A Bootstrap View on Dickey-Fuller Control Charts for AR(1) Series

Ansgar Steland
RWTH Aachen University, Germany

Abstract: Dickey-Fuller control charts aim at monitoring a time series until a given time horizon to detect stationarity as early as possible. That problem appears in many fields, especially in econometrics and the analysis of economic equilibria. To improve upon asymptotic control limits (critical values), we study the bootstrap and establish its a.s. consistency for fixed alternatives. Simulations indicate that the bootstrap control chart works very well.

Keywords: Autoregressive Time Series, Invariance Principle, Least Squares, Resampling, Unit Root.

1 Introduction

We study the bootstrap for a sequential detection procedure with finite time horizon (truncated control chart) which aims at detecting whether the in-control model of a random walk (unit root) is violated in favor of stationarity. The bootstrap is known to provide easy-to-use and accurate procedures, and its application to the design of monitoring procedures (control charts) is promising.

The problem to study truncated control charts for random walks has several motivations. Often, it is not clear whether an econometric time series has a unit root or is stationary. In many practical applications monitoring stops latest when a known prespecified time horizon is reached. For instance, in portfolio management continuous or near-continuous trading is often not feasible, because time- and cost-intensive (econometric) analyses are required to obtain valid distributional model specifications for the underlying time series, in particular with regard to their degree of integration. Instead, the portfolio is updated, e.g., only on a quarterly basis. Between these updates it is advisable to apply monitoring procedures to influential time series. Additional trades, hedges, or further analyses can then be initiated if a monitoring rule (control chart) provides a signal. A further interesting application is to monitor equilibrium errors of a (known) co-integration relationship in order to confirm co-integration in the sense of Granger (1981), i.e. stationarity of equilibrium errors. Finally, the question ‘random walk or stationary process’ is also crucial to choose a valid method when analyzing a series of observations to detect trends. These methods usually assume stationarity as in Steland (2004), Steland (2005b), Pawlak et al. (2004), Hušková (1999), Hušková and Slabý (2001), or Ferger (1995), among others. When detecting trends in random walks by, e.g., a kernel smoother, the results change drastically as shown in Steland (2005c).

Detection rules using (modifications of) the Dickey-Fuller test statistic have been studied in (Steland, 2005a). To improve the detection quality it is advisable to introduce a weighting mechanism which assigns smaller weights to past contributions than to more recent ones. Simulations revealed that the bandwidth parameter \(h \) controlling the weights
and the start of monitoring \(k \) have to be chosen carefully when using asymptotic critical values. The bootstrap should avoid this problem, since it resamples the procedure as it is. Whereas for fixed sample Dickey-Fuller type unit root tests the bootstrap has been studied, see Park (2003) and the references given there, the present article establishes a first consistency result for a bootstrap scheme of the underlying (weighted) Dickey-Fuller process and a related control chart.

2 Model and Dickey-Fuller Type Detection Procedures

Let us consider an autoregressive time series model of order 1, AR(1), given by

\[
Y_{t+1} = \rho Y_t + u_t, \quad t \geq 1,
\]

where \(\{u_t\} \) are independent and identically distributed error terms with common variance \(0 < \sigma^2 < \infty \). We assume \(Y_0 = 0 \). The autoregressive parameter, \(\rho \), determines whether the time series \(Y_t \) is stationary (\(|\rho| < 1 \)) or a random walk (\(\rho = 1 \)). The well known least-squares based Dickey-Fuller test for testing the unit root null hypothesis \(H_0: \rho = 1 \) against the alternative of stationarity \(H_1: |\rho| < 1 \) based on a sample \(Y_1, \ldots, Y_T \) of (fixed) size \(T \) is the Dickey-Fuller test (DF test) which is given by

\[
\hat{\rho}_T = \frac{\sum_{t=1}^{T} Y_{t-1} Y_t}{\sum_{t=1}^{T} Y_{t-1}^2}, \quad D_T = T(\hat{\rho}_T - 1) = \frac{\sum_{s=1}^{T} Y_{t-1} \Delta Y_t}{\frac{1}{T} \sum_{t=1}^{T} Y_{t-1}^2},
\]

where \(\Delta Y_t = Y_t - Y_{t-1} \). \(D_T \) has a nonstandard limit distribution under \(H_0 \), if \(T \to \infty \). \(H_0 \) is rejected for small (negative) values of \(D_T \). Usually, one relies on asymptotic theory, i.e., one approximates the appropriate critical value \(c \) by the corresponding quantile of the asymptotic distribution for \(T \to \infty \). The DF test and its asymptotic properties, particularly its non-standard limit distribution have been studied by White (1958), Fuller (1976), Rao (1978), Dickey and Fuller (1979), Chan and Wei (1988), among others.

The weighted Dickey-Fuller control chart as introduced in Steland (2005a) is defined as follows. For a control limit \(c \) define for \(t = k, k+1, \ldots, T \)

\[
S_T = \inf\{k \leq t \leq T : D_t < c\}, \quad D_t = \frac{1}{T} \sum_{s=1}^{t} K[(t-s)/h] Y_{s-1}(Y_s - Y_{s-1}) / \frac{1}{T} \sum_{s=1}^{T} Y_{s-1}^2 Y_{s}^2,
\]

for some non-negative kernel function \(K : [0, \infty) \to \mathbb{R}_0^+ \). The detection procedure \(S_T \) gives a signal at time \(t \), if the weighted Dickey-Fuller test statistic \(D_t \) is smaller than the control limit \(c \) for the first time. Monitoring starts at the \(k \)-th observation and ends at the latest at the time horizon \(T \). Here and in the sequel we assume that \(c \) is chosen to attain a given nominal type I error that a false signal is given, at least asymptotically, i.e., \(\lim_{T \to \infty} P_0(S_T < T) = \alpha \). However, the modifications to control other characteristics as the average run length or the median run length are straightforward.

The kernel function \(K \) is used to downweight past contributions to the sum, which improves the detection properties in change-point models, see Steland (2005a). Usually one takes a decreasing density function with unique maximum at 0. We assume the following regularity assumptions for \(K \):
(K) \[0 < \int_0^\infty K(z)dz < \infty, \quad K \in C^2, \quad \|K''\|_\infty < \infty, \quad \text{and} \quad \int |dK| < \infty,\]

The bandwidth parameter \(h\) appearing in the definition of the kernel weights \(K[(t-s)/h]\) may be absorbed into the kernel, but it is more common to rescale a given (standardized) kernel by a bandwidth. Notice that the procedure uses the most recent \(h\) observations, if \(K\) has support \([0, 1]\). In this sense \(h\) defines the memory of the control chart. We assume that \(h = h_T\) satisfies

\[
T/h_T \to \zeta \in (1, \infty),
\]
as \(T \to \infty\). The memory parameter \(\zeta\) is chosen in advance.

In the sequel let \([x], x \in \mathbb{R}\), denote the floor function. Introduce the stochastic process related to \(D_T\) obtained by rescaling time,

\[
D_T(s) = D_{[Ts]}, \quad s \in [0, 1].
\]

Note that the trajectories of \(D_T\) are constant on intervals of the form \((a, b], a < b\), thus being elements of the function space \(D[0, 1]\) of right-continuous functions with existing left-hand limits. We have the representation \(S_T = T \inf\{s \in [\kappa, 1] : D_T(s) < c\}\), which allows to base the stochastic analysis of \(S_T\) on the distributional properties of \(S_T\) from the properties of \(D_T\). Further, we assume that the start of monitoring, \(k\), is given by

\[
k = \lceil T \kappa \rceil, \quad \text{for some} \ \kappa \in (0, 1).
\]

Equip \(D[\kappa, 1]\) with the Skorokhod topology induced by the Skorokhod metric \(d\). Weak convergence of a sequence \(X_n, X_T : (\Omega, \mathcal{A}, P) \to D[0, 1]\) under the probability \(P\) is denoted by \(X_n \xrightarrow{w,P} X, T \to \infty\). For details we refer to Billingsley (1968) or Jacod and Shiryaev (2003). Further, \(\{B(s) : s \in [0, 1]\}\) is a standard Brownian motion with \(B(0) = 0\).

Assuming the same AR(1) model the following functional central limit theorem providing the asymptotic distribution of the Dickey-Fuller process was shown in Steland (2005a), where it was used to choose the control limit based on the asymptotic distribution.

Theorem 2.1 Assume either \(K(z) = z\) for all \(z\) or (K). Then, as \(T \to \infty\),

\[
D_T(s) \overset{w,P}{\to} D(s) = \int_0^s K[\zeta(r-s)]B(r)dB(r) / \int_0^s B(r)^2 dr, \quad s \in [0, 1],
\]

and, as \(T \to \infty\),

\[
S_T/T \overset{d}{\to} \inf\{s \in [\kappa, 1] : D(s) < c\}.
\]

Remark 2.1 Assume \(K(z) = z\) for all \(z \in \mathbb{R}\). Then the limit process is given by

\[
D(s) = (2s)^{-1}[B(s)^2 - s] / \int_0^s B(r)^2 dr, \quad s \in [0, 1].
\]
3 The Bootstrap

The basic idea of the bootstrap is to invest in computing resources to obtain a resampling based estimate of the control limit satisfying certain statistical properties, instead of relying on the asymptotic distribution as an approximation. In the sequential (monitoring) setting considered in this article the data \(Y_1, \ldots, Y_T\) are observed sequentially, and at each time point \(t \in \{1, \ldots, T\}\) the current data \(Y_1, \ldots, Y_t\) are used to decide whether the in-control model holds or not. Thus, it seems natural to calculate at each time point \(\sigma(Y_1, \ldots, Y_t)\)-measurable bootstrap estimate \(\hat{\epsilon}_t\) of the control limit \(\epsilon\), based on all available observations \(Y_s, s \leq t\), which implicitly have been classified as in-control data. Then, at each time point \(t\) we consider the stopping rule

\[
\hat{S}_T = \inf\{k \leq t \leq T : D_t < \hat{\epsilon}_t\}.
\]

At each monitoring step there are at least \(k\) observations from which one can bootstrap.

An appropriate bootstrap scheme has to generate bootstrap samples \(Y_{1}^*, \ldots, Y_{T}^*\) which mimic the distributional behavior of \(Y_1, \ldots, Y_T\), under the null hypothesis (in-control model). Allowing for a maximum bootstrap sample size \(T^*\) different from \(T\) will simplify the proofs and sometimes increases the accuracy of the bootstrap approximation, but usually one takes \(T^* = T\). At each time point \(t\) perform the following steps.

1. Draw a bootstrap sample \(u_{1}^*, \ldots, u_{T^*}^*\) (with replacement) from the observed centered differences, \(\hat{u}_t = \Delta Y_t - \overline{Y}\), \(i = 1, \ldots, t, \Delta Y = t^{-1} \sum_{s=1}^{t} \Delta Y_s\).
2. Put \(Y^*_r = Y^*_{r-1} + u_{s}^*, r = 1, \ldots, T^*, Y^*_0 = 0\).
3. Calculate the trajectory of the associated bootstrap process

\[
D^*_t(s) = \frac{[T^* s]^{-1} \sum_{t=1}^{[T^* s]} |K([(T^* s) - r]/h)| Y^*_{r-1} \Delta Y^*_r}{[T^* s]^{-2} \sum_{t=1}^{[T^* s]} Y^*_{r-1}^2}, \quad s \in (0, 1],
\]

\(D^*_t(0) = 0\), at the time points \(s = t/T, t = 1, \ldots, T\).
4. Calculate \(m^* = \min_{k \leq t \leq T} D^*_t(r/T)\).
5. Repeat the resampling step \(B\) times to obtain \(B\) replicates \(m^*(1), \ldots, m^*(B)\) and estimate the control limit by \(\hat{\epsilon}_{B}\), the empirical \(\alpha\)-quantile of \(m^*(1), \ldots, m^*(B)\).

The bootstrap scheme defines a bootstrap probability \(P^* = P^*_t\) for given \(Y_1, \ldots, Y_t\). Under \(P^*\), the common distribution function of the \(u_t^*\) is given by the empirical distribution function, \(\hat{F}_t\), of the values \(\hat{u}_r = \Delta Y_r - \overline{Y}, r = 1, \ldots, t\).

Remark 3.1 Note that the bootstrap is based on the \(H_0\)-residuals \(\hat{u}_t\) calculated under \(H_0\). Usually, one has to bootstrap from residuals being consistent for the error terms also under \(H_1\), i.e., bootstrap from the \(AR(1)\)-residuals \(\hat{u}_t = Y_t - \hat{\rho} Y_{t-1}\) after centering, \(\hat{\rho}\) being some consistent estimator of \(\rho\). Nevertheless, our main result shows that the simplified bootstrap is consistent, which is a special feature of the statistic \(D_t\).

For a bootstrap sample \(Y^*_1, \ldots, Y^*_T\), the bootstrapped detection rule associated to the process defined in (2) is given by

\[
S^*_T = \inf\{k \leq t \leq T^* : D^*_t(t/T^*) < \epsilon\}.
\]
The following main result yields P-a.s. consistency of the proposed bootstrap scheme. It asserts that under the bootstrap probability P^*, the process D^*_T converges weakly to D, as $T^* \to \infty$. For a given specification of the conditional probability P^*_t the result holds true for every sample Y_1, \ldots, Y_t, thus P-a.s. for any conditional probability.

Theorem 3.1 Fix t. Assume $0 < \rho \leq 1$. Under P^* (given Y_1, \ldots, Y_t) we have P-a.s.

$$D^*_T \xrightarrow{w,P^*} D$$

and

$$S_{T^*}/T^* \xrightarrow{w,*} \inf \{s \in [\kappa,1] : D(s) < c \},$$

as T^* tends to ∞ such that $T^*/h \to \zeta$.

The consistency of the detection rule using the bootstrapped control limit appears now as a Corollary.

Corollary 3.1 Under the assumptions of Theorem 3.1 the bootstrap estimate of the control limit provides an a.s. consistent procedure in the sense that under the bootstrap probability P^* we have P-a.s.

$$\hat{S}_{T^*}/T^* \xrightarrow{w,P^*} \inf \{s \in [\kappa,1] : D(s) < c \}, \quad T \to \infty.$$

4 Simulations

In our simulation study we focused on a small (maximum) sample size to investigate the type I error of a false detection if the series is a random walk and the conditional average run length (CARL), i.e., the conditional expected run length, $E(\hat{S}_T|\hat{S}_T < T)$, given that the procedure provides a signal, calculated under the alternative. The CARL says after how many observations, on average, we get the signal, if the procedure rejects the unit root hypothesis, and it is very informative under the alternative. We study both bootstrapping from differences and $AR(1)$-residuals.

The most recent bootstrap replicates are almost as informative as the current ones, since they are drawn from a very similar set of observations. Thus, we used the following simulation approach. When monitoring starts, a bootstrap sample of size 10000 using the available k observations is drawn and stored. At time $t = k + l \cdot 20$, $l \in \mathbb{N}$, i.e., at every 20th observation, the 10% oldest bootstrap replicates are replaced by 1000 new ones using the available t observations Y_1, \ldots, Y_t. Using the $AR(1)$ model (1) time series of length $T = 150$ and two settings with $T = 250$ with $N(0,1)$-distributed error terms u_t were simulated for $\rho = 1$ (null hypothesis) and $\rho = 0.9$ (alternative), respectively. The parameters h (bandwidth) and k (start of monitoring) were taken from $\{25, 50\}$. Each table entry is based on 10000 repetitions.

The results indicate that the bootstrap works very well for a wide range of combinations of the parameters T, h, and k. Even for small k accuracy is good. Bootstrapping from $AR(1)$-residuals seems to provide slightly more accurate tests in terms of the type I error, but our simulations do not indicate an advantage in terms of power. The CARL
values indicate a trade-off: The CARL is smaller for smaller h, but the power decreases. Using fewer recent observations yields a loss of power, but if we reject, we get this decision very early. For the same reason, the Gaussian kernel provides more power but higher CARLs than the Epanechnikov kernel which has bounded support.

Acknowledgements

I acknowledge the support of Deutsche Forschungsgemeinschaft, SFB 475, Reduction of Complexity in Multivariate Data Structures, and also some helpful remarks of an anonymous referee. Nadine Westheide carefully read the revised version.

Appendix: Proofs

We apply the following result due to Kurtz and Protter (1996 resp. 2004, Sec. 7).

Theorem (Kurtz and Protter). Suppose X_n is a semimartingale for each n, and H_n is predictable for each n. If $(H_n, X_n) \overset{w}{\rightarrow} (H, X)$ in the Skorokhod space $D_{R^2}[0,1]$, and if $\sup_n \text{var}(X_n) < \infty$, then, as $n \rightarrow \infty$,

$$
\left(H_n, X_n, \int H \, dX_n \right) \overset{w}{\rightarrow} \left(H, X, \int H \, dX \right).
$$

Proof (of Theorem 3.1). We first consider the case $\rho = 1$. The bootstrap defines an array $\{Y^*_n : i = 1, \ldots, T^*, t = 1, \ldots, T\}$, of bootstrap observations $Y^*_n = \sum_{j=1}^t u^*_j$. In the sequel we will suppress the t in the notation. Donsker’s theorem yields

$$
T^{-1/2} \sum_{i=1}^{[Ts]} u_i \overset{w}{\rightarrow} \sigma B(s), \quad T \rightarrow \infty, \quad (T^*)^{-1/2} \sum_{i=1}^{[Ts]} u^*_i \overset{w}{\rightarrow} s_t^* B^*(s), \quad T^* \rightarrow \infty,
$$

since under P^* the r.v.s. u^*_i are iid with mean $\overline{u} = 0$ and common variance $s^2_t = \frac{1}{T} \sum_{i=1}^t \hat{\sigma}^2_t$. Here B and B^* are two Brownian motions with $B(0) = 0$. Define the bootstrap process

$$
Z^*_n(s) = (T^*)^{-1/2} Y^*_{[Ts]}, \quad s \in [0,1],
$$
and the filtration $\mathcal{F}_t^* = \sigma(u_1, \ldots, u_{[T_t]}), t \in [0, 1]$. By definition of $Y_t^* = \sum_{i=0}^t u_i^*$, $E'[Z_t^*|\mathcal{F}_t^*] = Z_t^*(r)$, and $E'((T^*)^{-1/2} Z_t^*(s))^2 = E'(u_1^2)(T^*)/T$, i.e., Z_t^* and $K[(T^*o) - (T^*s)/h]Z_t^*(o)$ are L_2-martingales w.r.t P^*. Thus, for each T^* the numerator $\left(T^*s \right)^{-1} \sum_{i=1}^{[T^*s]} K[(T^*s) - i/h]Y_{i-1}^*\Delta Y_{i}^*$ of D_{T^*} can be represented as Ito integral, $\left(T^*s \right)^{-1} T \int_0^s K[(T^*s) - (T^*r)]/h]Z_{T^*}(r) dZ_{T^*}(r)$. Let us verify fidi-convergence of

$$s \mapsto N_{T^*}(s) = \int_0^s K[((T^*s) - (T^*r))/h]Z_{T^*}(r) dZ_{T^*}(r), \quad s \in [\kappa, 1].$$

Consider for $s \in [\kappa, 1]$ the random function

$$r \mapsto I_{T^*}(r; s) = K(((T^*s) - (T^*r))/h]Z_{T^*}(r).$$

By the Skorokhod/Dudley/Wichura representation theorem, we may assume that $\|Z_{T^*} - s_i B^*\|_\infty \to 0, T^* \to \infty, P^*$-a.s. Then, since K is Lipschitz continuous,

$$\sup_{s \in [\kappa, 1], r \in [0, 1]} |K(((T^*s) - (T^*r))/h]Z_{T^*}(r) - s_i K[\zeta(s - r)]B^*(r)| \to 0,$$

if $T^* \to \infty, P^*$-a.s. Hence, $(Z_{T^*}(\dot{o}), I_{T^*}(\dot{o}, s, s)) \to (s_i B^*(\dot{o}), K[\zeta(s - \dot{o})]s_i B^*(\dot{o}), s)$, in the supnorm, and even uniformly in $s \in [\kappa, 1]$. It follows that for each fixed $s \in [\kappa, 1]$ the triple $(Z_{T^*}(\dot{o}), I_{T^*}(\dot{o}, s), N_{T^*}(s))$ converges in distribution to

$$\left(s_i B^*(\dot{o}), K[\zeta(s - \dot{o})]s_i B^*(\dot{o}), s_i^2 \int_0^s K[\zeta(s - r)]B(r) dB(r) \right),$$

under P^*, as $T^* \to \infty$. By taking linear combinations, this can be extended to convergence of all fidi, yielding fidi convergence of N_{T^*}. Since $\{I_{T^*}\}$ and $\{Z_{T^*}\}$ are tight, (I_{T^*}, Z_{T^*}) is also tight implying tightness of $N_{T^*} = I_{T^*} dZ_{T^*}$. Thus, the numerator converges weakly to the random element $s_i^2 \int_0^s K[\zeta(s - r)]B(r) dB(r)$. Further, the denominator of D_{T^*} is a continuous functional of $Z_{T^*}, \left(T^*s \right)^{-2} \sum_{i=1}^{[T^*s]} Y_{i-1}^* = \int_0^s (Z_{T^*}(u))^2 du \frac{w_{P^*}}{s_i} s_i^2 \int_0^s B(u)^2 du$, as $T^* \to \infty$. The continuous mapping theorem yields that $(\int_0^s (Z_{T^*}(u))^2 du, N_{T^*}(s))$ converges weakly. Thus, we can conclude that

$$D_{T^*}(\dot{o}) = \frac{N_{T^*}(\dot{o})}{\int_0^s (Z_{T^*}(r))^2 dr} \xrightarrow{\text{w, } P^*} \frac{s_i^2 \int_0^s K[\zeta(s - r)]B(r) dB(r)}{s_i^2 \int_0^s B(r)^2 dr},$$

as $T^* \to \infty$. Note that s_i cancels in the limit. Hence the result holds for all t. Noting that the limit process has a.s. continuous sample paths, convergence in distribution of S_T follows, for details we refer to Steland (2004).

It remains to verify the weak limit for the case $0 < \rho < 1$. First note that $\Delta Y_t = (\rho - 1)Y_{t-1} + u_t = \sum_{i=0}^t (\rho - 1)^i u_{t-i}$, is a stationary AR(1) process if $0 < \rho < 1$, implying $\Delta Y_t \overset{P}{\to} 0$. Hence, $\{\Delta Y_t : i = 1, \ldots, t\}$ is a stationary series. Thus, the iid bootstrap values $u_i^* \sim F_i$ satisfy an invariance principle, $(T^*)^{-1/2} \sum_{i=1}^{[T^*s]} u_i^* \overset{w, P^*}{\to} s'_i B^*(s), T^* \to \infty$, with $s'_i = \text{var}(\Delta Y_1 - \Delta Y_t)$. Since s'_i cancels in the limit process, for $0 < \rho < 1$ we obtain the same limit process for D_{T^*} under P^* as for $\rho = 1$. □

Proof of Corollary 3.1. The corollary is shown as follows. Define $\widehat{\Theta}_T(s) = \widehat{\Theta}_{[T_s]}$, $s \in [\kappa, 1]$, and note that $S_T/T = \inf\{s \in [\kappa, 1] : D_T(s) - \widehat{\Theta}_T(s) < 0\}$. By a.s. consistency of the bootstrap as shown above, the process $\widehat{\Theta}_T(s)$ converges weakly to constant, $\widehat{\Theta}_T(s) \overset{P}{\to} c$, as $T \to \infty, P$-a.s. Hence, by Slutzky’s theorem, $D_T - \widehat{\Theta}_T \overset{w, P}{\to} \mathcal{D} - c \in C[\kappa, 1]$, as $T \to \infty, P$-a.s., yielding $S_T/T \overset{w, P}{\to} \inf\{s \in [\kappa, 1] : \mathcal{D}(s) - c < 0\}$, if $T \to \infty$, a.s. □
References

Author’s address:

Ansgar Steland

Faculty of Mathematics

Ruhr/University Bochum

Universitätstrasse 150

D-44780 Bochum

Germany

E-mail: ansgar.steland@ruhr-uni-bochum.de