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Abstract

The finite population bootstrap method is a computer-intensive alternative to estimate
the sampling distribution of a sample statistic. In one possible approach, generation of
an artificial population, the so-called “bootstrap population”, becomes a necessary step
between the original sample drawn and the resamples needed to mimic this distribution.
For this, the main problem is how to create a bootstrap population that is adequately close-
to-real for resampling. For this process, the bootstrap population need not be generated
in reality. After an overview of different methods of the finite population bootstrap, this
paper presents an approach, based on the idea behind the Horvitz-Thompson estimator,
which allows not only whole units in the bootstrap population but also parts of whole
units. In a simulation study, this method is compared with a more heuristic technique,
taken from the bootstrap literature.
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1. Introduction

The bootstrap technique was originally published by Efron (1979) for the problem of estimat-
ing the sampling distribution of a statistic θ̂, depending on a random sample and an unknown
probability distribution of a variable y under study, on the basis of the observed sample. This
procedure can be described in the following way (cf. Efron 1979, p.3):

1. An i.i.d. sample of size n is drawn to observe an empirical distribution of the study
variable.

2. From this empirical distribution, a bootstrap i.i.d. resample of size n is considered.

3. The sampling distribution of the statistic of interest is approximated by the theoretical
bootstrap distribution of it.

This bootstrap distribution equals the sampling distribution of the statistic if the empirical
distribution of the variable equals its probability distribution. Efron (1979) considers as “the
difficult part of the bootstrap procedure ... the actual calculation of the bootstrap distribu-
tion” (p.4). Three methods are possible: The direct theoretical calculation, an approximation
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by Taylor series expansion, and a Monte Carlo approximation. The latter has turned out
to be most common. In this case, B resamples of the same size as that of the original sam-
ple are drawn with replacement from the empirical distribution of y, which can be seen as
the Maximum-Likelihood (ML) estimator of the underlying probability distribution (cf. Chao
and Lo 1994, pp.391). Within each of the B bootstrap samples s1, ..., sB, the estimator θ̂b of
parameter θ is calculated in the same way as the statistic θ̂ for the sample s (b = 1, ..., B).
For large B, the distribution of θ̂b is interpreted as an estimate of the sample distribution of
θ̂. Hence, the theoretical variance V (θ̂) of θ̂ is estimated by the Monte Carlo (MC) variance
given by

VMC(θ̂) =
1

B − 1
·
B∑
b=1

(θ̂b − θ)2 (1)

with

θ =
1
B
·
B∑
b=1

θ̂b. (2)

The statistic θ is the mean value of the estimators θ̂b in the B bootstrap samples. For
approximately normal sampling distributions, this variance estimator can be used for the
calculation of an approximate confidence interval. For large B and non-normal sampling
distributions, a confidence interval can be calculated by applying the percentile method (cf.
Efron 1981, pp.317ff).
With increasing memory space of computers, an application of this method to finite popu-
lation sampling became desirable. Such an effort has to consider complex sampling designs
consisting of complex estimators and sampling schemes drawing the sample units without
replacement, and arbitrary sample inclusion probabilities at various stages of the sampling
process (cf., as an example, the discussion of the sampling design of the Austrian PISA survey
in Quatember and Bauer 2012). For this purpose, different approaches are available in the
relevant literature (cf., for instance, Wolter 2007, p.200ff). One of them rescales the obser-
vations in the resamples drawn with replacement from the original sample in a way that the
bootstrap variance (1) approximates the actual variance under a given sampling design (cf.
Rao and Wu 1988). Another approach is to use the with-replacement bootstrap technique and
adjust its bootstrap variance estimator to the parameter by an adequate choice of the size of
the resamples (cf. McCarthy and Snowden 1985). Sitter (1992a) presented the “Mirror-Match
Method”, in which subsamples of the original sample are drawn repeatedly according to the
original sampling plan with a subsample size chosen to appropriately match the original vari-
ance of the estimator. Antal and Tillé (2011) discuss another approach, in which different
with- and without-replacement resampling procedures are mixed in a way that the bootstrap
variance estimator calculated from resamples of the same size as that of the original sample
under this mixture of resampling schemes, equals the interesting variance.
Furthermore, the finite population bootstrap approach, which is considered a natural exten-
sion of the technique by Efron (1979) to finite population sampling, generates an artificial
population, the “bootstrap population”, from the observed sample data. For this problem, the
finite population U of N elements takes over the role of the unknown probability distribution
in the i.i.d. bootstrap. The population elements are characterized by their values yk of y and
xk of a possible auxiliary variable x (k = 1, ..., N). Gross (1980) was the first to adapt the
original bootstrap method to the specific case of a simple random sample without replace-
ment (SI), but only with the restriction of integer design weights N

n ∈ N. For this purpose,
from an SI sample s, a set-valued finite population estimator U∗G of size N∗G = N of the true
population U of size N is generated by replicating each sample value yk exactly N

n times (cf.
p.184) providing a variable” y∗ denoting these “clones” of the sample values. Hence, the boot-
strap population U∗G can be interpreted as the finite population with the ML regarding the
sample drawn (cf. Chao and Lo 1994, p.396). For N

n = 2,400
400 = 6, for example, the bootstrap

population U∗G comprises six units of each sample value yk resulting in a population of total
size N∗G = 2, 400 (k = 1, ..., n).
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This entire process can be seen as the application of the idea behind the unbiased Horvitz-
Thompson (H-T) estimator of the total t of y, that is

tH-T =
n∑
k=1

yk ·
1
πk

(3)

with first-order sample inclusion probabilities πk, to the problem of generating an adequate
bootstrap population. For SI sampling, Eq.(3) results in

tH-T =
n∑
k=1

yk ·
N

n
. (4)

Obviously, this estimation strategy can be described by the generation of a so-called “pseudo-
population”U∗H-T , for which each sample value yk is replicated exactly N

n times (cf. Quatember
2014, pp.20ff). Compared to the bootstrap population U∗G from above with N

n ∈ N, the
pseudo-population U∗H-T of the H-T process allows not only to contain bNn c whole units (bxc
denotes the integer part of x ∈ R) with the same value yk of variable y but also an (Nn −b

N
n c)-

piece of a unit with that value when N
n is not an integer (∀ k ∈ s). For N

n = 2,600
400 = 6.5,

for example, the H-T pseudo-population UH-T comprises six whole and one half unit of each
sample value yk (k = 1, ..., n).

After U∗G is generated, B resamples of size n are drawn from U∗G following the original sampling
method. In other words, the resamples are no i.i.d. samples of size n from the original sample
s. Instead, the resampling process from U∗G follows a multivariate hypergeometric distribution
with parameters N , n, and N times 1 (cf., for instance Ranalli and Mecatti 2012). Hence,
each of the n sample values y1, ..., yn has the same probability 1

n of being chosen as the first
value in the resample of same size n. After the first draw, the same value already drawn at

the first step has a probability of
N
n
−1

N−1 = N−n
n(N−1) for being chosen also as the second element

of the resample. The other n− 1 values of y in s, not selected as the first resample element,

have a probability of
N
n

N−1 = N
n(N−1) and so on. Generally, a value yk observed in s has a

probability
N − n · hk,j−1

n · (N − j + 1)
(5)

of being selected at the j-th step of a resample selection from U∗G (j = 1, ..., n). In (5), hk,j−1

denotes the number of times the value yk was already selected in the first j − 1 steps of the
process to generate a resample (hk,0 = 0 ∀ k ∈ s).
This shows that the bootstrap population U∗G does not have to be generated in reality. The
resample process from U∗G might as well be carried out by applying the probability mechanism
described above directly to the sample s. This was also discussed by Ranalli and Mecatti
(2012) as a resource and time saving alternative to the physical generation of the bootstrap
population. These resamples form the basis for the estimation of the sampling distribution
of the estimator θ̂ (for example, the H-T estimator tH-T ) for parameter θ (for instance, the
total t) in SI sampling. For this purpose, in each of the B resamples sb, the estimator θ̂b has
to be calculated in the same way as θ̂ was calculated in the original sample s (b = 1, ..., B).

Considering, for instance, the estimation of parameter t of variable y by Formula (4), this
means that within each SI resample sb of size n, an estimate tH-Tb

is calculated using the
replication variable y∗ in U∗G:

tH-Tb
=

n∑
k=1

y∗k ·
N

n
.

The MC variance (1) of these B estimates serves as an estimator of the variance V (tH-T ) of
tH-T under the SI sampling scheme. This variance estimator is approximately unbiased in
large samples (cf., for instance Sitter 1992b, p.139).
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Obviously, for general applicability in the practice of survey sampling, this idea has to be
extended to

i) non-integer design weights, and

ii) general probability sampling, including stratification and clustering, ensuring a bootstrap
population with the same structure as the original population (cf. Chao and Lo 1994,
pp.398ff).

The techniques to generate a bootstrap population U∗. proposed in the relevant literature for
different sampling schemes deviate more or less from the ML principle applied by Efron (1979)
and Gross (1980) in the generation of the bootstrap population (cf., for instance Bickel and
Freedman 1984; Kuk 1989; Sitter 1992b; Chao and Lo 1994; Booth, Butler, and Hall 1994).

General probability proportional to size random sampling without replacement (πPS), where
the selection process is carried out, for instance, by systematic selection of elements ordered
randomly in a list (cf. Särndal, Swensson, and Wretman 1992, p.96f), is commonly used in
large-scale surveys such as the PISA survey (cf. OECD 2012, ch.4). This sampling method
has a positive impact on the efficiency of the HT estimator of t, when the study variable
y and the size variable x are approximately proportionally related. But, the estimation of
the variance of the HT estimator may be hard. In particular, the calculation of the second-
order inclusion probabilities, needed for the HT variance estimator, can be cumbersome or
even impossible. Holmberg (1998) proposed a bootstrap approach to estimate the variance
for general πPS sampling. The total of size variable x in U is denoted as tx. Under the
restriction xk · n ≤ tx ∀ k ∈ U , the design weight 1

πk
= tx

xkn
of survey unit k is decomposed

into an integer part b txxkn
c and the “rest” tx

xkn
− b txxkn

c. To generate the pseudo-population
U∗H , the values yk and xk of each unit k are jointly replicated b txxkn

c times and, independently
from each other, randomly once more with probability tx

xkn
− b txxkn

c. This process creates
a bootstrap population U∗H of size N∗H with an expected value of E(N∗H) = N . After U∗H
is generated, the sample inclusion probabilities πk have to be recalculated according to the
variable x∗ consisting of the replicated sample values of x, before the resampling process can
start. Then, a number of B resamples of size n are drawn from U∗H according to πPS sampling.
The estimation of the parameter under study is done in each of these bootstrap samples in
the same way as it was done in the original one. For large N and n, the bootstrap variance
estimator (1), for example, achieves approximate unbiasedness with respect to the variance
of the H-T estimator of t (cf. Holmberg 1998, p.381).

Barbiero and Mecatti (2010) aimed to simplify the procedure presented for πPS sampling by
Holmberg (1998) and, at the same time, improve its efficiency with respect to the estimation
of the variance of the H-T estimator of t. They propose to make “a more complete use of
the auxiliary information” (Barbiero and Mecatti 2010, p.62) available for size variable x, in
particular of its total tx. According to these authors, the following understandable properties
should apply to a bootstrap algorithm with respect to the estimation of a total t of variable
y (cf. Barbiero and Mecatti 2010, pp.60ff):

1. Given the sample s, in a bootstrap population U∗. , the total tx∗ of variable x∗ should
be equal to the total tx of x in U .

2. The total ty∗ of variable y∗ in U∗. should be equal to the H-T estimator tH-T of t
calculated in the original sample s.

3. For given s, over all B resamples sb, the H-T estimator of the total ty∗ of y∗ in U∗.
should have an expectation equal to the H-T estimator of t in the original sample s.

Obviously, these properties are desirable for an efficient estimation of V (tHT ) by VMC(tHT ).
For different bootstrap methods in the literature dealing with the generation of bootstrap
populations, these three properties hold only for 1

πk
∈ N ∀ k ∈ s. Hence, Barbiero and Mecatti
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(2010) at least proposed an “x-balanced πPS-bootstrap”, where after replicating each sample
unit k a number of b txxkn

c times, further units are iteratively added to the bootstrap population
U∗BM from a list where these units are sorted in decreasing order of their ( tx

xkn
− b txxkn

c)-value
or their ratio 1

πk
· 1
b tx

xkn
c+1

until the minimum difference of tx∗ and tx is achieved. Considering

the ratios, for the same ( tx
xkn
− b txxkn

c)-values, elements with a higher integer part b txxkn
c of

their design weight tx
xkn

have a higher probability of again being added to U∗BM , as compared
with elements with a lower integer part. After U∗BM is generated, the probabilities πk have
also to be recalculated before the resampling process can start.

But, these proposals for non-integer design weights also result in bootstrap populations not
guaranteeing a size N∗BM = N for SI sampling, when 1

πk
/∈ N (cf. Ranalli and Mecatti 2012,

p.4095). For b txxkn
c ∈ N and SI sampling, the methods of Holmberg (1998) and Barbiero and

Mecatti (2010) reduce to the original concept proposed by Gross (1980).

2. The proposed bootstrap method

All the methods described in the introductory section are more or less heuristic when it comes
to the generation of a bootstrap population in the presence of non-integer design weights
(cf. Rao and Wu 1988, pp.237). They all try to establish a bootstrap population to start
the resampling process from it, which includes solely integer numbers of replications of the
original sample values and, as a consequence, also of the total number of units in the bootstrap
population.

In the following, a procedure is proposed, which is a direct application of the idea behind the
H-T estimator of a total as it was described below Eq.(4) to the bootstrap population problem.
It complements the proposals of Holmberg (1998) and Barbiero and Mecatti (2010) for the
problem of non-integer design weights. This Horvitz-Thompson based bootstrap approach
(HTB) also allows non-integer numbers of replications of the sample values of y and x to
generate the bootstrap population U∗HTB. Let each unit k be replicated exactly 1

πk
= tx

xkn

times. In this way, a bootstrap population U∗HTB is generated which contains not only b txxkn
c

whole units with values yk and xk but also an additional ( tx
xkn
− b txxkn

c)-piece of a unit with
these values when tx

xkn
− b txxkn

c > 0 applies (k ∈ s). In this way, U∗HTB has an expected
size N∗HTB of E(N∗HTB) =

∑
s

1
πk

= N . For SI sampling with πk = n
N , this means that a

bootstrap population with size N∗HTB = N is guaranteed. In the resampling process based on
the bootstrap population U∗HTB, a whole unit k belonging to this population has a resample
inclusion probability proportional to its original x-value. But, for a ( tx

xkn
− b txxkn

c)-piece of a
unit, this probability is proportional to ( tx

xkn
− b txxkn

c) times x. Hence, after the generation of
U∗HTB as a set-valued estimator of U , the design weights of the elements will not have to be
recalculated.

From the point of view of the underlying probability mechanism, the value yk of the original
sample s (k = 1, ..., n) has a probability of

tx − n · hk,j−1 · xk
n · (tx −

∑
sbj−1

xi)
(6)

for being selected into the b-th resample at the j-th step of the process of drawing n resampling
units (j = 1, ..., n) when tx

xkn
−hk,j−1·xk > 0 applies. Otherwise, for the j-th draw, its inclusion

probability is set to zero. In Eq. (6), hk,j−1 denotes the number of times yk was already
chosen within the first j − 1 steps of the selection of n units for resample sb. Furthermore,
sbj−1

denotes the subset of the resample sb after the (j−1)-th draw. Applying this probability
mechanism in the resampling process can replace the resource consuming physical generation
of the bootstrap population U∗HTB. For xk = 1 ∀ k ∈ U and N

n ∈ N, the method reduces to
the strategy of the SI technique of Gross (1980) as discussed under Section 1.
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In each of the resamples drawn, the original estimator θ̂ of parameter θ under study is cal-
culated. In the case of the estimation of total t, for instance, the estimator can be the
ordinary H-T estimator, ratio or regression estimator, or other calibrated estimators based
on poststratification or iterative proportional fitting (cf., for instance Alfons and Templ 2013,
p.20f).

For the proposed HTB technique, regarding the three desired properties for efficient variance
estimation, as mentioned in Section 1 (cf. Barbiero and Mecatti 2010, pp.60ff), the following
applies:

1. The total tx∗ of size variable x∗ in U∗HTB is given by: tx∗ =
∑n

k=1 xk ·
1
πk

= tx.

2. For the total ty∗ of variable y∗ in U∗HTB, ty∗ =
∑n

k=1 yk ·
1
πk

= tH-T applies.

3. The expected value of the H-T estimator of the total ty∗ of y∗ in U∗HTB yieldsE∗(
∑n

k=1 y
∗
k·

1
πk

) = ty∗ = tH-T with E∗ denoting the expectation over all resamples, given s and the
sampling design.

Clearly, for usual design weights, the proposed HTB method it is not expected to perform
much better than, for instance, the technique of Holmberg (1998). Nevertheless, it is shown
that the three desirable properties regarding estimation quality mentioned by Barbiero and
Mecatti (2010) always hold for this method. The proposed method to generate the bootstrap
population might as well seem more understandable in terms of educational reasons than the
heuristic methods from the literature, because it follows the same idea as the one behind the
widely used H-T estimator when it comes to the composition of the bootstrap population.
Moreover, it is not necessary that the bootstrap population needed for the resampling process
is physically generated, which often may be cumbersome. The resampling can be done directly
from the original sample applying the probability mechanism behind the sampling scheme.
Additionally, the HTB bootstrap can still be used in situations, where other methods fail
because of first-order sample inclusion probabilities πk of the population units which are close
to one. For a πPS sample, this might provide resample inclusion probabilities that are outside
the acceptable range (see Section 3).

3. Simulation study

A simulation study was undertaken to compare exemplarily the performance of the proposed
H-T based technique (HTB) with the method (H) presented by Holmberg (1998). For this
purpose, the Swedish MU 281 population as described in Appendix B of Särndal et al. (1992),
formed the basis. This specific population was also used by Holmberg (1998) as basis for a
simulation study. It consists of all but the largest three municipalities Stockholm, Gothenburg
and Malmö.

Different sets of study variables y and auxiliary size variables x were used. For all the variables,
in the simulation results, almost the same pattern appeared. Hence, as a typical example,
the simulation results for study variable SS82 (= y), that is the number of social-democratic
seats in municipal council, are presented. The total t of y in the population is 6,193. 10,000
simulations were conducted according to a πPS sampling scheme with size variable

i) P75 (≡ x1, the number of inhabitants in the municipality in 1975),

ii) x2 = 1 + x1
100 , and

iii) x3 = 1 ∀ k ∈ U .

As the values of x1 widely differ, so do the first-order sample inclusion probabilities πk = xkn
tx

.
For size variable x2, these probabilities are much closer. With size variable x3, the πPS
method reduces to an SI scheme.



Austrian Journal of Statistics 99

The parameter to be estimated is the variance of the H-T estimator tH-T of t. For each
simulation, the chosen sample sizes were n1 = 40 and, if possible, n2 = 100. The chosen
number B of bootstrap resamples was B = 300.

The simulation results are reported in Tables 1 and 2 for the two simulated sample sizes, as
also for all three πPS sampling schemes where possible. Furthermore, the results are shown
exemplarily for one of these setups in the form of boxplots in Figures 1 and 2. For n2 = 100,
with y and x1, no πPS design could be carried out because x1kn

tx1
was greater than one for at

least one k ∈ U . Moreover, for each setup, the relative simulation bias (in percent)

rbsim(V.) =
Esim(V.)− Vsim(tH-T )

Vsim(tH-T )
· 100 (7)

was computed as an indicator of its performance. The terms Esim(V.) in Eq.(7) and sdsim(V.)
in Tables 1 and 2 denote the simulation mean values and standard deviations, respectively,
of the MC bootstrap variance estimates V. according to Eq.(1) with respect to the boot-
strap method HTB (VHTB) or H (VH) within the 10,000 simulations. Furthermore, the term
Vsim(tH-T ) in Eq.(7) denotes the variance of the H-T estimates within the 10,000 simulations
as the reference value because for πPS sampling, the true variance of the H-T estimator can-
not be calculated exactly. This reference term is substituted by the known variance V (tSI) in
the simulations of the SI method. In the tables that follow, the simulated standard deviations
sdsim(N∗. ) of the unbiased 10,000 respective bootstrap population sizes N∗. are also presented
for both bootstrap methods. Eventually, the percentage coverage rates of approximate confi-
dence intervals in the simulations using the variance estimates can be found in the tables for
both approaches.

Table 1: Simulation results for three different sampling designs (sample size n1 = 40)
Sampling scheme πPS (y, x1) πPS (y, x2) SI (y)
. HTB H HTB H HTB H
rbsim(V.) +1.09 -1.18 +0.71 -2.40 -1.90 -2.18
sdsim(V.) 182,044 180,328 9,662 9,688 20,867 21,055
sdsim(N∗

. ) 36.34 36.28 6.53 7.06 0 1.00
coverage . (in %) 92.61 92.34 94.23 94.23 93.72 93.64

Table 2: Simulation results for two different sampling designs (sample size n2 = 100)
Sampling scheme πPS (y, x2) SI (y)

. HTB H HTB H
rbsim(V.) -2.80 -0.81 2.14 -0.68
sdsim(V.) 1,936 1,975 4,054 4,084
sdsim(N∗

. ) 3.28 4.99 0 3.90
coverage . (in %) 94.98 94.70 94.54 94.30

As expected, no major improvement is found with respect to the performance of the variance
estimator in comparison to the performance of the one presented by (Holmberg 1998). Never-
theless, in all the simulations, the HTB method strongly tends to perform slightly better with
respect to relative bias and standard deviation. Figure 1 shows, as an example, the boxplots
regarding the πPS sampling design with auxiliary variable x2 and sample size n = 100.

A πPS sampling with auxiliary variable x1 is defined only for n ≤ 49 because for all elements
k of the population U , x1kn

tx1
≤ 1 has to apply. Whereas the HTB method is applicable for all

sample sizes n ≤ 49, method H does not work for sample sizes close to the upper limit of 49,
because the inclusion probabilities have to be recalculated for a given bootstrap population
U∗H . Depending on the drawn sample s, this process may yield resample inclusion probabilities
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outside the admissible range. In the HTB method, for the resamples drawn from the bootstrap
population, no recalculation of the original first-order inclusion probabilities πk is required.
Hence, it is sufficient that the original probabilities are within the admissible range.

Allowing not only integer numbers of clones of the original sample values in the bootstrap
population has also an impact on the size N∗HTB of the bootstrap population. While for both
the methods, size N∗. is unbiased for N , the standard deviation of N∗. is smaller for the HTB
method in almost all simulation results. The difference between these standard deviations
increases with less differing original first-order inclusion probabilities. This is shown in both
the tables as well as in Figure 2.
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Figure 1: Boxplots of simulated variance estimates calculated according to the HTB and the
H approaches for πPS sampling with size variable x2 (n2 = 100)

HTB approach H approach

270

280

290

300

S
iz

e 
N

*

Figure 2: Boxplots of simulated bootstrap population sizes N∗. calculated according to the
HTB and H approaches for πPS sampling with size variable x2 (n2 = 100)

Eventually, in all the simulated cases, the coverage rates of the usual approximate confidence
intervals, calculated by using the variance estimates of the HTB method are closer to the
desired 95% level than the intervals calculated by using the variance estimates of the H
method.
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4. Conclusion

The H-T approach to the generation of the bootstrap population presented herein applies the
idea behind the H-T estimator to the generation of a bootstrap population for finite pop-
ulations. Overall, as expected, the simulation results indicate that the bootstrap estimator
of the variance of a total based on this bootstrap population U∗H-T is slightly more efficient
than the one proposed by Holmberg (1998). For the proposed method, the three proper-
ties, considered desirable by Barbiero and Mecatti (2010) for efficient variance estimation,
hold. This approach has an effect on the precision of the variance estimates. Applying this
approach, the size of the bootstrap population, a variable unbiased for the true size of the
original population, has a smaller standard deviation as compared to that of the approach by
Holmberg. Furthermore, this method, unlike other methods in the literature, does not require
the recalculation of the inclusion probabilities in general πPS sampling. This also means that
the method proposed here can be applied even in situations where other methods fail.

In practice, the generation of the bootstrap population will not have to be processed physically.
The whole resampling procedure can be carried out using the probability mechanism behind
the process.

However, further studies including other populations than the one used here, and topics such
as the optimum number B of resamples, or the estimation of other parameters than totals,
are necessary to examine the suitability of this method in greater detail.
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