detailed description of
the censoring scheme. The advantage of this censoring scheme is that the termination time is
fixed, i.e., the test can never go beyond T . In this way, this scheme controls both the time and
cost of the experiment. However, if the unknown average lifetime is relatively high compared
to the stopping time, then there is the possibility of fewer than m failures to be observed,
eventually reducing the efficiency of the inferences based on the censored data. Keeping
this point in mind, Childs et al. (2008) proposed the Type-II progressive hybrid censoring
scheme that terminates the experiment at time T ∗ = max{Xm:m:n, T}. Hence, it ensures
a minimum of m number of failures in the data set and therefore, ensures the efficiency
to be at a more desired level. When Xm:m:n > T , the experiment is terminated at mth
failure with withdrawals occurring at each failure as per the pre-specified progressive scheme
(R1, R2, ···, Rm). A consequence of this would be that it may lead to significant increase in
the time of termination. On the other hand, when Xm:m:n < T , we observe failure upto time
T . If D is the number of failures that occur before time T , then the progressive censoring
scheme, in this case, is (R1, R2, ···, Rm, Rm+1, ···, RD), where Rm = Rm+1 = · · · = RD = 0.
Thus, we see that the termination time in this censoring scheme is random and unknown to
the experimenter. From the above discussion, we may note that the Type-I hybrid censoring
scheme keeps the termination time of the experiment below the prefixed value by forgoing the
efficiency where as Type-II hybrid censoring ensures efficiency more than the prefixed level
but foregoes the termination time. Therefore, the need for a censoring scheme controlling
both the termination time and efficiency was felt which should ensure the bare minimum
number of failures and place restrictions on time. Cho et al. (2015) introduced the generalized
progressive hybrid (GPH) censoring scheme, which assimilates the features of both (Type-I
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PHC and Type-II PHC), as well as irons-out their lacunas.

Bai and Chung 1992 estimated the scale parameter and the acceleration factor for exponential
distribution based on Type-I censored sample using the method of maximum likelihood. Abd-
Elfattah et al. 2008 used the maximum likelihood approach to estimate the parameters of
the Burr type-XII distribution and the acceleration factor based on Type-I censored sample
under SSPALTs. Ismail (2012) obtained the maximum likelihood estimates of the parameters
of Weibull distribution and the acceleration factor from hybrid partially accelerated life test.
A continuum to the above, we have used the method of maximum likelihood to estimate
the parameter of Lindley distribution and the acceleration factor with generalized progressive
hybrid(GPH) censoring scheme under SSPALTs.

This present paper is comprised of eight sections. Section 2 describes the considered censoring
scheme. In section 3, the considered model is discussed. Section 4 provides point and interval
estimates based on maximum likelihood. In section 5, a simulation study is conducted to
study the performance of the estimators in terms of mean squared error(MSE). In section 6,
the expected total time of the test is evaluated. Section 7 presents the analysis of one real
data set and discussions. Finally, a conclusion has been provided in section 8.

2. The censoring scheme

Suppose n units are put on test. Keeping in mind the desired minimum efficiency and cost of
the items, we prefix integers k,m ∈ {1, 2, · · ·, n} such that k < m. The lifetime of the sample
units X1, X2, · · ·, Xn are independent and identically distributed random variables from a
distribution with cumulative density function (cdf) F (·) and probability density function (pdf)
f(·). Ri units are randomly removed at ith failure, satisfying the condition

∑m
i=1Ri +m = n.

The test continues until, the stopping time T ∗ = max{Xk:m:n,min{Xm:m:n, T}} is reached,
and, remaining units are removed from the experiment. It may be noted that instead of
observing m number of failures, this scheme guarantees a minimum number of k failures. Let,
D denote the number of observed failures up to time T . Thus, three cases arise in this scheme
and we have set of observations as given below:

Case-I: X1:m:n, · · · , X2:m:n, · · · , Xk:m:n, if T < Xk:m:n,

Case-II: X1:m:n, · · · , Xk:m:n, · · · , XD:m:n, if Xk:m:n < T < Xm:m:n,

Case-III: X1:m:n, · · · , Xk:m:n, · · · , Xm:m:n, if Xk:m:n < Xm:m:n < T.

A pictorial representation of this censoring scheme is given in Figure 1. Note that for Case-
I, Xk+1:m:n, · · ·, Xm:m:n are not observed; likewise, for Case-II, XD+1:m:n, · · ·, Xm:n:n are not
observed. Given a generalized progressive censored sample, the likelihood functions for Case-I,
Case-II and Case-III denoted by LI , LII , & LIII respectively are given below:

Case-I: LI(ε, ζ) = K1

k−1∏
j=1

f(xj:m:n)[1− F (xj:m:n)]Rjf(xk:m:n)[1− F (xk:m:n)]R
∗
k ,

Case-II: LII(ε, ζ) = K2

D∏
j=1

f(xj:m:n)[1− F (xj:m:n)]Rj [1− F (T )]R
∗
D+1 ,

Case-III: LIII(ε, ζ) = K3

m∏
j=1

f(xj:m:n)[1− F (xj:m:n)]Rj ,

(1)

where K1 =
∏k
j=1

∑m
k=j(Rk + 1),K2 =

∏D
j=1

∑m
k=j(Rk + 1),K3 =

∏m
j=1

∑m
k=j(Rk + 1), R∗k =

n− k −
∑k−1

i=1 Ri and R∗D+1 = n−D −
∑D

i=1Ri.
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Figure 1: Schematic representation of the generalized progressive hybrid censoring scheme

3. The model description

The article considers point and interval estimation of Lindley distribution parameter under
SSPALTs with the GPH censoring scheme. Lindley distribution was first introduced by Lind-
ley (1958) to analyze lifetime data. Lindley distribution can be considered as mixture of
exponential and gamma distribution. It has the ability to model lifetime data with an in-
creasing, decreasing, unimodal, and bath tub shaped hazard rate. One may navigate through
Cakmakyapan and Ozel (2016) for detailed overview of the properties of Lindley distribution.
He has suggested that it often performs better than the traditional exponential distribution.
Taking cognisance of the facts discussed above, we are motivated to consider this model in
the present article.

Let the lifetime of each experimental item, i.e., X follows Lindley distribution with parameter
ε. The pdf of one parameter Lindley distribution is given by

f (x) =
ε2

(1 + ε)
(1 + x) e−εx;x > 0, ε > 0 (2)

and the corresponding distribution function is given by

F (x) =

[
1−

(
1 +

εx

1 + ε

)
e−εx

]
;x > 0, ε > 0 (3)

3.1. Assumptions

1. The lifetimes of the items follow Lindley distribution with parameter ε.
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2. The total lifetime X of an item is defined as

X =

{
T, 0 < T ≤ τ
τ + ζ−1(T − τ), t > τ

, (4)

where T is the lifetime of the items at normal stress, τ is the time at which the stress
is to be increased and ζ is the acceleration factor.

3. The lifetimes of the test items are independent and identically distributed random vari-
able.

4. Under the GPH censoring scheme, the test terminates atmax{Xk:m:n,min{Xm:m:n, T}}.

3.2. Experimental procedure

1. Initially n identical and independent items are put on test and subjected to normal
stress conditions.

2. The stress level is changed at prefixed time τ and observe the failure time of the items
until the termination time max{Xk:m:n,min{Xm:m:n, T}} is reached.

3. As soon as the experiment starts, the items start experiencing the risk of failing.
At the time of ith failure, Ri units are randomly removed, satisfying the condition∑m

i=1Ri + m = n. At the time of termination the remaining items are removed from
the experiment. Under the above mentioned GPH censoring scheme one of the following
samples will be observed:

(a) x1:m:n < x2:m:n < · · · < xnu:m:n ≤ τ < xnu+1:m:n < · · · < x1:m:n, if T < Xk:m:n.

(b) x1:m:n < x2:m:n < · · · < xnu:m:n ≤ τ < xnu+1:m:n < · · · < xD:m:n, if Xk:m:n < T <
Xm:m:n.

(c) x1:m:n < x2:m:n < · · · < xnu:m:n ≤ τ < xnu+1:m:n < · · · < xm:m:n, if Xk:m:n <
Xm:m:n < T .

The pdf of random variable X under step stress partially accelerated life test is given by

f(x) =


0, x ≤ 0

f1(x), 0 < x ≤ τ
f2(x), x > τ

, (5)

where f1(x), the PDF of X before acceleration time τ will be equivalent to f(x) given in 2
and f2(x), the PDF of x after acceleration time τ will be

f2(x) = ζ
ε2

(1 + ε)
[1 + (τ + ζ(x− τ))] e−ε(τ+ζ(x−τ));x > τ, ε > 0. (6)

Similarly, F 1(x), the CDF of X before acceleration time τ will be equivalent to F (x) given
in 3 and F 2(x), the CDF of X after acceleration time τ given in the following equation:

F 2(x) =

[
1−

(
1 +

ε(τ + ζ(x− τ))

1 + ε

)
e−ε(τ+ζ(x−τ))

]
;x > 0, ε > 0. (7)
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4. Estimation process

4.1. Point and interval estimation

The present section deals with point and interval estimation of the parameter of the considered
model based on the data obtained from the experiment explained above i.e. GPH censored
data under SSPALT. The likelihood function is given by

L(x
∼
, ε, ζ) ∝

nu∏
i=1

f1(xi)[1− F 1(xi)]
Ri

J∏
i=nu+1

f2(xi)[1− F 2(xi)]
RiW (ε, ζ) (8)

Where F 1(·) and F 2(·) are the CDFs before and after acceleration time τ and W (ε, ζ) is
defined as

W (ε, ζ) =

1, if J = k,m[{
1 + ε(τ+ζ(T−τ))

1+ε

}
e−ε(τ+ζ(T−τ))

]R∗D+1
, if J = D.

Substituting f1(xi), f
2(xi) and corresponding CDFs from equation(2), equation(3), equa-

tion(6) and equation(7) in equation(8) , we have

L(x
∼
, ε, ζ) ∝(ζ)J−nu

[
ε2

1 + ε

]J
e
−ε

nu∑
i=1

xi
nu∏
i=1

(1 + xi)

[(
1 +

εxi
1 + ε

)
e−εxi

]Ri
×

J∏
i=nu+1

[1 + (τ + ζ(xi − τ))] e−ε(τ+ζ(xi−τ))(1+Ri)

[
1 +

ε(τ + ζ(xi − τ))

1 + ε

]Ri
W (ε, ζ).

(9)

Thus, the corresponding log likelihood function is

lnL =(J − nu)ln(ζ) + Jln(
ε2

1 + ε
)− ε

nu∑
i=1

xi +

nu∑
i=1

ln(1 + xi)

+

nu∑
i=1

Riln

[(
1 +

εxi
1 + ε

)
e−εxi

]
+

J∑
i=nu+1

ln [1 + (τ + ζ(xi − τ))]

− ε
J∑

i=nu+1

(τ + ζ(xi − τ))(1 +Ri) +

J∑
i=nu+1

Riln

[
1 +

ε(τ + ζ(xi − τ))

1 + ε

]
+ lnW (ε, ζ).

(10)

The first order partial derivatives of the above equation with respect to ε and ζ are obtained
and equated to zero to get the likelihood equations which are given below:

∂lnL

∂ζ
=

(J − nu)

ζ
+

J∑
i=nu+1

(xi − τ)

[1 + (τ + ζ(xi − τ))]
− ε

J∑
i=nu+1

(xi − τ)(1 +Ri)

+

J∑
i=nu+1

Ri

(xi − τ)
ε

1 + ε[
1 + ε(τ+ζ(xi−τ))

1+ε

] +
∂lnW (ε, ζ)

∂ζ
= 0,

(11)

∂lnL

∂ε
=J

ε+ 2

ε(ε+ 1)
−

nu∑
i=1

xi +

nu∑
i=1

Ri

[
−ε+

xi
(1 + ε)(1 + ε(1 + xi))

]
nu∑
i=1

Ri


(τ + ζ(xi − τ))

(1 + ε)2

1 + (τ + ζ(xi − τ))
ε

1 + ε

+
∂lnW (ε, ζ)

∂ε
= 0.

(12)
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Since the analytical solution of these equations is not possible, it is suggested to find a
numerical solution. The exact expression for MLEs is not obtainable, the exact distribution
of MLEs is also not obtainable. In such a case the large sample theory is proved to be the
strategic imperative to obtain the confidence interval. Let I(ζ, ε) be the Fisher’s information
matrix denoted as

I(ζ, ε) =

 −E
(
∂2lnL

∂ζ2

)
−E

(
∂2lnL

∂ζ∂ε

)
−E

(
∂2lnL

∂ζ∂ε

)
−E

(
∂2lnL

∂ε2

)
 .

Then, I−1(ζ̂, ε̂) will be the estimated variance-covariance matrix and diagonal elements of
this matrix provide the estimated asymptotic variances for the acceleration factor ζ and the
parameter ε. The two sided 100(1 − κ)% asymptotic confidence intervals of ζ and ε can,

therefore, be defined as ζ̂ ± zκ/2
√
var(ζ̂) and ε̂± zκ/2

√
var(ε̂). Here, var(.) denotes the

asymptotic variance. We have used the optim(·) function available in R-software to find the
ML estimates.

5. Simulation studies

The present section elaborates the simulation study with the motto of checking the perfor-
mance of estimators in terms of their mean square errors(MSEs). Here, it may be noted that
the MSEs of the estimators will depend on the values of n, k, m and T , and hence, various
choices have been made to study the effect thereof. In addition to the above, the estimated
95% asymptotic confidence intervals of the model parameter and the accelerating factor are
also computed. We have considered the following four removal patterns in order to study the
effect of pattern of removal on the estimation of the parameter and the acceleration factor:

Sm:n
(1):All the removals are at the last observation, i.e., Rm = n - m.

Sm:n
(2):All the removals are done at the first failure, i.e., R1 = n - m.

Sm:n
(3):The removals are at first and the last observation, i.e., R1 = Rm = (n - m)/2.

Sm:n
(4):The removals are at middle observations, i.e., Rm/2 = Rm/2+1 = (n - m)/2.

Algorithm: Simulation of GPH censored data

1. Generate k independent standard uniform random variables U1, U2, · · · , Uk.

2. Compute Bi = U1/γi ; i = 1, · · · , k, where γi = n− i+ 1 +
∑m

j=iRj .

3. Start with V0 = 1 and compute Vi = BiVi−1 and Ur:m:n = 1− Vr ∀ r = 1, · · · , k.

4. If Uk:m:n > F (T ), then Goto Step-6, Else l = k + 1 and Goto Step-5.

5. While Vl−1 > 1− F (T ) and l ≤ m Do:

(a) Generate a uniform random variable U.

(b) Define Bl = U
1∑m

i=l
Ri+1 and Vl = Vl−1 ∗Bl.

(c) l=l+1.

6. X
(II)
j = F←(1− Vj); j = 1, · · · , l, and Stop.

Here F←(·) is the inverse cdf function defined as F←(p) = inf{x ∈ R : F (x) ≥ p}.
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6. Expected total time of the test

The expected total time of a test (ETTT) is defined as the expected time required to complete
the experiment. An experimenter may wish to explore the experimental time duration for
selecting an appropriate sampling plan. The cost and time duration to complete a test are
interrelated. A significant high ETTT ultimately results into a high cost of conducting an
experiment. So, it is quite economical and practical to have a glimpse of the time required to
complete the experiment for a particular life test plan. The ETTT for the considered scheme
is defined as

E(TTT ) =T × Pr[Xk:m:n < T < Xm:m:n] + E(Xm:m:n|Xm:m:n < T )

× Pr[Xm:m:n < T ] + E[Xk:m:n|T < Xk:m:n]Pr[T < Xk:m:n],
(13)

where,

Pr[Xk:m:n < T < Xm:m:n] =
m−1∑
j=k

Pr[Xj < T < Xj+1].

Following Eissa et al. (2014), the expression for P (Xj < T < Xj+1) can be obtained as:

Pr[Xj < T < Xj+1] =

∫ τ

−∞

(
1− F 1

xj+1
(TL|xj = x)

)
f1
xj (x)dx

+

∫ T

τ

(
1− F 2

xj+1
(TL|xj = x)

)
f2
xj (x)dx

=A©+ B© (say),

(14)

where F 1(.), f1(.) and F 2(.) f2(.) are the CDF and PDF before and after acceleration time
τ . By putting F 1(.), f1(.) and F 2(.) f2(.) from equation(2), equation(3), equation(6) and
equation(7) in the equation(14), A© can be easily expressed as

A© =cj−1

j∑
i=1

ai,j
ε2

1 + ε

(
(1 +

ετ

1 + ε
)e−ετ

)γj+1 γi−γj−2∑
i
′
=0

(
ε

1 + ε

)i′ (
γi − γj − 2

i′

)
( 1

ε(γi − γj − 1)

)i′+1

γ
(
i
′
+ 1, (ετ (γi − γj − 1))

)
+

(
1

ε(γi − γj − 1)

)i′+2

γ
(
i
′
+ 2, (ετ (γi − γj − 1))

)
(15)

where γ(·) is lower incomplete gamma integral defined as γ(s, x) =
∫ x

0 t
s−1e−tdt,γj = n− j+

1 +
∑m

i=j Ri; 1 ≤ j ≤ m, cj−1 =
∏j
i=1 γi; 1 ≤ j ≤ m and ai,j =

∏j
k 6=i=1

1

γk − γi
; 1 ≤ i ≤ j ≤ m.

Similarly, integral B© can be solved as follow:

B© =cj−1

j∑
i=1

ai,j
ε2

1 + ε

(
(1 +

ετ
′

1 + ε
)e−ετ

′
)γj+1 γi−γj−2∑

j′=0

(
γi − γj − 2

j′

)
(

ε

1 + ε

)j′
[

(
1

ε(γi − γj − 1)

)j′+1

[γ(j
′
+ 1, b

′
)− γ(j

′
+ 1, a

′
)]

+

(
1

ε(γi − γj − 1)

)j′+2

[γ(j
′
+ 2, b

′
)− γ(j

′
+ 2, a

′
)]],

(16)

where τ
′

= τ + ζ(T − τ) , b
′

= ετ
′
(γi−γj − 1) and a

′
= τε(γi−γj − 1). It is well known that

fxk
(x|Xk:m:n > T ) =

fXk
(x)

Pr[Xk:m:n > T ]
& fxm

(x|Xm:m:n < T ) =
fXm

(x)

Pr[Xm:m:n < T ]
. (17)
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Hence, conditional expectation of Xm will be

E(Xm|Xm:m:n < T ) =

∫ T

0
x

fXm(x)

Pr[Xm:m:n < T ]
dx

=

∫ τ
0 xf

1
Xm

(x)dx+
∫ T
τ xf2

Xm
(x)dx

Pr[Xm:m:n < T ]

=
X©+ Y©

Pr[Xm:m:n < T ]
(say).

(18)

Now, after solving the respective integrals, expressions for X© and Y© are given below:

X© =εcm−1

m∑
i=1

ai,m

γi−1∑
k′=0

(
ε

1 + ε
)k

′
+1

(
γi − 1

k′

)[
1

(εγi)k
′+2

γ(k
′
+ 2, εγiτ) +

1

(εγi)k
′+3

γ(k
′
+ 3, εγiτ)

]
,

Y© =εcm−1

m∑
i=1

ai,m(
ε

1 + ε
)l

′
+1

γi−1∑
l′=0

(
γi − 1

l′

)
[p

1

(εγi)l
′+1

(γ(l
′
+ 1, a

′′
)− γ(l

′
+ 1, b

′′
))

+(ζ−1 + p)
1

(εγi)l
′+2

(γ(l
′
+ 2, a

′′
)− γ(l

′
+ 2, b

′′
)) + ζ−1 1

(εγi)l
′+3

(γ(l
′
+ 3, a

′′
)− γ(l

′
+ 3, b

′′
))],

where p = (τ − ζ−1τ), a
′′

= ετ
′
γi and b

′′
= ετγi. In the similar way, using equation(17)

conditional expectation of Xk can be written as

E(Xk|Xk:m:n > T ) =

∫ ∞
T

xfxk(x|Xk:m:n > T )dx

=

∫ ∞
T

x
fXk(x)dx

Pr[Xk:m:n > T ]
=

∫ ∞
T

xf2
Xk

(x)dx

Pr[Xk:m:n > T ]

=
Z©

Pr[Xk:m:n > T ]
.

(19)

After simplification Z© can be written as

Z© =εck−1

k∑
i=1

ai,k

γi−1∑
m′=0

(
γi − 1

m′

)
(

ε

1 + ε
)m
′
+1[R

′
ζ−1 1

(εγi)m
′+1

Γ(m
′
+ 1, εrγi)

+(ζ−1 +R
′
)

1

(εγi)m
′+2

Γ(m
′
+ 2, εrγi) + ζ−1 1

(εγi)m
′+3

Γ(m
′
+ 3, εrγi)],

(20)

where R = (τ − ζ−1τ) and r = τ + ζ(T − τ). Finally, we obtain the expression for ETTT



114 Statistical Analysis for GPH Censored Data under SSPALT Model

given below:

ETTT =T

m−1∑
j=k

cj−1

j∑
i=1

ai,j
ε2

1 + ε

((
1 +

ετ

1 + ε

)
e−ετ

)γj+1 γi−γj−2∑
i
′
=0

(
ε

1 + ε

)i′ (γi − γj − 2

i′

)
( 1

ε (γi − γj − 1)

)i′+1

γ
(
i
′

+ 1, (ετ (γi − γj − 1))
)

+

(
1

ε (γi − γj − 1)

)i′+2

γ
(
i
′

+ 2, (ετ (γi − γj − 1))
)

+cj−1

j∑
i=1

ai,j
ε2

1 + ε

((
1 +

ετ
′

1 + ε

)
e−ετ

′
)γj+1 γi−γj−2∑

j
′
=0

(
γi − γj − 2

j′

)(
ε

1 + ε

)j′
( 1

ε (γi − γj − 1)

)j′+1 [
γ
(
j
′

+ 1, b
′)
− γ

(
j
′

+ 1, a
′)]

+

(
1

ε (γi − γj − 1)

)j′+2 [
γ
(
j
′
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′)
− γ

(
j
′
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′)]

+εcm−1

m∑
i=1

ai,m

γi−1∑
k
′
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(
ε

1 + ε
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1

(εγi)
k
′
+2
γ
(
k
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)
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1

(εγi)
k
′
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γ
(
k
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ε
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′
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γ
(
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(
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′
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(
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)(
ε

1 + ε
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′
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(
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(21)

7. Data analysis and discussions

The elementary purpose of performing the simulation study lies in the fact that it generates
repeated samples. If we compare real data study with simulation study, we will see that
the real data study gives result depending on single data set while in the simulation study
the results are quoted based on repeated data set. It is often unrealistic to give a general
conclusion based on single data set. It motivates us to perform simulation study.

A simulation study is conducted to monitor the performance of the estimators based on the
MSEs under the considered censoring scheme. The exact expression for the MSEs cannot
be obtained as the estimators are not found in closed form. Therefore, the MSEs of the
estimators are estimated based on a simulation study of 5,000 samples in order to get the
stabilized results. The results obtained from the simulation study are summarized in tables
1-3.

Here, It may be commemorated that the MSEs of the estimators will depend on the choice
of ε, ζ, n, m, k, and T and hence different choices have been framed for studying the effect
thereof. To monitor the effect of one factor on the MSEs, the other factors are kept constant.

Table 1 shows the ML estimates, the MSEs and the estimated 95 % asymptotic confidence
intervals of the estimators of ε and ζ for accelerated GPH censored data under different
removal patterns considering various choices of m, k and T for fixed values of ε=0.5 and ζ=1.
It may be observed from table 1 that the MSEs of the parameter(ε) are lesser for the removal
pattern Sm:n

(1) compared to Sm:n
(2) and the MSEs under Sm:n

(4) are observed to be less than
that for Sm:n

(3). Furthermore, the MSEs of the acceleration factor(ζ) are lesser under the
removal pattern Sm:n

(2) compared to Sm:n
(1) and the MSEs under Sm:n

(4) are observed to be
less than that for Sm:n

(3). We note that as the value of k increases, the MSEs of both ε and ζ
decrease most of the times. Furthermore, as T decreases, the MSEs of ε and ζ increase under
the removal pattern Sm:n

(1). But for the rest of removal patterns no fixed pattern is observed.
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Table 1: ML estimates, MSEs and the estimated 95 % asymptotic confidence intervals of the
estimators of ε and ζ for accelerated GPH censored data under different removal patterns
considering various choices of k and T for fixed values of n = 100, m = 80, ε=0.5 and ζ=1

k T R ε̂ML MSE(ε̂ML) ε̂L ε̂U ζ̂ML MSE(ζ̂ML) ζ̂L ζ̂U

20

20

Sm:n
(1) 0.5003 0.0018 0.4520 0.6433 1.1494 0.0429 0.7980 1.7153

Sm:n
(2) 0.5017 0.0024 0.3969 0.6105 1.1354 0.0381 0.4259 1.2771

Sm:n
(3) 0.5013 0.0021 0.4717 0.6733 1.1235 0.0385 0.9071 1.7709

Sm:n
(4) 0.5011 0.0018 0.3697 0.5653 1.1224 0.0364 0.8026 1.6602

16

Sm:n
(1) 0.5002 0.0020 0.4919 0.6830 1.1387 0.0431 0.3575 1.2669

Sm:n
(2) 0.5015 0.0027 0.4152 0.6286 1.1239 0.0373 0.5629 1.4060

Sm:n
(3) 0.5010 0.0021 0.3351 0.5365 1.1418 0.0422 0.8924 1.7702

Sm:n
(4) 0.5032 0.0020 0.4506 0.6471 1.1292 0.0411 1.0432 1.9071

40

20

Sm:n
(1) 0.4998 0.0012 0.3914 0.5826 1.1333 0.0396 0.9422 1.8470

Sm:n
(2) 0.5006 0.0023 0.4163 0.6295 1.1320 0.0362 0.8848 1.7333

Sm:n
(3) 0.5010 0.0019 0.4192 0.6206 1.1280 0.0379 0.4415 1.3092

Sm:n
(4) 0.5001 0.0018 0.3411 0.5366 1.1365 0.0319 0.6864 1.5537

16

Sm:n
(1) 0.5020 0.0017 0.4323 0.6239 1.1281 0.0402 1.0062 1.9086

Sm:n
(2) 0.4994 0.0026 0.3295 0.5424 1.1362 0.0373 0.8849 1.7374

Sm:n
(3) 0.4996 0.0021 0.4281 0.6292 1.1336 0.0381 0.7556 1.6269

Sm:n
(4) 0.5016 0.0020 0.4530 0.6488 1.1355 0.0308 0.5996 1.4690

In table 2, the ETTT is computed for various choices of ε and T under unaccelerated conditions
considering removal pattern as Sm:n

(4). It can be noted from the table that for fixed n=100,
k=20, m=80 and T, as we increase the value of ε, the ETTT decreases.

Table 2: The expected total time of the test for un-accelerated data

HHH
HHHT
ε

0.25 0.50 0.75 1.00 1.25

20 19.8415 12.8564 8.3706 6.1572 4.8692
10 10.0000 9.8885 8.1156 6.1777 4.8634

In table 3, keeping the censoring scheme fixed(n=100,k=20,m=80), the ETTT is computed
for accelerated GPH censored data under removal pattern Sm:n

(4) considering various choices
of ζ(=1,1.5,2,2.5,3), ε(=0.25,0.5,0.75,1,1.25), T(=10,20), and τ(=0.5,2.5). It can be noted
from the Table 3 that for fixed ε, τ , and T as ζ increases, the ETTT decreases and for fixed ζ,
τ and T as ε increases, the ETTT decreases. Furthermore, for fixed ε, ζ, and T as τ decreases,
the ETTT also decreases. Unfortunately, no fixed pattern has been observed for studying the
effect of T on ETTT under both accelerated as well as unaccelerated conditions.

To compare ETTT under accelerated and unaccelerated conditions, from the table 2 and 3,
it can easily be figured out that the ETTT under unaccelerated conditions is slightly higher
as compared to the ETTT under accelerated conditions for fixed T and ε for all choices of ζ
and τ .

The diagrammatic representation for the ETTT under accelerated conditions is given in Fig-
ure 2. From Figure 2, the effect of ε and ζ on the ETTT can be seen and it may be noted
that as ε increases, the ETTT decreases but the rate of decrease decreases for large values of
T. Similarly, as ζ increases, the ETTT decreases but the rate of decrease decreases for small
values of τ .

Furthermore, we considered one real-life data. The data set consists of remission times (in
months) of a random sample of 128 bladder cancer patients from Lee and Wang (2003). It
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Table 3: The expected total time of the test for accelerated data

HH
HHHHζ

ε
0.25 0.50 0.75 1.00 1.25

T=20,τ=2.5
1.0 19.8373 12.7963 8.3082 6.1467 4.9202
1.5 18.6348 11.5810 7.9572 5.9823 4.8263
2.0 17.5990 11.2243 7.8838 5.9575 4.7815
2.5 17.1787 11.0809 7.8155 5.9544 4.7235
3.0 16.9771 11.0716 7.8038 5.9287 4.7050

T=10,τ=2.5
1.0 10.0000 9.8833 8.1526 6.1751 4.8592
1.5 10.0000 9.6265 7.7598 5.9931 4.8083
2.0 9.9994 9.4797 7.6775 5.9599 4.7745
2.5 9.9961 9.4459 7.6166 5.9385 4.7117
3.0 9.9887 9.4310 7.6065 5.9246 4.7092

T=20,τ=0.5
1.0 19.8178 12.7749 8.2186 6.1298 4.8035
1.5 17.3299 9.3833 6.4501 4.9952 4.0784
2.0 14.3887 8.1594 5.9309 4.6725 3.8631
2.5 12.5863 7.6966 5.7103 4.5641 3.8244
3.0 11.3158 7.3998 5.6159 4.5170 3.8016

T=10,τ=0.5
1.0 9.9980 9.8770 8.1436 6.1658 4.8319
1.5 9.9969 8.7770 6.4337 4.9835 4.0450
2.0 9.9652 7.7962 5.8787 4.7002 3.8735
2.5 9.7350 7.3056 5.6592 4.5425 3.8208
3.0 9.2531 6.9746 5.5912 4.5337 3.7986

has been observed that Lindley distribution can be used to analyze this data set. The fitting
summary along with the ML estimate of the model parameter ε and its standard error denoted
as ε̂ML and SE(ε̂ML), is given below :

p-value K-S distance loglikelihood AIC BIC
0.0.0832 0.1114 -416.8962 835.7925 838.6445

ε̂ML SE(ε̂ML)
0.1992 0.0125

The above chart indicates that Lindley distribution fits to the above data set. For the illus-
tration of our methodology, we have created four artificially accelerated censored data sets
from the above uncensored real data set by fixing values of k, T , m, τ , and four different
removal patterns. Hence, we set the values of k=40, T=12.63, m=78, ζ=1.1, and τ=2.69
to get the accelerated censored data. The accelerated censored data along with respective
censored data are given in Table 4. In Table 5, we have computed the ML estimates, the
estimated 95% asymptotic variances and asymptotic confidence limits for the GPH censored
data under SSPALT by considering different removal patterns as mentioned in section 5 for
fixed values of k, T , m, and τ . It can easily be seen from Table 5 that the estimates of ε for
accelerated censored data are close to that for complete data when censoring proportion is
small but they can be quite different if the censoring proportion is large.
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Table 4: Set of four artificially created censored and accelerated censored data from real
data set for fixed values of k=40, T=12.63, m=78, ζ=1.1, τ=2.69 and four different removal
patterns

R Censored data Accelerated censored data

Sm:n
(1) 0.08, 0.2, 0.4, 0.5, 0.51, 0.81, 0.9, 1.05, 1.19, 1.26,

1.35, 1.4, 1.46, 1.76, 2.02, 2.02, 2.07, 2.09, 2.23, 2.26,
2.46, 2.54, 2.62, 2.64, 2.69, 2.69, 2.75, 2.83, 2.87, 3.02,
3.25, 3.31, 3.36, 3.36, 3.48, 3.52, 3.57, 3.64, 3.7, 3.82,
3.88, 4.18, 4.23, 4.26, 4.33, 4.34, 4.4, 4.5, 4.51, 4.87,
4.98, 5.06, 5.09, 5.17, 5.32, 5.32, 5.34, 5.41, 5.41, 5.49,
5.62, 5.71, 5.85, 6.25, 6.31, 6.54, 6.76, 6.93, 6.94, 6.97,
7.09, 7.26, 7.28, 7.32, 7.39, 7.59, 7.62, 7.63

0.08, 0.2, 0.4, 0.5, 0.51, 0.81, 0.9, 1.05, 1.19, 1.26, 1.35, 1.40, 1.46,
1.76, 2.02, 2.02, 2.07, 2.09, 2.23, 2.26, 2.46, 2.54, 2.62, 2.64, 2.69,
2.69, 2.74, 2.82, 2.85, 2.99, 3.20, 3.25, 3.30, 3.3, 3.41, 3.44, 3.49,
3.55, 3.61, 3.72, 3.77, 4.04, 4.09, 4.12, 4.18, 4.19, 4.24, 4.34, 4.34,
4.67, 4.77, 4.84, 4.87, 4.94, 5.08, 5.08, 5.10, 5.16, 5.16, 5.24, 5.35,
5.44, 5.56, 5.93, 5.98, 6.19, 6.39, 6.54, 6.55, 6.58, 6.69, 6.84, 6.86,
6.9, 6.96, 7.14, 7.17, 7.18

Sm:n
(2) 0.08, 0.4, 0.5, 0.9, 1.4, 1.46, 1.76, 2.02, 2.02, 2.23,

2.26, 2.46, 2.62, 2.69, 2.69, 2.75, 3.02, 3.25, 3.31, 3.48,
3.52, 3.64, 3.82, 3.88, 4.23, 4.34, 4.4, 4.51, 4.87, 5.06,
5.17, 5.32, 5.34, 5.41, 5.41, 5.62, 5.85, 6.25, 6.54, 6.76,
6.93, 6.94, 7.26, 7.32, 7.39, 7.59, 7.63, 7.66, 7.87, 7.93,
8.26, 8.37, 8.53, 8.66, 9.74, 10.06, 10.34, 10.66, 10.75,
11.64, 11.79, 12.07

0.08, 0.4, 0.5, 0.9, 1.4, 1.46, 1.76, 2.02, 2.02, 2.23, 2.26, 2.46, 2.62,
2.69, 2.69, 2.74, 2.99, 3.2, 3.25, 3.41, 3.44, 3.55, 3.72, 3.77, 4.09,
4.19, 4.24, 4.34, 4.67, 4.84, 4.94, 5.08, 5.1, 5.16, 5.16, 5.35, 5.56,
5.93, 6.19, 6.39, 6.54, 6.55, 6.84, 6.9, 6.96, 7.14, 7.18, 7.21, 7.4,
7.45, 7.75, 7.85, 8, 8.12,9.1,9.39, 9.64, 9.94, 10.02, 10.83, 10.96, 11.22

Sm:n
(3) 0.08, 0.4, 0.5, 0.51, 0.81, 0.9, 1.05, 1.26, 1.35, 1.4,

1.76, 2.02, 2.02, 2.07, 2.09, 2.26, 2.46, 2.54, 2.62, 2.64,
2.69, 2.75, 2.83, 2.87, 3.02, 3.25, 3.36, 3.36, 3.52, 3.57,
3.7, 3.82, 3.88, 4.18, 4.23, 4.26, 4.33, 4.34, 4.5, 4.51,
4.87, 4.98, 5.09, 5.17, 5.32, 5.34, 5.41, 5.41, 5.49, 5.62,
5.71, 6.25, 6.31, 6.54, 6.76, 6.93, 6.97, 7.09, 7.26, 7.28,
7.32, 7.39, 7.59, 7.62, 7.63, 7.66, 7.93, 8.26, 8.37, 8.53,
9.02, 9.47, 9.74, 10.06, 10.66, 10.75, 11.25, 11.64

0.08, 0.4, 0.5, 0.51, 0.81, 0.9, 1.05, 1.26, 1.35, 1.4, 1.76, 2.02, 2.02,
2.07, 2.09, 2.26, 2.46, 2.54, 2.62, 2.64, 2.69, 2.74, 2.82, 2.85, 2.99,
3.2, 3.3, 3.3, 3.44, 3.49, 3.61, 3.72, 3.77, 4.04, 4.09, 4.12, 4.18, 4.19,
4.34, 4.34, 4.67, 4.77, 4.87, 4.94, 5.08, 5.1, 5.16, 5.16, 5.24, 5.35,
5.44, 5.93, 5.98, 6.19, 6.39, 6.54, 6.58, 6.69, 6.84, 6.86, 6.9, 6.96,
7.14, 7.17, 7.18, 7.21, 7.45, 7.75, 7.85, 8, 8.44, 8.85, 9.1, 9.39, 9.94,
10.02, 10.47, 10.83

Sm:n
(4) 0.08, 0.2, 0.4, 0.5, 0.51, 0.81, 0.9, 1.05, 1.19, 1.26,

1.35, 1.4, 1.46, 1.76, 2.02, 2.02, 2.07, 2.09, 2.23, 2.26,
2.46, 2.54, 2.62, 2.64, 2.69, 2.69, 2.75, 2.83, 2.87, 3.02,
3.25, 3.31, 3.36, 3.36, 3.48, 3.52, 3.57, 3.64, 3.7, 3.82,
4.18, 4.4, 4.87, 5.06, 5.32, 5.34, 5.62, 5.71, 5.85, 6.76,
6.97, 7.09, 7.26, 7.32, 7.39, 7.59, 7.63, 8.53, 8.66, 9.47,
9.74, 10.06, 10.75, 11.25, 11.64, 11.79, 12.02, 12.03,
12.07

0.08, 0.2, 0.4, 0.5, 0.51, 0.81, 0.9, 1.05, 1.19, 1.26, 1.35, 1.4, 1.46,
1.76, 2.02, 2.02, 2.07, 2.09, 2.23, 2.26, 2.46, 2.54, 2.62, 2.64, 2.69,
2.69, 2.74, 2.82, 2.85, 2.99, 3.2, 3.25, 3.3, 3.3, 3.41, 3.44, 3.49, 3.55,
3.61, 3.72, 4.04, 4.24, 4.67, 4.84, 5.08, 5.1, 5.35, 5.44, 5.56, 6.39,
6.58, 6.69, 6.84, 6.9, 6.96, 7.14, 7.18, 8, 8.12, 8.85, 9.1, 9.39, 10.02,
10.47, 10.83, 10.96, 11.17, 11.18, 11.22

Table 5: ML estimates, Asymptotic variances and the estimated 95 % asymptotic confidence
limits for parameters ε and ζ for the GPH censored data under SSPALT by considering
different removal patterns for fixed values of k=40, T=12.63, m = 78, ζ=1.1 and τ=2.69

R ε̂ML var( ˆεML) ε̂L ε̂U ζ̂ML var(ζ̂ML) ζ̂L ζ̂U
Sm:n

(1) 0.2365 0.0008 0.1810 0.2921 1.1284 0.0468 0.7042 1.5526

Sm:n
(2) 0.2286 0.0012 0.1597 0.2976 1.0258 0.0519 0.5794 1.4722

Sm:n
(3) 0.2406 0.0010 0.1791 0.3021 1.0085 0.0383 0.6249 1.3921

Sm:n
(4) 0.2390 0.0008 0.1835 0.2944 1.0408 0.0415 0.6418 1.4399
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Figure 2: The ETTT for various choices of ε, ζ, T and τ

8. Conclusion

The article highlights a sampling procedure for a life testing experiment called step stress
partially accelerated life test with the GPH censoring scheme. A few prongs of the results
have been presented as:

1. The ETTT under this sampling procedure has been investigated. It has been observed
that ζ and τ are scandalously controlling the duration of the test. For large values of ζ,
the ETTT is noted to be smaller however, as τ increases the ETTT increases, keeping
other factors fixed. Thus, a reduction in the ETTT is expected for large values of ζ and
small values of τ .

2. It has also been observed that the removal patterns have different effect on the estimate
of the parameter and the acceleration factor as illustrated above. For the estimation of
parameter of the distribution, one can use removal pattern Sm:n

(1) in place of Sm:n
(2)

and Sm:n
(4) in place of Sm:n

(3). On the other hand, if one is interested in estimation of
the acceleration factor, one can prefer removal pattern Sm:n

2) to Sm:n
(1) and Sm:n

(4) to
Sm:n

(3). Since, for the large values of k, the MSEs of estimators of ε and ζ decrease.
Therefore, it is suggested to keep the value of k high. Similarly, we suggest to keep the
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value of T small.

3. It can also be seen that the ETTT under un-accelerated conditions is slightly higher as
comparison to the ETTT under accelerated conditions for fixed T and ε for all choices
of ζ and τ . Therefore, we may conclude that acceleration is beneficial for the test.

The accelerated life test is often a default choice in a situation where the reliability of the
products is relatively high. Therefore, such problems can be speedily settled with the help of
an accelerated life test model. The present work is done where the acceleration of the lifetime
data is done at a single step. But the work can be extended by accelerating the lifetime
at multiple steps. It would be of a great interest to find the optimum inspection times of
SSPALT with the GPH censored data. Moreover, the Bayesian counterpart of the current
work can also be attempted and the results can be compared with the classical one. The
paper can also be extended by applying SSPALTs to other censoring schemes also, such as
interval censoring scheme.
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