Riesz and beta-Riesz distributions

José A. Díaz-García
Universidad Autónoma Agraria Antonio Narro

Abstract

This article derives several properties of the Riesz distributions, such as their corresponding Bartlett decompositions, the inverse Riesz distributions and the distribution of the generalised variance for real normed division algebras. In addition, introduce a kind of generalised beta distribution termed beta-Riesz distribution for real normed division algebras. Two versions of this distributions are proposed and some properties are studied.

Keywords: Beta-Riesz distribution, Riesz distribution, generalised beta function and distribution, real, complex quaternion and octonion random matrices.

1. Introduction

It is imminent the important role played by Wishart and beta distributions type I and II in the context of multivariate statistics. In particular, the relationship between these two distributions to obtain the beta distribution in terms of the distribution of two Wishart matrices. Faraut and Korányi (1994), and subsequently Hassairi, Lajmi, and Zine (2005), propose a beta-Riesz distribution, which contains as a special case to the beta distribution obtained in terms of the distribution Wishart, which shall be named beta-Wishart, all this subjects in the context of simple Euclidean Jordan algebras. Such beta-Riesz distribution is obtained analogously to the beta-Wishart distribution, but starting with a Riesz distribution. Recently, Díaz-García (2014b) proposes two versions of the Riesz distribution for real normed division algebras.

Based in these last two versions of the Riesz distributions, it is possible to obtain two versions of the beta-Riesz distributions, which by analogy with the beta-Wishart distributions are termed beta-Riesz type I. As in classical beta-Wishart distribution, in addition it is feasible to propose two version for the beta-Riesz distribution type II. Each of the two versions for each beta-Riesz distributions of type I and II, (both versions for each) contain as particular cases to beta-Wishart distribution type I and beta-Wishart distribution type II, respectively.

Although during the 90’s and 2000’s were obtained important results in theory of random matrices distributions, the past 30 years have reached a substantial development. Essentially, these advances have been archived through two approaches based on the theory of Jordan algebras and the theory of real normed division algebras. A basic source of the mathematical tools of theory of random matrices distributions under Jordan algebras can be found in Faraut and Korányi (1994); and specifically, some works in the context of theory of random matrices
distributions based on Jordan algebras are provided in Massam (1994), Casalis and Letac (1996), Hassairi and Lajmi (2001), and Hassairi et al. (2005), and the references therein. Parallel results on theory of random matrices distributions based on real normed division algebras have also been developed in random matrix theory and statistics, see Gross and Richards (1987), Dumitriu (2002), Forrester (2005), Díaz-García and Gutiérrez-Jáimez (2011), Díaz-García and Gutiérrez-Jáimez (2013), among others. In addition, from mathematical point of view, several basic properties of the matrix multivariate Riesz distribution under the structure theory of normal j-algebras and under theory of Vinberg algebras in place of Jordan algebras have been studied, see Ishi (2000) and Boutouria and Hassiri (2009), respectively.

From a applied point of view, the relevance of the octonions remains unclear. An excellent review of the history, construction and many other properties of octonions is given in Baez (2002), where it is stated that... **However, there is still no proof that the octonions are useful for understanding the real world.** We can only hope that eventually this question will be settled one way or another.”

For the sake of completeness, in this article the case of octonions is considered, but the veracity of the results obtained for this case can only be conjectured. Nonetheless, Forrester (2005, Section 1.4.5, pp. 22-24) it is proved that the bi-dimensional density function of the eigenvalue, for a Gaussian ensemble of a 2×2 octonionic matrix, is obtained from the general joint density function of the eigenvalues for the Gaussian ensemble, assuming $m = 2$ and $\beta = 8$, see Section 2. Moreover, as is established in Faraut and Korányi (1994) and Sawyer (1997) the result obtained in this article are valid for the algebra of Albert, that is when hermitian matrices (S) or hermitian product of matrices $(X^\ast X)$ are 3×3 octonionic matrices.

This article studies two versions for beta-Riesz distributions type I and II for real normed division algebras. Section 2 reviews some definitions and notation on real normed division algebras. And also, introduces other mathematical tools as two definitions of the generalised gamma function on symmetric cones, three Jacobians with respect to Lebesgue measure and some integral results for real normed division algebras. Section 3 proposes diverse properties of two versions of the Riesz distributions as their Bartlett decompositions, inverse Riesz distributions and the distribution of the generalized variance. Section 4 introduces two generalised beta functions and, in terms of these, two beta-Riesz distributions of type I and II are obtained for real normed division algebras. Also, the relationship between the Riesz distributions and the beta-Riesz distributions are studied. This section concludes studying the eigenvalues distributions of beta-Riesz distributions type I and II in their two versions for real normed division algebras.

2. Preliminary results

A detailed discussion of real normed division algebras may be found in Baez (2002) and J. Neukirch and R. Remmert (1990). For convenience, we shall introduce some notation, although in general we adhere to standard notation forms.

For our purposes: Let F be a field. An algebra \mathfrak{A} over F is a pair $(\mathfrak{A}; m)$, where \mathfrak{A} is a finite-dimensional vector space over F and multiplication $m : \mathfrak{A} \times \mathfrak{A} \rightarrow A$ is an F-bilinear map; that is, for all $\lambda \in F$, $x, y, z \in \mathfrak{A},$

\[
m(x, \lambda y + z) = \lambda m(x; y) + m(x; z) \quad \text{and} \quad m(\lambda x + y; z) = \lambda m(x; z) + m(y; z).
\]

Two algebras $(\mathfrak{A}; m)$ and $(\mathfrak{E}; n)$ over F are said to be isomorphic if there is an invertible map $\phi : \mathfrak{A} \rightarrow \mathfrak{E}$ such that for all $x, y \in \mathfrak{A},$

\[
\phi(m(x, y)) = n(\phi(x), \phi(y)).
\]

By simplicity, we write $m(x; y) = xy$ for all $x, y \in \mathfrak{A}.$

Let \mathfrak{A} be an algebra over $F.$ Then \mathfrak{A} is said to be
1. *alternative* if $x(xy) = (xx)y$ and $x(yy) = (xy)y$ for all $x, y \in \mathcal{A}$,
2. *associative* if $x(yz) = (xy)z$ for all $x, y, z \in \mathcal{A}$,
3. *commutative* if $xy = yx$ for all $x, y \in \mathcal{A}$, and
4. *unital* if there is a $1 \in \mathcal{A}$ such that $x1 = x = 1x$ for all $x \in \mathcal{A}$.

If \mathcal{A} is unital, then the identity 1 is uniquely determined.

An algebra \mathcal{A} over F is said to be a *division algebra* if \mathcal{A} is nonzero and $xy = 0_A \Rightarrow x = 0_A$ or $y = 0_A$ for all $x, y \in \mathcal{A}$.

The term “division algebra”, comes from the following proposition, which shows that, in such an algebra, left and right division can be unambiguously performed.

Let \mathcal{A} be an algebra over F. Then \mathcal{A} is a division algebra if, and only if, \mathcal{A} is nonzero and for all $a, b \in \mathcal{A}$, with $b \neq 0_A$, the equations $bx = a$ and $yb = a$ have unique solutions $x, y \in \mathcal{A}$.

In the sequel we assume $F = \mathbb{R}$ and consider classes of division algebras over \mathbb{R} or “real division algebras” for short.

We introduce the algebras of *real numbers* \mathbb{R}, *complex numbers* \mathbb{C}, *quaternions* \mathcal{H} and *octonions* \mathcal{O}. Then, if \mathcal{A} is an alternative real division algebra, then \mathcal{A} is isomorphic to \mathbb{R}, \mathbb{C}, \mathcal{H} or \mathcal{O}.

Let \mathcal{A} be a real division algebra with identity 1. Then \mathcal{A} is said to be *normed* if there is an inner product (\cdot, \cdot) on \mathcal{A} such that

$$
(xy, xy) = (x, x)(y, y)
$$

for all $x, y \in \mathcal{A}$.

If \mathcal{A} is a *real normed division algebra*, then \mathcal{A} is isomorphic \mathbb{R}, \mathbb{C}, \mathcal{H} or \mathcal{O}.

There are exactly four normed division algebras: real numbers (\mathbb{R}), complex numbers (\mathbb{C}), quaternions (\mathcal{H}) and octonions (\mathcal{O}), see Baez (2002). We take into account that should be taken into account, \mathbb{R}, \mathbb{C}, \mathcal{H} and \mathcal{O} are the only normed division algebras; furthermore, they are the only alternative division algebras.

Let \mathcal{A} be a division algebra over the real numbers. Then \mathcal{A} has dimension either 1, 2, 4 or 8. In other branches of mathematics, the parameters $\alpha = 2/\beta$ and $t = \beta/4$ are used, see Edelman and Rao (2005) and Kabe (1984), respectively.

Finally, observe that

- \mathbb{R} is a real commutative associative normed division algebras,
- \mathbb{C} is a commutative associative normed division algebras,
- \mathcal{H} is an associative normed division algebras,
- \mathcal{O} is an alternative normed division algebras.

Let $L_{m,n}^\beta$ be the set of all $m \times n$ matrices of rank $m \leq n$ over \mathcal{A} with m distinct positive singular values, where \mathcal{A} denotes a real finite-dimensional normed division algebra. Let $\mathcal{A}^{m \times n}$ be the set of all $m \times n$ matrices over \mathcal{A}. The dimension of $\mathcal{A}^{m \times n}$ over \mathbb{R} is βmn. Let $A \in \mathcal{A}^{m \times n}$, then $A^* = \overline{A}^T$ denotes the usual conjugate transpose.

Table 1 sets out the equivalence between the same concepts in the four normed division algebras.

<table>
<thead>
<tr>
<th>Table 1: Notation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Real</td>
</tr>
<tr>
<td>Semi-orthogonal</td>
</tr>
<tr>
<td>Orthogonal</td>
</tr>
<tr>
<td>Symmetric</td>
</tr>
</tbody>
</table>
We denote by \mathcal{S}_m^β the real vector space of all $S \in \mathbb{A}^{m \times m}$ such that $S = S^*$. In addition, let \mathcal{P}_m^β be the cone of positive definite matrices $S \in \mathbb{A}^{m \times m}$. Thus, \mathcal{P}_m^β consist of all matrices $S = X^*X$, with $X \in \mathcal{L}^\beta_{m,n}$; then \mathcal{P}_m^β is an open subset of \mathcal{S}_m^β.

Let \mathcal{D}_m^β consisting of all $D \in \mathbb{A}^{m \times m}$, $D = \text{diag}(d_1, \ldots, d_m)$. Let $\Sigma_U^\beta(m)$ be the subgroup of all upper triangular matrices $T \in \mathbb{A}^{m \times m}$ such that $t_{ij} = 0$ for $1 < i < j \leq m$.

For any matrix $X \in \mathbb{A}^{n \times n}$, dX denotes the matrix of differentials (dx_{ij}). Finally, we define the measure or volume element (dX) when $X \in \mathbb{A}^{n \times n}$, \mathcal{S}_m^β, \mathcal{D}_m^β or \mathcal{V}_m^β, see Dumitriu (2002) and Díaz-García and Gutiérrez-Jáimez (2011).

If $X \in \mathbb{A}^{m \times n}$ then (dX) (the Lebesgue measure in $\mathbb{A}^{m \times n}$) denotes the exterior product of the βmn functionally independent variables

$$dX = \bigwedge_{i=1}^{m} \bigwedge_{j=1}^{n} dx_{ij} \quad \text{where} \quad dx_{ij} = \beta^{\binom{i+j}{2}-1}.$$

If $S \in \mathcal{S}_m^\beta$ (or $S \in \Sigma_U^\beta(m)$ with $t_{ij} > 0$, $i = 1, \ldots, m$) then (dS) (the Lebesgue measure in \mathcal{S}_m^β or in $\Sigma_U^\beta(m)$) denotes the exterior product of the exterior product of the $m(m-1)/2 + m$ functionally independent variables,

$$dS = \bigwedge_{i=1}^{m} \bigwedge_{i< j}^{n} ds_{ij} \quad \text{where} \quad ds_{ij} = \beta^{\binom{i+j}{2}-1}.$$

Observe, that for the Lebesgue measure (dS) defined thus, it is required that $S \in \mathcal{P}_m^\beta$, that is, S must be a non singular Hermitian matrix (Hermitian definite positive matrix).

If $A \in \mathcal{D}_m^\beta$ then (dA) (the Legesgue measure in \mathcal{D}_m^β) denotes the exterior product of the βm functionally independent variables

$$dA = \bigwedge_{i=1}^{n} \bigwedge_{k=1}^{\beta} d\lambda_{i}^{(k)}.$$

If $H_1 \in \mathcal{V}_m^\beta$ then

$$(H_1^*dH_1) = \bigwedge_{i=1}^{m} \bigwedge_{j=i+1}^{n} h_{ij}^* dh_{ij},$$

where $H = (H_1^*H_2)^*$ = $(h_1, \ldots, h_m| h_{m+1}, \ldots, h_n)^* \in \mathcal{U}^\beta(n)$. It can be proved that this differential form does not depend on the choice of the H_2 matrix. When $n = 1$: \mathcal{V}_m^β defines the unit sphere in \mathcal{A}^{mn}. This is, of course, an $(m-1)/\beta$- dimensional surface in \mathcal{A}^{mn}. When $n = m$ and denoting H_1 by H, (HdH^*) is termed the Haar measure on $\mathcal{U}^\beta(m)$.

The surface area or volume of the Stiefel manifold \mathcal{V}_m^β, is

$$\text{Vol}(\mathcal{V}_m^\beta) = \int_{H_1 \in \mathcal{V}_m^\beta} (H_1^*dH_1^*) = \frac{2^m \pi^{mn\beta/2}}{\Gamma_m^{\beta/2}} \text{etr}(A) A^{(m-1)/\beta - 1} q_m(A)(dA)$$

which is a particular case of the generalised gamma function of weight κ for the space \mathcal{S}_m^β. This can be obtained as

$$\Gamma_m^\beta[a, \kappa] = \int_{A \in \mathcal{P}_m^\beta} \text{etr}(A) A^{a - (m-1)/\beta - 1} q_m(A)(dA)$$

for Re$(a) \geq (m-1)/\beta - k_m$ is defined by, see Gross and Richards (1987),

$$\Gamma_m^\beta[a, \kappa] = \prod_{i=1}^{m} \Gamma[a + k_i - (i-1)/\beta/2]$$

where $\Gamma_m^\beta[a, \kappa]$ denotes the multivariate Gamma function for the space \mathcal{S}_m^β.
where \(\text{etr}(\cdot) = \exp(\text{tr}(\cdot)) \), \(| \cdot | \) denotes the determinant, and for \(\mathbf{A} \in \mathfrak{S}^\beta_m \)

\[
q_\kappa(\mathbf{A}) = |\mathbf{A}_m|^{k_m} \prod_{i=1}^{m-1} |\mathbf{A}_i|^{k_i-k_{i+1}}
\]

(4)

with \(\mathbf{A}_p = (a_{rs}), r, s = 1, 2, \ldots, p, p = 1, 2, \ldots, m \) is termed the highest weight vector, see Gross and Richards (1987). Also,

\[
\Gamma^\beta_m[a] = \int_{\mathbf{A} \in \mathfrak{P}^\beta_m} \text{etr}(-\mathbf{A}) |\mathbf{A}|^{a-(m-1)\beta/2-1} (d\mathbf{A})
\]

\[
= \pi^{m(m-1)\beta/4} \prod_{i=1}^{m} \Gamma[a-(i-1)\beta/2],
\]

and \(\text{Re}(a) > (m-1)\beta/2 \).

In other branches of mathematics the highest weight vector \(q_\kappa(\mathbf{A}) \) is also termed the generalised power of \(\mathbf{A} \) and is denoted as \(\Delta_\kappa(\mathbf{A}) \), see Faraut and Korányi (1994) and Hassairi and Lajmi (2001).

Additional properties of \(q_\kappa(\mathbf{A}) \), which are immediate consequences of the definition of \(q_\kappa(\mathbf{A}) \) and the following property 1, are:

1. if \(\lambda_1, \ldots, \lambda_m \), are the eigenvalues of \(\mathbf{A} \), then

\[
q_\kappa(\mathbf{A}) = \prod_{i=1}^{m} \lambda_i^{k_i}.
\]

(5)

2. \(q_\kappa(\mathbf{A}^{-1}) = q_{-\kappa}(\mathbf{A}) \),

3. if \(\kappa = (p, \ldots, p) \), then \(q_\kappa(\mathbf{A}) = |\mathbf{A}|^p \),

in particular if \(p = 0 \), then \(q_\kappa(\mathbf{A}) = 1 \).

4. if \(\tau = (t_1, t_2, \ldots, t_m), t_1 \geq t_2 \geq \cdots \geq t_m \geq 0 \), then

\[
q_{\kappa+\tau}(\mathbf{A}) = q_\kappa(\mathbf{A}) q_\tau(\mathbf{A}),
\]

in particular if \(\tau = (p, p, \ldots, p) \), then

\[
q_{\kappa+\tau}(\mathbf{A}) = q_{\kappa+p}(\mathbf{A}) = |\mathbf{A}|^p q_\kappa(\mathbf{A}).
\]

(9)

5. Finally, for \(\mathbf{B} \in \mathfrak{A}^{m \times m} \) in such a manner that \(\mathbf{C} = \mathbf{B}^* \mathbf{B} \in \mathfrak{S}^\beta_m \),

\[
q_\kappa(\mathbf{B} \mathbf{A} \mathbf{B}^*) = q_\kappa(\mathbf{C}) q_\kappa(\mathbf{A})
\]

(10)

and

\[
q_\kappa(\mathbf{B}^{-1} \mathbf{A} \mathbf{B}^{*-1}) = (q_\kappa(\mathbf{C}))^{-1} q_\kappa(\mathbf{A}).
\]

(11)

Remark 2.1 Let \(\mathcal{P}(\mathfrak{S}^\beta_m) \) denote the algebra of all polynomial functions on \(\mathfrak{S}^\beta_m \), and \(\mathcal{P}_k(\mathfrak{S}^\beta_m) \) the subspace of homogeneous polynomials of degree \(k \) and let \(\mathcal{P}_k^\kappa(\mathfrak{S}^\beta_m) \) be an irreducible subspace of \(\mathcal{P}(\mathfrak{S}^\beta_m) \) such that

\[
\mathcal{P}_k(\mathfrak{S}^\beta_m) = \bigoplus_\kappa \mathcal{P}_k^\kappa(\mathfrak{S}^\beta_m).
\]

Note that \(q_\kappa \) is a homogeneous polynomial of degree \(k \), moreover \(q_\kappa \in \mathcal{P}_k^\kappa(\mathfrak{S}^\beta_m) \), see Gross and Richards (1987).
In (3), \([a]_{\kappa}^{\beta} \) denotes the generalised Pochhammer symbol of weight \(\kappa \), defined as

\[
[a]_{\kappa}^{\beta} = \prod_{i=1}^{m} (a - (i - 1)\beta/2)_{k_i}
\]

\[
\pi^{m(m-1)\beta/4} \prod_{i=1}^{m} \Gamma[a + k_i - (i - 1)\beta/2] = \frac{\Gamma_{m}^{\beta}[a]}{\Gamma_{m}^{\beta}[a]}
\]

where \(\text{Re}(a) > (m - 1)\beta/2 - k_m \) and

\[
(a)_i = a(a+1) \cdots (a+i-1),
\]

is the standard Pochhammer symbol.

An alternative definition of the generalised gamma function of weight \(\kappa \) is proposed by Khatri (1966), which is defined as

\[
\Gamma_{m}^{\beta}[a, \kappa] = \int_{A \in \mathcal{P}_{m}^{\beta}} \text{etr}\{\{-A\}|A|^{-(m-1)\beta/2-1} q_{n}(A^{-1}) (dA)
\]

\[
= \pi^{m(m-1)\beta/4} \prod_{i=1}^{m} \Gamma[a - k_i - (m - i)\beta/2] = \frac{(-1)^n \Gamma_{m}^{\beta}[a]}{[-a + (m - 1)\beta/2 + 1]_{\kappa}},
\]

where \(\text{Re}(a) > (m - 1)\beta/2 + k_1 \).

Similarly, from Herz (1955, p. 480) the multivariate beta function for the space \(\mathcal{B}_{m}^{\beta} \), can be defined as

\[
\mathcal{B}_{m}^{\beta}[b, a] = \int_{0 < S < I_{m}} \left| S \right|^{a-(m-1)\beta/2-1} \left| I_{m} - S \right|^{b-(m-1)\beta/2-1} (dS)
\]

\[
= \int_{R \in \mathcal{P}_{m}^{\beta}} \left| R \right|^{a-(m-1)\beta/2-1} \left| I_{m} + R \right|^{-(a+b)} (dR)
\]

\[
= \frac{\Gamma_{m}^{\beta}[a]\Gamma_{m}^{\beta}[b]}{\Gamma_{m}^{\beta}[a+b]},
\]

where \(R = (I - S)^{-1} - I \), \(\text{Re}(a) > (m - 1)\beta/2 \) and \(\text{Re}(b) > (m - 1)\beta/2 \), see Díaz-García (2014a).

Now, we show three Jacobians in terms of the \(\beta \) parameter, which are proposed as extensions of real, complex or quaternion cases, see Díaz-García and Gutiérrez-Jáimez (2011).

Lemma 2.1 Let \(X \) and \(Y \in \mathcal{P}_{m}^{\beta} \) matrices of functionally independent variables, and let \(Y = AXA^{*} + C \), where \(A \in \mathcal{L}_{m,m}^{\beta} \) and \(C \in \mathcal{P}_{m}^{\beta} \) are matrices of constants. Then

\[
(dY) = |A^{*}A|^{\beta(m-1)/2+1} (dX).
\]

Lemma 2.2 (Cholesky’s decomposition) Let \(S \in \mathcal{P}_{m}^{\beta} \) and \(T \in \mathcal{T}_{U}(m) \) with \(t_{ii} > 0 \), \(i = 1, 2, \ldots, m \). Then

\[
(dS) = \begin{cases}
2^{m} \prod_{i=1}^{m} t_{ii}^{\beta(m-i)+1} (dT) & \text{if } S = T^{*}T, \\
2^{m} \prod_{i=1}^{m} t_{ii}^{\beta(i-1)+1} (dT) & \text{if } S = TT^{*}.
\end{cases}
\]
Lemma 2.4 Let $S \in \mathcal{P}^\beta_m$. Then, ignoring the sign, if $Y = S^{-1}$

$$(dY) = |S|^{-\beta(m-1)-2}(dS).$$

Next is stated a general result, that is useful in a variety of situations, which enable us to transform the density function of a matrix $X \in \mathcal{P}^\beta_m$ to the density function of its eigenvalues, see Díaz-García (2014a).

Lemma 2.4 Let $X \in \mathcal{P}^\beta_m$ be a random matrix with a density function $f_X(X)$. Then the joint density function of the eigenvalues $\lambda_1, \ldots, \lambda_m$ of X is

$$
\frac{\pi^{m^2/2+\beta}}{\Gamma_m[\beta/2]} \prod_{1<j}^m (\lambda_i - \lambda_j)^\beta \int_{H \subseteq \Omega_m} f(HX^H)(dH)
$$

where $L = \text{diag}(\lambda_1, \ldots, \lambda_m)$, $\lambda_1 > \cdots > \lambda_m > 0$, (dH) is the normalised Haar measure and

$$g = \begin{cases}
0, & \beta = 1; \\
-m, & \beta = 2; \\
-2m, & \beta = 4; \\
-4m, & \beta = 8.
\end{cases}
$$

Finally, let’s recall the multidimensional convolution theorem in terms of the Laplace transform. For this purpose, let’s use the complexification $\mathcal{S}^\beta = \mathcal{S}^\beta_m + i\mathcal{S}^\beta_m$ of \mathcal{S}^β_m. That is, $\mathcal{S}^{\beta, \epsilon}$ consist of all matrices $Z \in (\mathbb{C}^{m \times m})$ of the form $Z = X + iY$, with $X, Y \in \mathcal{S}^\beta_m$. It comes to $X = \text{Re}(Z)$ and $Y = \text{Im}(Z)$ as the real and imaginary parts of Z, respectively. The generalised right half-plane $\Phi^\beta = \mathcal{S}^\beta + i\mathcal{S}^\beta_m$ in $\mathcal{S}^{\beta, \epsilon}$ consists of all $Z \in \mathcal{S}^{\beta, \epsilon}$ such that $\text{Re}(Z) \in \mathcal{S}^\beta_m$, see (Gross and Richards 1987, p. 801).

Definition 2.1 If $f(X)$ is a function of $X \in \mathcal{P}^\beta_m$, the Laplace transform of $f(X)$ is defined to be

$$g(T) = \int_{X \in \mathcal{P}^\beta_m} \text{etr}(-TZ)f(X)(dX).$$

where $Z \in \Phi^\beta_m$.

Lemma 2.5 If $g_1(Z)$ and $g_2(Z)$ are the respective Laplace transforms of the densities $f_X(X)$ and $g_X(Y)$ then the product $g_1(Z)g_2(Z)$ is the Laplace transform of the convolution $f_X(X) * g_Y(Y)$, where

$$h_{\Xi}(\Xi) = f_X(X) * g_Y(Y) = \int_{0 < Y < \Xi} f_X(Y)g_Y(\Xi - Y)(dY),$$

with $\Xi = X + Y$ and $Y = X$.

3. Riesz distributions

This section shows two versions of the Riesz distributions (Díaz-García 2014b) and the study of their Bartlett decompositions. Also, inverse Riesz distributions are obtained.

Definition 3.1 Let $\Sigma \in \Phi^\beta_m$ and $\kappa = (k_1, k_2, \ldots, k_m)$, $k_1 \geq k_2 \geq \cdots \geq k_m \geq 0$, k_1, k_2, \ldots, k_m are nonnegative integers.
1. Then it is said that \(X \) has a Riesz distribution of type I if its density function is

\[
\frac{\beta^{am+\sum_{i=1}^{m} k_i}}{\Gamma_m[a, \kappa]|\Sigma|^a q_n(\Sigma)} \exp\{-\Sigma^{-1}X\}|X|^{-a(m-1)\beta/2-1} q_v(X)(dX) \tag{21}
\]

for \(X \in \Phi_m^\beta \) and \(\text{Re}(a) \geq (m-1)\beta/2 - k_m \); denoting this fact as \(X \sim R_m^{\beta, I}(a, \kappa, \Sigma) \).

2. Then it is said that \(X \) has a Riesz distribution of type II if its density function is

\[
\frac{q_v(\Sigma) \beta^{am-\sum_{i=1}^{m} k_i}}{\Gamma_m[a, -\kappa]|\Sigma|^a} \exp\{-\Sigma^{-1}X\}|X|^{-a(m-1)\beta/2-1} q_v(X^{-1})(dX) \tag{22}
\]

for \(X \in \Phi_m^\beta \) and \(\text{Re}(a) > (m-1)\beta/2 + k_1 \); denoting this fact as \(X \sim R_m^{\beta, II}(a, \kappa, \Sigma) \).

Theorem 3.1 Let \(\Sigma \in \Phi_m^\beta \) and \(\kappa = (k_1, k_2, \ldots, k_m) \), \(k_1 \geq k_2 \geq \cdots \geq k_m \geq 0 \). And let \(Y = X^{-1} \).

1. Then if \(X \) has a Riesz distribution of type I the density of \(Y \) is

\[
\frac{\beta^{am+\sum_{i=1}^{m} k_i}}{\Gamma_m[a, \kappa]|\Sigma|^a q_n(\Sigma)} \exp\{-\Sigma^{-1}Y^{-1}\}|Y|^{-a(m-1)\beta/2+1} q_v(Y^{-1})(dY) \tag{23}
\]

for \(\text{Re}(a) \geq (m-1)\beta/2 - k_m \) and is termed as inverse Riesz distribution of type I.

2. Then if \(X \) has a Riesz distribution of type II the density of \(Y \) is

\[
\frac{q_v(\Sigma) \beta^{am-\sum_{i=1}^{m} k_i}}{\Gamma_m[a, -\kappa]|\Sigma|^a} \exp\{-\Sigma^{-1}Y^{-1}\}|Y|^{-a(m-1)\beta/2+1} q_v(Y)(dY) \tag{24}
\]

for \(\text{Re}(a) > (m-1)\beta/2 + k_1 \) and it said that \(Y \) has a inverse Riesz distribution of type II.

Proof. It is immediately noted that \((dX) = |Y|^{-\beta(m-1)-2}(dY) \) and from (21) and (22). \(\square \)

Observe that, if \(\kappa = (0, 0, \ldots, 0) \) in two densities in Definition 3.1 and Theorem 3.1 the matrix multivariate gamma and inverse gamma distributions are obtained. As consequence, in this last case if \(\Sigma = 2\Sigma \) and \(a = \beta n/2 \), the Wishart and inverse Wishart distributions are obtained, too.

Theorem 3.2 Let \(T \in S_m^\beta(m) \) with \(t_{ii} > 0 \), \(i = 1, 2, \ldots, m \) and define \(X = T^*T \).

1. If \(X \) has a Riesz distribution of type I, (21), with \(\Sigma = I_m \), then the elements \(t_{ij} \) \((1 \leq i \leq j \leq m) \) of \(T \) are all independent. Furthermore, \(t_{ii}^2 \sim G^\beta(a + k_i - (i - 1)\beta/2, 1) \) and \(\sqrt{2t_{ii}} \sim N_1^\beta(0, 1) \) \((1 \leq i < j \leq m) \).

2. If \(X \) has a Riesz distribution of type II, (22), with \(\Sigma = I_m \), then the elements \(t_{ij} \) \((1 \leq i \leq j \leq m) \) of \(T \) are all independent. Moreover, \(t_{ii}^2 \sim G^\beta(a - k_i - (i - 1)\beta/2, 1) \) and \(\sqrt{2t_{ii}} \sim N_1^\beta(0, 1) \) \((1 \leq i < j \leq m) \).

Where \(x \sim G^\beta(a, \alpha) \) denotes a gamma distribution with parameters \(a \) and \(\alpha \) and \(y \sim N_1^\beta(0, 1) \) denotes a random variable with standard normal distribution for real normed division algebras. Moreover, their respective densities are

\[
G^\beta(x : a, \alpha) = \frac{1}{\Gamma[a]} \exp\{-\beta x/\alpha\} x^{a-1}(dx),
\]

where \(\alpha = \beta(a + 1) \) and \(\beta \alpha = a + 1 \), for all \(a > 0 \).
and
\[N_1^\beta(y : 0,1) = \frac{1}{(2\pi/\beta)^{\beta/2}} \exp\{-\beta y^2/2\}(dy) \]

where Re(\(a\)) > 0 and \(\alpha \in \Phi^\beta\), see Díaz-García and Gutiérrez-Jáimez (2011).

Proof. This is given for the case of Riesz distribution type I. The proof for Riesz distribution type II is the same thing. The density of \(X\) is
\[\frac{\beta^{a + \sum_{i=1}^m k_i}}{\Gamma_m^\beta[a, \kappa]} \exp\{-\beta t^2_{ii}/2\} \cdot \prod_{i<j} (\pi/\beta)^{\beta/2} \exp\{-\beta t^2_{ij}/2\}(dt_{ij}). \] (25)

Since \(X = T^*T\) we have

\[
\begin{align*}
\text{tr} X &= \text{tr} T^*T = \sum_{i<j} t^2_{ij}, \\
|X| &= |T^*T| = |T|^2 = \prod_{i=1}^m t^2_{ii}, \\
g_c(X) &= g_c(T^*T) = |T^*T|^{k_m} \prod_{i=1}^{m-1} |T^*_iT_i|^{k_i-k_{i+1}} = \prod_{i=1}^m t^{2k_i}_{ii},
\end{align*}
\]

and by Theorem 2.2 noting that \(dt^2_{ii} = 2t_{ii}dt_{ii}\), then

\[
(dX) = 2^m \prod_{i=1}^m t^{\beta(m-i)+1}_{ii} \left(\bigwedge_{i<j} dt_{ij} \right),
\]

\[
= \prod_{i=1}^m \left(t^2_{ii} \right)^{\beta(m-i)/2} \left(\bigwedge_{i=1} dt^2_{ii} \right) \wedge \left(\bigwedge_{i<j} dt_{ij} \right).
\]

Substituting this expression in (25) and using (5) we find that the joint density of the \(t_{ij}\) (1 \(\leq i \leq j \leq m\)) can be written as

\[
\prod_{i=1}^m \frac{\beta^{a+k_i-(i-1)/2}}{\Gamma[a + k_i - (i-1)]} \exp\{-\beta t^2_{ii}/2\} \cdot \left(t^2_{ii} \right)^{a+k_i-(i-1)/2-1} \cdot (dt^2_{ii})
\]

\[
\times \prod_{i<j} \frac{1}{(\pi/\beta)^{\beta/2}} \exp\{-\beta t^2_{ij}/2\}(dt_{ij}),
\]

only observe that

\[
\frac{\beta^{a + \sum_{i=1}^m k_i}}{\Gamma_m^\beta[a, \kappa]} = \frac{\beta^{a + \sum_{i=1}^m k_i-m(m-1)/4}}{\beta^{m-\sum_{i=1}^m k_i-m(m-1)/4} \prod_{i=1}^m (\pi/\beta)^{\beta/2}}.
\]

In analogy to generalised variance for Wishart case, the following result gives the distribution of \(|X|\) when \(X\) has a Riesz distribution type I or type II.

Theorem 3.3 Let \(v = |X|/|\Sigma|\). Then
1. if X has a Riesz distribution of type I, (21), the density of v is
\[
\prod_{i=1}^{m} \mathcal{G}^{\beta}(t_{ii}^2 : a + k_i - (i-1)\beta/2, 1).
\]

2. if X has a Riesz distribution of type II, (22), the density of v is
\[
\prod_{i=1}^{m} \mathcal{G}^{\beta}(t_{ii}^2 : a - k_i - (i-1)\beta/2, 1).
\]

where $t_{ii}, i = 1, \ldots, m$, are independent random variables.

Proof. This is immediately from Theorem 3.2, noting that if
\[
B = \Sigma^{-1/2}X\Sigma^{-1/2} = T^\ast T,
\]
with $T \in \mathcal{F}_{\ell}^\beta(m)$ and $t_{ii} > 0, i = 1, 2, \ldots, m$, then
\[
|B| = \prod_{i=1}^{m} t_{ii}^2 = |X|/|\Sigma| = v.
\]

\[\square\]

This section defines several versions for the beta functions and their relation with the gamma functions type I and II. In these terms, the beta-Riesz distributions type I and II are defined. Finally, diverse properties are studied.

4.1. Generalised c-beta function

A generalised of multivariate beta function for the cone \mathcal{P}^β_m, denoted as $\mathcal{B}^\beta_m[a, \kappa; b, \tau]$, can be defined as
\[
\int_{0 \prec S \prec I_m} |S|^{(a-(m-1)\beta/2-1)\kappa} |S - I_m|^{b-(m-1)\beta/2-1} q_\tau(I_m - S)(dS) (26)
\]
where $\kappa = (k_1, k_2, \ldots, k_m), k_1 \geq k_2 \geq \cdots \geq k_m \geq 0, k_1, k_2, \ldots, k_m$ are nonnegative integers,
$\tau = (t_1, t_2, \ldots, t_m), t_1 \geq t_2 \geq \cdots \geq t_m \geq 0, t_1, t_2, \ldots, t_m$ are nonnegative integers, \(\Re(a) > (m-1)\beta/2 - k_m\) and \(\Re(b) > (m-1)\beta/2 - t_m\). This is defined by Faraut and Korányi (1994, p. 130) for Euclidean simple Jordan algebras. In the context of multivariate analysis, this generalised beta function can be termed generalised c-beta function type I, as analogy to the correspondence case of matrix multivariate beta distribution, and using the term c-beta as abbreviation of classical-beta. In the next theorem we introduce the generalised c-beta function type II and its relation with the generalised gamma function.

Theorem 4.1 The generalised c-beta function type I can be expressed as
\[
\int_{\mathbf{R} \in \mathcal{P}^\beta_m} |\mathbf{R}|^{(a-(m-1)\beta/2-1)\kappa} |\mathbf{R} - (a+b\kappa+\tau)(I_m + \mathbf{R})^{-1}}(d\mathbf{R}) = \frac{\Gamma^\beta_m[a, \kappa] \Gamma^\beta_m[b, \tau]}{\Gamma^\beta_m[a + b, \kappa + \tau]},
\]
where $\kappa = (k_1, k_2, \ldots, k_m), k_1 \geq k_2 \geq \cdots \geq k_m \geq 0, k_1, k_2, \ldots, k_m$ are nonnegative integers,
$\tau = (t_1, t_2, \ldots, t_m), t_1 \geq t_2 \geq \cdots \geq t_m \geq 0, t_1, t_2, \ldots, t_m$ are nonnegative integers, \(\Re(a) > (m-1)\beta/2 - k_m\) and \(\Re(b) > (m-1)\beta/2 - t_m\). The integral expression is termed generalised c-beta function type II.
Proof. Let \(R = (I - S)^{-1} - I \) then by Lemma 2.3 (\(dS = (I + R)^{-\beta(m-1)-2}(dR) \)). The desired result is obtained making the change of variable on (26) noting that \(S = (I_m + R)^{-1/2}R(I_m + R)^{-1/2} \), then
\[
|S| = |R||I_m + R|^{-1}, \quad |I_m - S| = |I_m + R|^{-1},
\]
and by (6) and (11) we have
\[
q_\kappa((I_m + R)^{-1/2}R(I_m + R)^{-1/2})q_\tau((I_m + R)^{-1}) = q_\kappa(R)q_\kappa^{-1}(I_m + R).
\]
For the expression in terms of generalised gamma function, let \(B = \Xi^{1/2}S\Xi^{1/2} \) in (26), such that \((\Xi^{1/2})^2 = \Xi \). Then \((dS) = |\Xi|^{-(m-1)\beta/2-1} (dB) \), and
\[
B_\beta^\gamma[a; \kappa; b; \tau] = \int_0^{\Xi} |B|^{a-(m-1)\beta/2-1} q_\kappa(B)|\Xi - B|^{b-(m-1)\beta/2-1} q_\tau(\Xi - B)(dB).
\]
Taking Laplace transform of both size, by (21), the left size is
\[
\int_{\Xi \in \mathbb{P}_m^\beta} B_\beta^\gamma[a; \kappa; b; \tau] \text{etr} \{-\Xi Z\}|\Xi|^{a+b-(m-1)\beta/2-1} q_\kappa+\tau(\Xi)(d\Xi)
= B_\beta^\gamma[a; \kappa; b; \tau] \Gamma_m^{\beta}[a + b; \kappa + \tau]|Z|^{-(a+b)} q_\kappa+\tau(Z),
\]
and applying Lemma 2.5, \(g_1(Z) \) is
\[
\int_{\Xi \in \mathbb{P}_m^\beta} \text{etr} \{-\Xi Z\}|\Xi|^{a-(m-1)\beta/2-1} q_\kappa(\Xi)(d\Xi) = \Gamma_m^{\beta}[a; \kappa]|Z|^{-a} q_\kappa(Z),
\]
and \(g_2(Z) \) is given by
\[
\int_{\Xi \in \mathbb{P}_m^\beta} \text{etr} \{-\Xi Z\}|\Xi - B|^{b-(m-1)\beta/2-1} q_\kappa(\Xi - B)(d\Xi) = \Gamma_m^{\beta}[b; \tau]|Z|^{-b} q_\tau(Z).
\]
Thus, equally
\[
B_\beta^\gamma[a; \kappa; b; \tau] = \frac{\Gamma_m^{\beta}[a; \kappa] \Gamma_m^{\beta}[b; \tau]}{\Gamma_m^{\beta}[a + b; \kappa + \tau]}.
\]

4.2. Generalised \(k \)-beta function

Alternatively, a generalised of multivariate beta function for the cone \(\mathbb{P}_m^\beta \), can be defined and denoted as
\[
B_\beta^\gamma[a; -\kappa; b; -\tau] = \int_{0 < S < I_m} |S|^{a-(m-1)\beta/2-1} q_\kappa(S^{-1})|I_m - S|^{b-(m-1)\beta/2-1} q_\tau((I_m - S)^{-1})(dS)
\]
where \(\kappa = (k_1, k_2, \ldots, k_m) \), \(k_1 \geq k_2 \geq \cdots \geq k_m \geq 0 \), \(k_1, k_2, \ldots, k_m \) are nonnegative integers, \(\tau = (t_1, t_2, \ldots, t_m) \), \(t_1 \geq t_2 \geq \cdots \geq t_m \geq 0 \), \(t_1, t_2, \ldots, t_m \) are nonnegative integers, \(\text{Re}(a) > (m-1)\beta/2 + k_1 \) and \(\text{Re}(b) > (m-1)\beta/2 + t_1 \). Again, in the context of multivariate analysis, this generalised \(k \)-beta function can be termed generalised \(k \)-beta function type I, as an analogy to the corresponding case of matrix multivariate beta distribution and using the term \(k \)-beta as abbreviation of Khatri-beta. Next theorem introduces the generalised \(k \)-beta function type II and its relation with the generalised gamma function proposed by Khatri (1966).
Theorem 4.2 The generalised k-beta function type II can be expressed as
\[
\int_{R \in \mathcal{P}_m^\beta} |R|^{a-(m-1)\beta/2-1} q_k^{-1}(R)|I_m + R|^{-(a+b) \kappa + \tau}(I_m + R)(dR) = \frac{\Gamma_m^\beta[a, \kappa] \Gamma_m^\beta[b, \tau]}{\Gamma_m^\beta[a + b, \kappa - \tau]},
\]
where \(\kappa = (k_1, k_2, \ldots, k_m), k_1 \geq k_2 \geq \cdots \geq k_m \geq 0, k_1, k_2, \ldots, k_m \) are nonnegative integers, \(\tau = (t_1, t_2, \ldots, t_m), t_1 \geq t_2 \geq \cdots \geq t_m \geq 0, t_1, t_2, \ldots, t_m \) are nonnegative integers, \(\text{Re}(a) > (m-1)\beta/2 + k_1 \) and \(\text{Re}(b) > (m-1)\beta/2 + t_1. \) The integral expression is termed generalised k-beta function type II.

Proof. The proof is analogous to the given for Theorem 4.1.

Observe that if \(\kappa = (0, \ldots, 0) \) and \(\tau = (0, \ldots, 0) \) in (26), Theorem 4.1, (27) and Theorem 4.2 the beta function (14) is obtained.

4.3. c-beta-Riesz and k-beta-Riesz distributions

As an immediate consequence of the results of the previous section, next the c-beta-Riesz and k-beta-Riesz distributions types I and II are defined.

Definition 4.1 Let \(\kappa = (k_1, k_2, \ldots, k_m), k_1 \geq k_2 \geq \cdots \geq k_m \geq 0, k_1, k_2, \ldots, k_m \) are nonnegative integers and \(\tau = (t_1, t_2, \ldots, t_m), t_1 \geq t_2 \geq \cdots \geq t_m \geq 0, t_1, t_2, \ldots, t_m \) are nonnegative integers.

1. Then it said that \(S \) has a c-beta-Riesz distribution of type I if its density function is
\[
\frac{1}{B_m^\beta[a, \kappa; b, \tau]} |S|^{a-(m-1)\beta/2-1} q_k(S)|I_m - S|^{b-(m-1)\beta/2-1} q_k^{-1}(I_m - S)(dS),
\]
where \(0 < S < I_m \) and \(\text{Re}(a) > (m-1)\beta/2 - k_m \) and \(\text{Re}(b) > (m-1)\beta/2 - t_m. \)

2. Then it said that \(R \) has a c-beta-Riesz distribution of type II if its density function is
\[
\frac{1}{B_m^\beta[a, \kappa; b, \tau]} |R|^{a-(m-1)\beta/2-1} q_k(R)|I_m + R|^{-(a+b) \kappa + \tau}(I_m + R)(dR),
\]
where \(R \in \mathcal{P}_m^\beta \) and \(\text{Re}(a) > (m-1)\beta/2 - k_m \) and \(\text{Re}(b) > (m-1)\beta/2 - t_m. \)

Similarly we have

Definition 4.2 Let \(\kappa = (k_1, k_2, \ldots, k_m), k_1 \geq k_2 \geq \cdots \geq k_m \geq 0, k_1, k_2, \ldots, k_m \) are nonnegative integers and \(\tau = (t_1, t_2, \ldots, t_m), t_1 \geq t_2 \geq \cdots \geq t_m \geq 0, t_1, t_2, \ldots, t_m \) are nonnegative integers.

1. Then it said that \(S \) has a k-beta-Riesz distribution of type I if its density function is
\[
\frac{1}{B_m^\beta[a, -\kappa; b, -\tau]} |S|^{a-(m-1)\beta/2-1} q_k^{-1}(S)|I_m - S|^{b-(m-1)\beta/2-1} q_k^{-1}(I_m - S)(dS),
\]
where \(0 < S < I_m \) and \(\text{Re}(a) > (m-1)\beta/2 + k_1 \) and \(\text{Re}(b) > (m-1)\beta/2 + t_1. \)

2. Then it said that \(R \) has a k-beta-Riesz distribution of type II if its density function is
\[
\frac{1}{B_m^\beta[a, -\kappa; b, -\tau]} |R|^{a-(m-1)\beta/2-1} q_k^{-1}(R)|I_m + R|^{-(a+b) \kappa + \tau}(I_m + R)(dR),
\]
where \(R \in \mathcal{P}_m^\beta \) and \(\text{Re}(a) > (m-1)\beta/2 + k_1 \) and \(\text{Re}(b) > (m-1)\beta/2 + t_1. \)
Observe that the relationship between the densities (28) and (29), and between the densities (30) and (31) are easily obtained from the theorems 4.1 and 4.2, respectively.

The following result state the relation between the Riesz and beta-Riesz distributions.

Theorem 4.3 Let X_1 and X_2 be independently distributed as Riesz distribution type I, such that $X_1 \sim \mathcal{R}_{m}^{I}(a, \kappa, I_m)$ and $X_2 \sim \mathcal{R}_{m}^{I}(b, \tau, I_m)$, $\Re(a) > (m - 1)/2 + k_1$ and $\Re(b) > (m - 1)/2 + t_1$. Let

$$S = (X_1 + X_2)^{-1/2}X_2(X_1 + X_2)^{-1/2},$$

where $(X_1 + X_2)^{1/2}$ is any nonsingular factorisation of $(X_1 + X_2)$, $(X_1 + X_2) = (X_1 + X_2)^{1/2}(X_1 + X_2)^{1/2}$. Then S has a c-beta-Riesz distribution type I.

Proof. The joint density of X_1 and X_2 is given by

$$
\frac{\beta(a+b)m+\sum_{i=1}^{m}(k_i+t_i)}{\Gamma_m[a, \kappa]I_m^\beta[b, \tau]} \left(- (X_1 + X_2) \right) |X_1|^{a-(m-1)/2 - 1} q_\kappa(X_1) \\
\times |X_2|^{b-(m-1)/2 - 1} q_\tau(X_2) (dX_1) \wedge (dX_2).
$$

Let $Y = X_1 + X_2$ and $Z = X_2$, then, $(dX_1) \wedge (dX_2) = (dY) \wedge (dZ)$. Then the joint density of Y and Z is given by

$$
\frac{\beta(a+b)m+\sum_{i=1}^{m}(k_i+t_i)}{\Gamma_m[a, \kappa]I_m^\beta[b, \tau]} \left(- Y \right) \left| \frac{Y - Z}{X_2} \right|^{a-(m-1)/2 - 1} q_\kappa(Y - Z) \\
\times |Z|^{b-(m-1)/2 - 1} q_\tau(Z) (dY) \wedge (dZ).
$$

Let $S = Y^{-1/2}Z Y^{-1/2}$ and $W = Y$, with $Y = Y^{1/2}Y^{1/2}$, then,

$$(dY) \wedge (dZ) = |W|^{m-1/2+1}(dW) \wedge (dS).$$

Hence the joint density of S and W is

$$
\frac{\beta(a+b)m+\sum_{i=1}^{m}(k_i+t_i)}{\Gamma_m[a, \kappa]I_m^\beta[b, \tau]} \left(- W \right) \left| W \right|^{a+b-(m-1)/2 - 1} q_\kappa(W) |I - S|^{a-(m-1)/2 - 1} \\
\times q_\kappa(I - S) |S|^{b-(m-1)/2 - 1} q_\tau(S) (dW) \wedge (dS).
$$

Therefore, integrating with respect to W the desired result is obtained. □

Theorem 4.4 Let X_1 and X_2 be independently distributed as Riesz distribution type I, such that $X_1 \sim \mathcal{R}_{m}^{I}(a, \kappa, I_m)$ and $X_2 \sim \mathcal{R}_{m}^{I}(b, \tau, I_m)$, $\Re(a) > (m - 1)/2 + k_1$ and $\Re(b) > (m - 1)/2 + t_1$. Let

$$R = X_1^{1/2}X_2X_1^{1/2},$$

where $X_1^{1/2}$ is any nonsingular factorisation of X_1, in the sense that $X_1 = X_1^{1/2}X_1^{1/2}$. Then S has a c-beta-Riesz distribution type II.

Proof. The joint density of X_1 and X_2 is given by

$$
\frac{\beta(a+b)m+\sum_{i=1}^{m}(k_i+t_i)}{\Gamma_m[a, \kappa]I_m^\beta[b, \tau]} \left(- (X_1 + X_2) \right) |X_1|^{a-(m-1)/2 - 1} q_\kappa(X_1) \\
\times |X_2|^{b-(m-1)/2 - 1} q_\tau(X_2) (dX_1) \wedge (dX_2).
$$
Let \(R = X_1^{-1/2} X_2 X_1^{-1/2'} \) and \(W = X_1 \), with \(X_1 = X_1^{1/2'} X_1^{1/2} \), then,
\[
(dX_1) \land (dX_2) = |W|^\beta(m-1)/2+1(dW) \land (dR)
\]

Hence the joint density of \(S \) and \(W \) is
\[
\binom{\beta(a+b)m+\sum_{i=1}^m(k_i+t_i)}{\Gamma^\beta_m(a,\kappa)\Gamma^\beta_m(b,\tau)} \quad \text{etr}\{-W(I_m + R)\} |W|^{a+b-(m-1)\beta/2-1}q_{\kappa+\tau}(W)
\]
\[
\times |R|^{b-(m-1)\beta/2-1}q_{\tau}(R)(dW) \land (dR).
\]

Then, integrating with respect to \(W \) the density of \(R \) is obtained. \(\square \)

The following theorems 4.5 and 4.6 contain versions for \(k \)-beta-Riesz distributions of theorems 4.3 and 4.4, whose proofs are similar.

Theorem 4.5 Let \(X_1 \) and \(X_2 \) be independently distributed as Riesz distribution type II, such that \(X_1 \sim \mathcal{R}^{\beta,II}_{m}(a,\kappa, I_m) \) and \(X_2 \sim \mathcal{R}^{\beta,II}_{m}(b,\tau, I_m) \), \(\text{Re}(a) > (m-1)\beta/2 + k_1 \) and \(\text{Re}(b) > (m-1)\beta/2 + t_1 \). Let
\[
S = (X_1 + X_2)^{-1/2} X_2(X_1 + X_2)^{-1/2'},
\]
where \((X_1 + X_2)^{1/2}\) is any nonsingular factorisation of \((X_1 + X_2)\), \((X_1 + X_2)^{1/2} = (X_1 + X_2)^{1/2'}\). Then \(S \) has a \(k \)-beta-Riesz distribution type I.

Theorem 4.6 Let \(X_1 \) and \(X_2 \) be independently distributed as Riesz distribution type I, such that \(X_1 \sim \mathcal{R}^{\beta,II}_{m}(a,\kappa, I_m) \) and \(X_2 \sim \mathcal{R}^{\beta,II}_{m}(b,\tau, I_m) \), \(\text{Re}(a) > (m-1)\beta/2 + k_1 \) and \(\text{Re}(b) > (m-1)\beta/2 + t_1 \). Let
\[
R = X_1^{-1/2} X_2 X_1^{-1/2'},
\]
where \(X_1^{1/2} \) is any nonsingular factorisation of \(X_1 \), in the sense \(X_1 = X_1^{1/2'} X_1^{1/2} \). Then \(S \) has a \(k \)-beta-Riesz distribution type II.

4.4. Some properties of the \(c \)-beta-Riesz and \(k \)-beta-Riesz distributions

This section derives the distributions of eigenvalues for \(c \)-beta-Riesz and \(k \)-beta-Riesz distributions type I and II. First remember that:

Remark 4.1 If \(ch_i(M) \) denotes the \(i \)-th eigenvalue of the matrix \(M \in \mathcal{M}_m^\beta \), then note that if \(X, Y \in \mathcal{M}_m^\beta \),
\[
ch_i(X^{-1/2} Y X^{-1/2}) = ch_i(X^{-1} Y) = ch_i(Y X^{-1}).
\]

Furthermore, if \(A \in \Phi_m^\beta \) is a nonsingular matrix then
\[
ch_i((A' X A)^{-1} A' Y A) = ch_i(X^{-1} Y)
\]

Then, it is found the joint distributions of the eigenvalues for random matrices \(c \)- and \(k \)-beta-Riesz type I and II assuming that \(\Sigma \neq I_m \) in theorems 4.3-4.6.

Theorem 4.7 Let \(\Sigma \in \Phi_m^\beta, \kappa = (k_1, k_2, \ldots, k_m), k_1 \geq k_2 \geq \cdots \geq k_m \geq 0, k_1, k_2, \ldots, k_m \) are nonnegative integers and \(\tau = (t_1, t_2, \ldots, t_m), t_1 \geq t_2 \geq \cdots \geq t_m \geq 0, t_1, t_2, \ldots, t_m \) are nonnegative integers.
1. Let \(\lambda_1, \ldots, \lambda_m, \lambda_1 > \cdots > \lambda_m > 0 \) be the eigenvalues of \(S \). Then if \(S \) has a \(c \)-beta-Riesz distribution of type I, the joint density of \(\lambda_1, \ldots, \lambda_m \) is

\[
\frac{\pi^{m^2\beta/2+\varrho}}{\Gamma_m^\beta[m\beta/2]B_m^\beta[a, \kappa; b, \tau]} \prod_{i<j}^{m}(\lambda_i - \lambda_j)^\beta \prod_{i=1}^{m} \lambda_i^{a+k_i-(m-1)\beta/2-1} \prod_{i=1}^{m} (1 - \lambda_i)^{b+t_i-(m-1)\beta/2-1} \left(\prod_{i=1}^{m} d\lambda_i \right),
\]

where \(0 < \lambda_i < 1, i = 1, \ldots, m \) and \(\text{Re}(a) > (m-1)\beta/2 - k_m \) and \(\text{Re}(b) > (m-1)\beta/2 - t_m \).

2. Let \(\delta_1, \ldots, \delta_m, \delta_1 > \cdots > \delta_m > 0 \) be the eigenvalues of \(R \). Then if \(R \) has a \(c \)-beta-Riesz distribution of type II, the joint density of their eigenvalues is

\[
\frac{\pi^{m^2\beta/2+\varrho}}{\Gamma_m^\beta[m\beta/2]B_m^\beta[a, \kappa; b, \tau]} \prod_{i<j}^{m}(\delta_i - \delta_j)^\beta \prod_{i=1}^{m} \delta_i^{a+k_i-(m-1)\beta/2-1} \prod_{i=1}^{m} (1 - \delta_i)^{-(a+b+k_i+t_i)} \left(\prod_{i=1}^{m} d\delta_i \right),
\]

where \(\delta_i > 0, i = 1, \ldots, m \) and \(\text{Re}(a) > (m-1)\beta/2 - k_m \) and \(\text{Re}(b) > (m-1)\beta/2 - t_m \).

\(\varrho \) is defined in Lemma 2.4.

Proof. This is due to applying the Lemma 2.4 in (28) and (29), and taking into account the Remark 4.1 and equations (5) and (6). \(\square \)

This section conclude establishing the Theorem 4.7 for the case of the \(k \)-beta-Riesz distributions.

Theorem 4.8 Let \(\Sigma \in \Phi^\beta_m, \kappa = (k_1, k_2, \ldots, k_m), k_1 \geq k_2 \geq \cdots \geq k_m \geq 0, k_1, k_2, \ldots, k_m \) are nonnegative integers and \(\tau = (t_1, t_2, \ldots, t_m), t_1 \geq t_2 \geq \cdots \geq t_m \geq 0, t_1, t_2, \ldots, t_m \) are nonnegative integers.

1. Let \(\lambda_1, \ldots, \lambda_m, \lambda_1 > \cdots > \lambda_m > 0 \) be the eigenvalues of \(S \). Then if \(S \) has a \(k \)-beta-Riesz distribution of type I, the joint density of \(\lambda_1, \ldots, \lambda_m \) is

\[
\frac{\pi^{m^2\beta/2+\varrho}}{\Gamma_m^\beta[m\beta/2]B_m^\beta[a, \kappa; b, \tau]} \prod_{i<j}^{m}(\lambda_i - \lambda_j)^\beta \prod_{i=1}^{m} \lambda_i^{-k_i-(m-1)\beta/2-1} \prod_{i=1}^{m} (1 - \lambda_i)^{b-t_i-(m-1)\beta/2-1} \left(\prod_{i=1}^{m} d\lambda_i \right),
\]

where \(0 < \lambda_i < 1, i = 1, \ldots, m \) and \(\text{Re}(a) > (m-1)\beta/2 + k_1 \) and \(\text{Re}(b) > (m-1)\beta/2 + t_1 \).

2. Let \(\delta_1, \ldots, \delta_m, \delta_1 > \cdots > \delta_m > 0 \) be the eigenvalues of \(R \). Then if \(R \) has a \(k \)-beta-Riesz distribution of type II, the joint density of their eigenvalues is

\[
\frac{\pi^{m^2\beta/2+\varrho}}{\Gamma_m^\beta[m\beta/2]B_m^\beta[a, \kappa; b, \tau]} \prod_{i<j}^{m}(\delta_i - \delta_j)^\beta \prod_{i=1}^{m} \delta_i^{-k_i-(m-1)\beta/2-1} \prod_{i=1}^{m} (1 - \delta_i)^{-(a+b+k_i-t_i)} \left(\prod_{i=1}^{m} d\delta_i \right),
\]

where \(\delta_i > 0, i = 1, \ldots, m \) and \(\text{Re}(a) > (m-1)\beta/2 + k_1 \) and \(\text{Re}(b) > (m-1)\beta/2 + t_1 \).
Finally, note that the real dimension of real normed division algebras can be expressed as powers of 2, $\beta = 2^n$ for $n = 0, 1, 2, 3$. On the other hand, as observed from Kabe (1984), the results obtained in this work can be extended to hypercomplex cases; that is, for complex, bicomplex, biquaternion and bioctonion (or sedenionic) algebras, which of course are not division algebras (except the complex algebra). Also note, that hypercomplex algebras are obtained by replacing the real numbers with complex numbers in the construction of real normed division algebras. Thus, the results for hypercomplex algebras are obtained by simply replacing β with 2β in our results. Alternatively, following Kabe (1984), it can be concluded that, results are true for ‘2^n-ions’, $n = 0, 1, 2, 3, 4, 5$, emphasising that only for $n = 0, 1, 2, 3$ are the result algebras, in fact, real normed division algebras.

Acknowledgements

This article was written under the existing research agreement between the first author and the Universidad Autónoma Agraria Antonio Narro, Saltillo, México.

References

Affiliation:
José A. Díaz-García
Universidad Autónoma Agraria Antonio Narro
Calzada Antonio Narro 1923
Col. Buenavista
25315 Saltillo, Coahuila, México
E-mail: jadiaz@uaaan.mx

Austrian Journal of Statistics
published by the Austrian Society of Statistics
Volume VV
MMMMMM YYYYY
http://www.ajs.or.at/
http://www.osg.or.at/
Submitted: yyyy-mm-dd
Accepted: yyyy-mm-dd