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Abstract

The generalized Inverted Exponential distribution is considered for the study on Opti-
mum Step Stress Partially Accelerated Life Test (SS-PALT) based on different censoring
patterns. The first-failure progressive censoring (FFPC) scheme and their special cases
are used in the present study. A two-sample Bayes Prediction Bound Length (TS-BPBL)
under SS-PALT on FFPC have been obtained and studied their properties by using dif-
ferent special cases of FFPC. Based on simulated and real data set, the properties of the
ML estimates and the approximate confidence length under the normal approximation,
also have been studied.

Keywords: approximate confidence length (ACL), first-failure progressive censoring (FFPC)
scheme, generalized inverted exponential distribution, step stress partially accelerated life test
(SS-PALT), two-sample Bayes prediction bound length (TS-BPBL)..

1. Introduction

The Exponential distribution is one of the widely used models in the life-testing experiment
because of its simple mathematical practices and interesting properties. An inverted Expo-
nential distribution was discussed by Lin, Duran, and Lewis (1989) by making a valuable
changes in the Exponential distributionand and studied the ML estimation, confidence limits,
UMVUE and the reliability function based on complete sample case. The generalization of
the Exponential distribution was first discussed by Gupta and Kundu (1999) by introducing a
shape parameter and named as the generalized Exponential distribution. Dey (2007) studied
the inverted Exponential distribution under the Bayesian viewpoint by using different loss
functions.

A little work has been done on the generalized Inverted Exponential distribution. Abouam-
moh and Alshingiti (2009) introduced the generalized inverted Exponential distribution by
appending a shape parameter to the inverted Exponential distribution. They observed that,
this distribution originated from the exponentiated Frechet distribution (Nadarajah and Kotz
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(2003)). Due to its convenient structure of the distribution function, the generalized inverted
Exponential distribution may be used in horse racing, queue theory, modeling wind speeds
and much more. Prakash (2009) discussed some estimation of the parameters based on lower
record values of the inverted exponential distribution.

Based on the hybrid censoring Dey and Pradhan (2014) have derived the maximum like-
lihood and Bayes estimates of the unknown parameters. Singh, Singh, and Kumar (2014) was
discussed some Bayes estimation by using two different loss functions for generalized Inverted
Exponential distribution. Various methods of estimation for unknown parameters of the con-
cern distribution from a frequentist as well as Bayesian perspective was discussed by Ahmed
(2017) recently.

The probability density and the cumulative distribution function of the generalized inverted
Exponential distribution are given as

f (x;σ, θ) =
σθ

x2
exp

(
− θ
x

)(
1− exp

(
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x

))σ−1

; σ > 0, θ > 0, x > 0 (1)
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F (x;σ, θ) = 1−
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))σ
; σ > 0, θ > 0, x > 0. (2)

Here, the parameter σ and θ are known as the shape and scale parameter respectively. The
reliability function and the Hazard function of the distribution given in Eq. (1) are obtained
as
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The main aim of the present study, is to get the two-sample Bayes Prediction Bound Length
(TS-BPBL) for the generalized Inverted Exponential distribution. The optimum Step-Stress
Partially Accelerated Life Test (SS-PALT) situation has been used under different special cases
of FFPC. A comparison between TS-BPBL with an approximate confidence length, which is
obtained by the method of maximum likelihood estimation with normal approximation have
also discussed. The numerical illustration has presented on both the simulated and real data
set.

2. SS-PALT under FFPC

In life testing product experiments, it is much difficult to gather lifetimes of extremely reliable
products, having a very long lifespan. Because, under the normal operating conditions, a very
few or even no failures may occur within a limited testing time interval. The accelerated life
test or the partially accelerated life test criterion is very useful test criterion in such cases
and, are provided significant reduction in the time and cost of the experiment.

In accelerated life test (ALT) criterion, all the test units are kept under a higher stress levels,
but in partially accelerated life test (PALT) criterion, only a few test units from all the test
units are kept under severe stress condition. See Abdel-Hamid and AL-Hussaini (2008) and
Abdel-Hamid (2009) for the details regarding the ALT and PALT criterion. There are two
different methods of stress loading in PALT, named as constant-stress and step-stress. The
step-stress PALT is considered in the present study, and it permits the test, to be changed
from the normal stress condition to the accelerated stress condition at a pre-assumed time.



Austrian Journal of Statistics 3

Srivastava and Mittal (2010) have obtained the optimum step-stress partially accelerated
life tests for the truncated logistic distribution under the censored data. Tangi, Guani, Xu,
and Xu (2012) presents an optimum design for step-stress accelerated life tests based on
Type-I censored data followed the two-parameter Weibull distribution. Recently, Prakash
(2017 a) discussed about some bound lengths based on One-Sample Plan for Burr Type-XII
distribution under the step-stress partially accelerated life tests.

Kamal, Zarrin, and Islam (2013) discussed some properties for the inverted Weibull dis-
tribution with application of constant-stress partially accelerated life test with Type-I cen-
sored data. Hyun and Lee (2015) presents some discussion on Bayes estimation followed the
constant-stress partially accelerated life test for the log-Logistic distribution with censored
data.

In SS-PALT, all n (say) test units are first run at the normal stress condition up to stress
change time (say ε), and if it does not fail, then the test is changed to the accelerated stress
condition and retained the test until all the units fail. If β is considered as the acceleration
factor, then the tampered random variable model under SS-PALT for the lifetime of a unit
(Y say) is defined as

X =


Y ; 0 < Y ≤ ε

ε+ Y−ε
β ; Y > ε;

. (5)

In the first-failure life test, researcher splits the test units into a number of groups and each
groups are assembly of test units. Run all the units simultaneously by first-failure occurred
in each group. Wu and Kus (2009) joined this with the Progressive censoring and named as
first-failure progressive censoring (FFPC). The FFP censoring scheme has advantages in term
of reducing test time, in which more items are used but only a few items are failed. Let us
assume (n×k) live test units, in which k independent groups having n units within each groups
are putting on a life test. Suppose that, XR

1 < XR
2 < ... < XR

m are the progressively first -
failure censored order statistic of size m, with R = (R1, R2, ..., Rm) pre assumed progressive
censoring scheme. Following ) (2017 (b), the joint probability density function under FFP
censoring is defined as

L ∝
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i=1

f
(
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))k(Ri+1)−1
. (6)

For k = 1, the Eq. (6) reflects the joint probability density function under the Progressive
Type - II censoring. The FFP censoring scheme is combined here with SS - PALT, therefore,
the Eq. (6) is re - written as

L ∝
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Where,

f
(
xRi ;σ, θ

)
=


f1 (x) = σθ

x2
exp

(
− θ
x

) (
1− exp

(
− θ
x

))σ−1

f2 (x) = σθβ

X̃2
exp

(
− θ
X̃

)(
1− exp

(
− θ
X̃

))σ−1
; X̃ = ε+ β(x− ε)

(8)

Using Eq. (8) in Eq. (7), the required joint density function based on FFPC on SS - PALT
is given as
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3. Maximum likelihood interval estimation

We derive the maximum likelihood estimates using the expectation maximization algorithm
and compute the observed information of the parameters that can be used for constructing
asymptotic confidence intervals in the present section. The logarithm of Eq. (9) is obtained
as

logL = m log σ +m log θ + (m−m1) log β + log T0 (x, β)

−θ (T1 (x) + T2 (x, β)) + T3 (x) + T4 (x, β) . (10)

Differentiating Eq. (10) with respect to the parameter θ and the acceleration factor β respec-
tively, we get
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The second derivatives corresponding to the parameters θ and β are obtained respectively as
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and
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Asymptotic co-variances and variances of the parameters under ML estimation are obtained
from the inverse of the Fisher information matrix. The exact mathematical expressions are
not possible to get, however, a numerical method have applied here for the numerical findings.
The inverse of the Fisher information matrix is defined as

I =

 − ∂2

∂θ2
logL − ∂2

∂θ∂β logL

− ∂2

∂β∂θ logL − ∂2
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
−1

(θ̂ML,β̂ML)

(13)

The second order derivatives involved the unknown parameters, so the Fisher information
matrix can be obtained by replacing its ML estimators. A (1− τ) 100% improved approximate
confidence limits for the parameters θ and β are obtained by following Meeker and Escobar
(1998), and given respectively as

θ̂ML exp

∓Zτ/2
√
V AR

(
θ̂ML

)
θ̂ML


 (14)

and β̂ML exp

∓Zτ/2
√
V AR

(
β̂ML

)
β̂ML


 . (15)

Here, Zτ/2 is the percentile of the standard normal distribution with right - tail probability

τ/2. Here, the variances of the maximum likelihood estimators θ̂ML and β̂ML are the principal
diagonal elements of the matrix I respectively. The ML estimators and approximate confi-
dence limits cannot be solved analytically; a numerical method applied here to solve these
equations.

4. Two-sample Bayes prediction bound length

In this section we consider Bayesian inference to get the Bayes Prediction Bound Length under
Two-Sample approach (TS-BPBL). The two-sample approach predict the jth order statistic
from future sample, based on an informative sample (See Prakash (2015) for more details).

It may be noted that, if both parameters σ and θ are unknown, no joint conjugate prior
exists. In such a situation, there are some ways to choose the piece-wise independent priors.
In present discussion, gamma prior have been selected for these parameters and given as

πθ ∝ θα−1 e−θ ; α > 0 (16)

and

πσ ∝ σγ−1 e−σ ; γ > 0. (17)
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A vague prior is assumed here for the acceleration factor β, so that the prior do not play
any significant roles in the analyses. The vague prior for the parameter β and the joint prior
distribution both are given respectively as

πβ = β−1 ; β > 0 (18)

and

π(θ,σ,β) ∝
θα−1σγ−1

β
e−θ−σ. (19)

Thus, the marginal posterior densities corresponding to the parameters θ, σ and β are obtained
and given respectively as

π∗θ = Ω
θm+α−1

eθ(T1(x)+1)

∫
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∫
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and
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∫
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where Ω =
{∫

θ θ
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∫
σ
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∫
β β
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eθT2(x,β)−T4(x,β)
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}−1
.

The Bayes predictive density hΘ (y|x) ; Θ (= θ, σ, β) , for future observation Y is defined
and obtained as

hΘ (y|x) ∝
∫

Θ
f (y;σ, θ)× π∗Θ dΘ ; Θ = θ, σ, β (23)

Using the Bayes predictive density hΘ (y|x) ; Θ (= θ, σ, β) , for the future observation Y, the
cumulative density function is obtained as

GΘ (y|x) = Pr (Y ≤ y) =

∫ y

0
hΘ (y|x) dy

⇒ GΘ (y|x) ∝
∫

Θ

{
1−

(
1− e−

θ
y

)σ}
× π∗Θ dΘ ; Θ = θ, σ, β. (24)

If Yj denotes the jth order statistic in future sample m (1 ≤ j ≤ m) , then the probability
density function is defined for the jth order statistic as

φΘ (Yj) = j (mCj) (GΘ (y|x))j−1 (1−GΘ (y|x))m−j hΘ (y|x) ; Θ = θ, σ, β. (25)

The lower and upper Bayes prediction bound limits corresponding to the parameter Θ (= θ, σ, β)
for the jth item are obtained by solving following equalities

j (mCj)

∫ l1

0
Zj−1 (1− Z)m−j dZ =

τ

2
(26)

and

j (mCj)

∫ l2

0
Zj−1 (1− Z)m−j dZ = 1− τ

2
, (27)

where li =
∫

Θ

{
1−

(
1− e−

θ
lij

)σ}
× π∗Θ dΘ ; Θ = θ, σ, β and i = 1, 2.

The Eq. (26) & Eq. (27), will be solved under the given limits for the smallest future
observation (j = 1) and for the largest future observation (j = m). The explicit expressions
of TS-BPBL does not exists corresponding to the parameters θ, σ and β. If l21 and l11 are
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the upper and lower limits for the smallest future observations, then the TS-BPBL for the
smallest future observation is obtained from

IS = l21 − l11. (28)

Similarly, if l2m and l1m are the upper and lower limits for the largest future observation,
then the TS-BPBL for the largest future observation (e.g.,j = m) is obtained from

IL = l2m − l1m. (29)

5. Numerical analysis on simulated data

A simulation study has been performed in the present section for the analysis of the proposed
methods. The Monte Carlo simulation technique was used for generating 10,000 FFP cen-
sored samples for each simulation by using algorithms described by Balakrishnan and Sandhu
(1995).

The samples were simulated for n = 30,m = 10, 15 with hyper-parametric values α =
γ (= 0.25, 0.75, 1.25, 2.00, 5.00) and different values of k given in Table 1. All the special
cases of FFPC have considered in this section for the analysis.

Table 1: Special cases of FFP censoring scheme

Case k m Ri; 1, 2, ...m, Different Censoring Plans
1 5 10 1 2 0 2 1 1 0 0 5 0 First-Failure Progressive Type-II Censoring (FFPC)
2 1 10 1 2 0 2 1 1 0 0 5 0 Progressive Type-II Censoring (PC)
3 5 10 0 0 0 0 0 0 0 0 0 0 First-Failure Censoring (FFC)
4 1 10 0 0 0 0 0 0 0 0 0 20 Type-II Censoring (T-II)
5 1 10 0 0 0 0 0 0 0 0 0 0 Complete Sample (CS)
1 5 15 1 2 0 2 1 1 0 0 5 3 0 1 4 2 1 First-Failure Progressive Type-II Censoring (FFPC)
2 1 15 1 2 0 2 1 1 0 0 5 0 0 1 4 2 1 Progressive Type-II Censoring (PC)
3 5 15 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 First-Failure Censoring (FFC)
4 1 15 0 0 0 0 0 0 0 0 0 0 0 0 0 0 15 Type-II Censoring (T-II)
5 1 15 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Complete Sample (CS)

The values of the parameters under consideration were assumed here as (θ, σ) = (2.01, 0.39),
(3.50, 3.67), (5.02, 6.98). The selection of these values meets the criterion that the variance
should be unity. The optimal change stress time ε is calculated by the method of minimizing
the asymptotic variance of ML Estimation of the parameter θ and the acceleration factor β.
The asymptotic variances of these parameters are calculated from the diagonal elements of
the inverse of Fisher information matrix given in Eq. (13). The optimal change stress time
is the value, which minimizes asymptotic variance of ML Estimate and, obtained by using
Wolfram Mathematica software 10.0.

Table 2, presents the Maximum likelihood estimate of the parameter θ and the accelera-
tion factor β. The assumed values of the acceleration factor for the numerical findings are
β(= 0.50(0.10)2.50) and it is observed that the ML estimate, first increases as β increases
and reaches maximum when β = 1.40 and then decrease, however the magnitude is nominal
for both the parameters. Hence, the results are shown here only for the β = 1.40.

It is further noted that, the maximum magnitude was noted for FFP censoring scheme over
the other one, whereas the complete sample case shows second maximum estimate as com-
pared to other censoring schemes. It is also observed that, as the parameter (θ, σ) increases,
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Table 2: Maximum likelihood estimate

β = 1.40
← θ, σ →

m1 = 05,m−m1 = 05 m1 = 10,m−m1 = 05

θ̂ML 2.01, 0.39 3.50, 3.67 5.02, 6.98 2.01, 0.39 3.50, 3.67 5.02, 6.98
FFPC 0.9201 0.9521 0.9829 1.0453 1.0507 1.0674

PC 0.7803 0.7877 0.7948 0.8852 0.8936 0.9291
FFC 0.6798 0.6912 0.6966 0.7765 0.7831 0.8101
T-II 0.8516 0.8561 0.8642 0.9621 0.9716 1.0132
CS 0.9024 0.9103 0.9457 1.0228 1.0283 1.0375

← θ, σ →
β̂ML 2.01, 0.39 3.50, 3.67 5.02, 6.98 2.01, 0.39 3.50, 3.67 5.02, 6.98

FFPC 0.9409 0.9157 0.9175 1.0646 1.0131 1.0009
PC 0.8029 0.7534 0.7318 0.9065 0.8579 0.8644

FFC 0.7037 0.6581 0.6348 0.7992 0.7488 0.7468
T-II 0.8733 0.8209 0.8003 0.9823 0.9350 0.9474
CS 0.9235 0.8744 0.8808 1.0424 0.9910 0.9714

the ML estimate of the parameter θ was increased, however the ML estimate of σ has not
been shown similar tendency. Also, as the censored sample size increases the estimate of the
parameters increases.

Table 3, presents the approximate confidence lengths for the parameter θ and the acceleration
factor β under the normal approximation, given in Eq. (14) and Eq. (15). It is observed that
the length increases as the confidence level or the censoring size increases. The maximum
lengths, noted in the FFP censoring pattern, whereas the minimum length were observed in
the complete sample case. The increasing trend in length was also seen first when parameter
β increases up to (β = 1.40) , and then decreases.

Table 4 - 6 presents the Two-Sample Bayes prediction bound length (TS-BPBL) for the
parameters θ, σ and β respectively for the assumed parametric values. The maximum bound
lengths have been noted in the prior parametric value α = 1.25 = γ and parametric values
(θ, σ) = (3.50, 3.67). Other properties have been seen similar as discussed above. Hence,
based on above parametric values, it is observed that the FFP censoring scheme provides
wider length as compared to progressing or conventional censoring pattern.

6. Numerical analysis on real data

In this section, we consider n = 23 deep-groove ball bearing failure times for the numerical
analysis in present discussion, originally used by Lieblein and Zelen (1956). The said data set
represents the number of millions of revolutions before failure for each of the 23 ball bearings
in a life test and the data’s are 17.88, 28.92, 33.0, 41.52, 42.12, 45.60, 48.40, 51.84, 51.96,
54.12, 55.56, 67.80, 68.64, 68.64, 68.88, 84.12, 93.12, 98.64, 105.12, 105.84, 127.92, 128.04,
173.40.

Based on above assumed parametric values, the numerical findings were presented in the
Tables 7 - 9. The similar increasing trend have noted for the parameter β up to (β = 1.40) .
Hence, all the results have presents here only for (β = 1.40) .

All the properties have seen similar as discussed above. However, the magnitude of the
ML estimate were smaller whereas the TS-BPBL become wider. This shows that the above
approach presents good numerical finding under the real data set.
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Table 3: Approximate confidence length

← θ → m1 = 05,m−m1 = 05 m1 = 10,m−m1 = 05
τ → β ↓ 90% 95% 99% 90% 95% 99%

0.50 0.6641 0.6767 0.6929 0.7477 0.7753 0.7852
FFPC 1.40 0.7611 0.8201 0.8219 0.8894 0.9023 0.9119

2.50 0.7239 0.7718 0.8106 0.8244 0.8668 0.8783
0.50 0.6509 0.6579 0.6891 0.7331 0.7515 0.7808

PC 1.40 0.7584 0.8092 0.8126 0.8851 0.9001 0.9097
2.50 0.7161 0.7367 0.7634 0.8064 0.8369 0.8543
0.50 0.5777 0.6002 0.6153 0.6507 0.6775 0.6798

FFC 1.40 0.6927 0.7283 0.7358 0.7801 0.7909 0.8086
2.50 0.6179 0.6457 0.6482 0.6961 0.7248 0.7674
0.50 0.6361 0.6571 0.6659 0.7163 0.7441 0.7477

T-II 1.40 0.7459 0.7636 0.7918 0.8397 0.8605 0.8701
2.50 0.6727 0.7013 0.7053 0.7576 0.7874 0.8348
0.50 0.5053 0.5159 0.5299 0.5692 0.5951 0.5953

CS 1.40 0.6061 0.6282 0.6443 0.6826 0.6971 0.7082
2.50 0.5406 0.5669 0.5676 0.6091 0.6363 0.6721

← β → m1 = 05,m−m1 = 05 m1 = 10,m−m1 = 05
0.50 0.6736 0.6921 0.7047 0.7588 0.7926 0.7988

FFPC 1.40 0.7724 0.8182 0.8362 0.9032 0.9220 0.9279
2.50 0.7345 0.7890 0.8247 0.8369 0.8858 0.8937
0.50 0.6602 0.6730 0.7008 0.7438 0.7684 0.7943

PC 1.40 0.7697 0.8172 0.8267 0.8987 0.9198 0.9257
2.50 0.7266 0.7533 0.7766 0.8186 0.8554 0.8692
0.50 0.5856 0.6142 0.6257 0.6599 0.6793 0.6914

FFC 1.40 0.7027 0.7447 0.7485 0.7917 0.8085 0.8226
2.50 0.6265 0.6306 0.6592 0.7061 0.7412 0.7807
0.50 0.6451 0.6721 0.6772 0.7268 0.7307 0.7606

T-II 1.40 0.7570 0.7807 0.8055 0.8525 0.8794 0.8853
2.50 0.6824 0.7172 0.7174 0.7689 0.8049 0.8493
0.50 0.5118 0.5283 0.5387 0.5769 0.5969 0.6053

CS 1.40 0.6144 0.6331 0.6552 0.6925 0.7171 0.7203
2.50 0.5378 0.5503 0.5771 0.6175 0.6510 0.6835

7. Conclusion

The generalized Inverted Exponential distribution is taken here for the study on Optimum
Step Stress Partially Accelerated Life Test (SS-PALT) based on different special censoring
patterns of the first-failure progressive censoring (FFPC). The maximum likelihood estimate,
approximate confidence limit under the normal approximation and two-sample Bayes Pre-
diction Bound Length (TS-BPBL) have been obtained and studied their properties by using
simulated and real data set. One may preferred the FFP censoring pattern over the progress-
ing or conventional censoring based on above selected parametric values.
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Table 4: Two-sample Bayes prediction bound length (for parameter θ)

j = 1 m1 = 05,m−m1 = 05 m1 = 10,m−m1 = 05
α = 1.25 = γ, (θ, σ) = (3.50, 3.67)

τ → β ↓ 90% 95% 99% 90% 95% 99%
0.50 0.7467 0.7704 0.7748 0.8399 0.8690 0.8776

FFPC 1.40 0.8134 0.8540 0.9059 0.9253 0.9598 0.9813
2.50 0.8548 0.9077 0.9185 0.9977 1.0105 1.0188
0.50 0.7320 0.7605 0.7705 0.8235 0.8648 0.8727

PC 1.40 0.8047 0.8483 0.8533 0.9052 0.9488 0.9546
2.50 0.8518 0.8957 0.9082 0.9928 1.0070 1.0163
0.50 0.6505 0.6740 0.6772 0.7318 0.7490 0.7602

FFC 1.40 0.6953 0.7135 0.7250 0.7823 0.8017 0.8578
2.50 0.7786 0.8167 0.8226 0.8758 0.8965 0.9037
0.50 0.7155 0.7406 0.7447 0.8049 0.8230 0.8359

T-II 1.40 0.7563 0.7755 0.7886 0.8509 0.8714 0.9329
2.50 0.8378 0.8783 0.8850 0.9424 0.9640 0.9722
0.50 0.5698 0.5912 0.5932 0.6410 0.6570 0.6661

CS 1.40 0.6091 0.6258 0.6352 0.6853 0.7031 0.7515
2.50 0.6820 0.7163 0.7207 0.7673 0.7863 0.7918

j = m m1 = 05,m−m1 = 05 m1 = 10,m−m1 = 05
τ → β ↓ 90% 95% 99% 90% 95% 99%

0.50 0.9030 0.9286 0.9381 1.0161 1.0582 1.0629
FFPC 1.40 0.9840 1.0401 1.0972 1.1198 1.1684 1.1887

2.50 1.0342 1.1052 1.1125 1.2076 1.2299 1.2342
0.50 0.8852 0.9266 0.9329 0.9962 1.0531 1.0569

PC 1.40 0.9734 1.0331 1.0334 1.0954 1.1551 1.1563
2.50 1.0306 1.0906 1.1012 1.2017 1.2257 1.2312
0.50 0.7863 0.7926 0.8197 0.8849 0.9126 0.9204

FFC 1.40 0.8406 0.8695 0.8777 0.9462 0.9766 1.0388
2.50 0.9417 0.9948 0.9961 1.0597 1.0916 1.0945
0.50 0.8652 0.8924 0.9016 0.9736 1.0024 1.0123

T-II 1.40 0.9147 0.9448 0.9549 1.0295 1.0611 1.1301
2.50 1.0136 1.0695 1.0718 1.1405 1.1735 1.1777
0.50 0.6884 0.7111 0.7277 0.7748 0.8010 0.8062

CS 1.40 0.7360 0.7631 0.7687 0.8285 0.8569 0.9098
2.50 0.8245 0.8429 0.8725 0.9280 0.9579 0.9587
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Table 5: Two-sample Bayes prediction bound length (for parameter σ)

j = 1 m1 = 05,m−m1 = 05 m1 = 10,m−m1 = 05
α = 1.25 = γ, (θ, σ) = (3.50, 3.67)

τ → β ↓ 90% 95% 99% 90% 95% 99%
0.50 0.7251 0.7501 0.7537 0.8161 0.8504 0.8541

FFPC 1.40 0.7902 0.8358 0.8818 0.8995 0.9391 0.9554
2.50 0.8307 0.8882 0.8941 0.9702 0.9886 0.9920
0.50 0.7107 0.7445 0.7495 0.8001 0.8463 0.8494

PC 1.40 0.7817 0.8302 0.8304 0.8799 0.9284 0.9293
2.50 0.8277 0.8765 0.8840 0.9654 0.9852 0.9896
0.50 0.6312 0.6461 0.6584 0.7106 0.7332 0.7395

FFC 1.40 0.6749 0.6986 0.7051 0.7599 0.7847 0.8348
2.50 0.7563 0.7994 0.8004 0.8512 0.8773 0.8796
0.50 0.6946 0.7125 0.7243 0.7819 0.8055 0.8134

T-II 1.40 0.7345 0.7591 0.7672 0.8269 0.8528 0.9081
2.50 0.8141 0.8595 0.8614 0.9162 0.9432 0.9465
0.50 0.5523 0.5711 0.5764 0.6219 0.6434 0.6476

CS 1.40 0.5907 0.6129 0.6174 0.6651 0.6884 0.7310
2.50 0.6619 0.6803 0.7009 0.7452 0.7697 0.7703

j = m m1 = 05,m−m1 = 05 m1 = 10,m−m1 = 05
τ → β ↓ 90% 95% 99% 90% 95% 99%

0.50 0.8845 0.9136 0.9206 0.9960 1.0264 1.0436
FFPC 1.40 0.9643 1.0285 1.0775 1.0982 1.1551 1.1677

2.50 1.0139 1.0627 1.0926 1.1848 1.1957 1.2125
0.50 0.8669 0.9067 0.9154 0.9764 1.0114 1.0378

PC 1.40 0.9539 1.0017 1.0145 1.0742 1.0942 1.1357
2.50 1.0102 1.0584 1.0802 1.1789 1.1816 1.2095
0.50 0.7695 0.7962 0.8038 0.8668 0.8929 0.9032

FFC 1.40 0.8230 0.8605 0.8610 0.9272 0.9659 1.0199
2.50 0.9228 0.9584 0.9778 1.0390 1.0494 1.0748
0.50 0.8472 0.8775 0.8846 0.9541 0.9914 0.9937

T-II 1.40 0.8961 0.9346 0.9371 1.0092 1.0494 1.1097
2.50 0.9936 1.0276 1.0525 1.1186 1.1401 1.1568
0.50 0.6729 0.6943 0.7034 0.7581 0.7729 0.7906

CS 1.40 0.7199 0.7355 0.7536 0.8110 0.8348 0.8928
2.50 0.8071 0.8381 0.8559 0.9092 0.9176 0.9409
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Table 6: Two-sample Bayes prediction bound length (for acceleration factor β)

j = 1 m1 = 05,m−m1 = 05 m1 = 10,m−m1 = 05
α = 1.25 = γ, (θ, σ) = (3.50, 3.67)

τ → β ↓ 90% 95% 99% 90% 95% 99%
0.50 0.8159 0.8473 0.8545 0.9188 0.9562 0.9681

FFPC 1.40 0.8896 0.9396 0.9993 1.0132 1.0565 1.0826
2.50 0.9353 0.9989 1.0132 1.0931 1.1125 1.1240
0.50 0.7996 0.8363 0.8498 0.9007 0.9515 0.9627

PC 1.40 0.8799 0.9333 0.9412 0.9910 1.0443 1.0531
2.50 0.9320 0.9857 1.0019 1.0877 1.1086 1.1213
0.50 0.7096 0.7408 0.7467 0.7994 0.8236 0.8384

FFC 1.40 0.7591 0.7844 0.7995 0.8552 0.8818 0.9462
2.50 0.8511 0.8984 0.9073 0.9585 0.9865 0.9969
0.50 0.7814 0.8143 0.8213 0.8802 0.9054 0.9220

T-II 1.40 0.8265 0.8529 0.8698 0.9310 0.9588 1.0292
2.50 0.9165 0.9664 0.9762 1.0320 1.0611 1.0726
0.50 0.6205 0.6493 0.6539 0.6991 0.7220 0.7345

CS 1.40 0.6639 0.6875 0.7003 0.7481 0.7729 0.8288
2.50 0.7444 0.7875 0.7948 0.8386 0.8648 0.8733

j = m m1 = 05,m−m1 = 05 m1 = 10,m−m1 = 05
τ → β ↓ 90% 95% 99% 90% 95% 99%

0.50 0.9717 1.0170 1.0188 1.0947 1.1471 1.1546
FFPC 1.40 1.0598 1.1273 1.1919 1.2075 1.2670 1.2914

2.50 1.1144 1.1982 1.2085 1.3029 1.3339 1.3409
0.50 0.9522 1.0039 1.0132 1.0730 1.1415 1.1481

PC 1.40 1.0482 1.1198 1.1224 1.1809 1.2524 1.2561
2.50 1.1104 1.1824 1.1950 1.2965 1.3293 1.3376
0.50 0.8447 0.8897 0.8900 0.9520 0.9887 0.9996

FFC 1.40 0.9038 0.9418 0.9531 1.0187 1.0582 1.1284
2.50 1.0138 1.0781 1.0819 1.1421 1.1834 1.1890
0.50 0.9305 0.9776 0.9791 1.0485 1.0864 1.0995

T-II 1.40 0.9844 1.0237 1.0371 1.1092 1.1503 1.2276
2.50 1.0919 1.1593 1.1642 1.2299 1.2725 1.2794
0.50 0.7382 0.7504 0.7791 0.8321 0.8673 0.8754

CS 1.40 0.7901 0.8261 0.8345 0.8907 0.9281 0.9881
2.50 0.8862 0.9456 0.9475 0.9988 1.0379 1.0413

Table 7: Approximate confidence length (based on real data)

m1 = 05,m−m1 = 05 m1 = 10,m−m1 = 05
τ → 90% 95% 99% 90% 95% 99%

FFPC 0.7654 0.8306 0.8486 0.8951 0.9137 0.9195
PC 0.7627 0.8197 0.8292 0.8905 0.9115 0.9173

θ FFC 0.6964 0.7381 0.7417 0.7845 0.8012 0.8152
T-II 0.7501 0.7737 0.7982 0.8448 0.8715 0.8773
CS 0.6088 0.6369 0.6493 0.6862 0.7065 0.7138

FFPC 0.7806 0.8472 0.8689 0.9128 0.9317 0.9377
PC 0.7778 0.8358 0.8594 0.9082 0.9295 0.9355

β FFC 0.7102 0.7525 0.7564 0.8001 0.8173 0.8313
T-II 0.7651 0.7889 0.8141 0.8616 0.8887 0.8947
CS 0.6209 0.6494 0.6622 0.6998 0.7204 0.7279
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Table 8: TS-BPBL based on real data for j = 1

(θ, σ) = (3.50, 3.67) m1 = 05,m−m1 = 05 m1 = 10,m−m1 = 05
α = 1.25 = γ τ → 90% 95% 99% 90% 95% 99%

FFPC 0.8182 0.8649 0.9134 0.9312 0.9718 0.9896
PC 0.8095 0.8592 0.8603 0.9109 0.9607 0.9626

θ FFC 0.6991 0.7231 0.7308 0.7868 0.8121 0.8649
T-II 0.7606 0.7857 0.7952 0.8561 0.8825 0.9407
CS 0.6119 0.6345 0.6401 0.6889 0.7126 0.7575

FFPC 0.8937 0.9441 1.0044 1.0184 1.0621 1.0884
PC 0.8839 0.9378 0.9457 0.9964 1.0498 1.0586

β FFC 0.7621 0.7876 0.8028 0.8591 0.8858 0.9508
T-II 0.8301 0.8567 0.8737 0.9355 0.9635 1.0345
CS 0.6661 0.6898 0.7027 0.7517 0.7767 0.8324

FFPC 0.8173 0.8647 0.9124 0.9308 0.9719 0.9888
PC 0.8085 0.8589 0.8591 0.9104 0.9608 0.9617

σ FFC 0.6977 0.7223 0.7294 0.7859 0.8116 0.8636
T-II 0.7595 0.7851 0.7935 0.8554 0.8823 0.9397
CS 0.6103 0.6333 0.6382 0.6875 0.7117 0.7559

Table 9: TS-BPBL based on real data for j = m

(θ, σ) = (3.50, 3.67) m1 = 05,m−m1 = 05 m1 = 10,m−m1 = 05
α = 1.25 = γ τ → 90% 95% 99% 90% 95% 99%

FFPC 0.9905 1.0529 1.1066 1.1276 1.1824 1.1999
PC 0.9798 1.0358 1.0422 1.1035 1.1591 1.1663

θ FFC 0.8457 0.8806 0.8857 0.9523 0.9887 1.0476
T-II 0.9205 0.9566 0.9629 1.0365 1.0741 1.1398
CS 0.7401 0.7732 0.7749 0.8335 0.8679 0.9174

FFPC 1.0633 1.1314 1.1965 1.2122 1.2721 1.2967
PC 1.0516 1.1238 1.1264 1.1854 1.2574 1.2612

β FFC 0.9061 0.9444 0.9558 1.0219 1.0617 1.1325
T-II 0.9873 1.0269 1.0405 1.1131 1.1545 1.2324
CS 0.7915 0.8278 0.8363 0.8929 0.9306 0.9911

FFPC 0.9836 1.0499 1.1005 1.1219 1.1806 1.1937
PC 0.9729 1.0222 1.0354 1.0971 1.1178 1.1606

σ FFC 0.8377 0.8764 0.8769 0.9453 0.9852 1.0413
T-II 0.9132 0.9529 0.9555 1.0309 1.0715 1.1338
CS 0.7312 0.7473 0.7661 0.8253 0.8499 0.9098
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