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Abstract

We propose an original classification of several discrete and continuous probability
distributions. We establish links between these distributions, in particular the little known
relationship between the negative hypergeometric distribution and the beta distribution.
These relations allow us to propose a structure of relations which is summarized in graphic
form. Our classification emphasises the analogy between certain discrete and continuous
distributions. This analogy makes it possible to establish relations between the theory of
point processes and the theory of survey sampling. It also makes it possible to envisage
the use of link functions that are little used in generalised regression.

Keywords: continuous distribution, discrete distribution, hypergeometric, negative distribu-
tion.

1. Introduction
The graphs of relationships between probability distributions like those proposed by Leemis
and McQueston (2008) and Song (2005) sometimes look a little like spaghetti dishes in which
it is difficult to glimpse a structure. Morris and Lock (2009) proposed a structured map of
the main distributions. Our aim is also to propose a general framework in the sense where we
establish links between discrete and continuous distributions, distributions related to sampling
with and without replacement, distributions and their negative (or inverse distributions).
Our objective is to make as complete a list as possible of the links between discrete and
continuous positive probability distributions. In Section 2, we list some discrete distributions,
most of which are special cases of the Pólya–Eggenberger distribution. In Section 3, we present
some continuous distributions and describe the links between these distributions. In Section 4,
we recall that several distributions can be defined as compound probability distributions
where the parameters of an original distribution are themselves random variables. Finally, in
Section 5, we establish links between discrete and continuous distributions. In particular, we
show that the negative hypergeometric distribution can be considered as the discrete analogue
of the beta distribution.
In section 6, we show that these analogies between discrete and continuous distributions
make it possible to establish links between very different areas of statistics. We can show
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that sampling algorithms can be seen as point processes. In addition, we can imagine the
use of link functions that are unusual in generalised regression. In Section 7, we draw a brief
conclusion.

2. Discrete probability distributions
A list of discrete distributions is described in Table 1.

2.1. The most common probability distributions

Several common discrete distributions of probability are described here rapidly. Their distri-
butions of probability, expectations, and variances are given in Table 1.

• The Bernoulli random variable, denoted by Bern(p) is the discrete probability distribu-
tion of a random variable which takes the value 1 with probability p and the value 0
with probability 1 − p.

• The binomial random variable, denoted by X ∼ Bin(n, p), is the number of successes
in n independent trials when each success has a probability p to occur. The sum of n
Bernoulli variables with the same parameter p is a binomial variable. When n = 1, the
binomial random variable reduces to a Bernoulli random variable.

• Suppose that drawings are repeated independently in a population that has a proportion
p of favorable events. The drawings are repeated until the first favorable event appears.
The geometric random variable, X ∼ Geom(1 − p), counts the number of failures before
the first favorable event occurs.

• Suppose that drawings are repeated independently in a population that has a proportion
p of favorable events. The negative binomial random variable, X ∼ NB(r, p) counts
the number of failures until obtaining r favorable events. This distribution can be
generalized for non-integer values of r > 0. When r = 1 the negative binomial is a
geometric random variable. Parameter r can be non–integer.

• The Poisson random variable, denoted by X ∼ Poiss(λ), can be applied to systems with
a large number of possible events, each of which is rare. The number of such events
that occur has a Poisson distribution.

2.2. Hypergeometric distribution

Consider a population of size N that has a proportion p of favorable events. Thus Np
units are ‘favorable’ and N(1 − p) are ‘not favorable’. The hypergeometric random variable,
X ∼ H (N, n, Np), counts the number favorable events obtained in n drawings with equal
probabilities from the population without replacement.
When N tends to infinity, the hypergeometric random variable reduces to the binomial random
variable. As for the binomial random variable, when n = 1, the hypergeometric random
variable also reduces to a Bernoulli random variable. The hypergeometric distribution can be
generalized to non–integer values for Np

Pr(X = x) = p(x; N, n, Np)

= Γ(Np + 1)Γ(N(1 − p) + 1)
x!Γ(Np − x + 1)(n − x)!Γ(N(1 − p) − n + x + 1)

(
N

n

)−1

,

with x ∈ {N| max(0, n + Np − N) ≤ x ≤ min(Np, n)}.



Austrian Journal of Statistics 89

Ta
bl

e
1:

D
isc

re
te

di
st

rib
ut

io
ns

of
pr

ob
ab

ili
ty

N
am

e
N

ot
at

io
n

P
M

F
Su

pp
or

t
P

ar
am

et
er

s
M

ea
n

V
ar

ia
nc

e

B
er

no
ul

li
Be

rn
(p

)
p

x
(1

−
p
)1−

x
x

∈
{0

,1
}

p
∈

[0
,1

]
p

p
(1

−
p
)

B
in

om
ia

l
Bi

n(
n

,p
)

( n x

) p
x

(1
−

p
)n

−
x

x
∈

{0
,1

,.
..

,n
}

p
∈

[0
,1

],
n

∈
N

n
p

n
p
(1

−
p
)

G
eo

m
et

ri
c

G
eo

m
(1

−
p
)

p
(1

−
p
)x

x
∈

N
p

∈
[0

,1
]

1−
p

p
1−

p
p

2

N
eg

at
iv

e
B

in
om

ia
l

N
B

(r
,p

)
Γ

(r
+

x
)

x
!

Γ
(r

)
p

r
(1

−
p
)x

x
∈

N
p

∈
[0

,1
],

r
∈

R
>

0
r

(1
−

p
)

p
r

(1
−

p
)

p
2

P
oi

ss
on

Po
iss

(λ
)

e
−

λ
λ

x

x
!

x
∈

N
λ

∈
R

>
0

λ
λ

H
yp

er
ge

om
et

ri
c

H
(N

,n
,N

p
)

( N
p

x

)( N
(1

−
p

)
n

−
x

)
( N n

)
x

∈
{N

|
m

ax
(0

,n
+

N
p

−
N

)
≤

x
≤

m
in

(N
p
,n

)}

N
p
,N

,n
∈

N
>

0
,

N
p

≤
N

n
≤

N
n

p
n

p
(1

−
p
)N

−
n

N
−

1

N
eg

at
iv

e
H

yp
er

ge
-

om
et

ri
c

N
H

(N
,r

,N
p
)

=
Be

ta
Bi

n(
N

−
N

p
,

r,
N

p
−

r
+

1)
Γ

(N
p

+
1)

Γ
(x

+
r

)Γ
(N

−
x

−
r

+
1)

Γ
(N

−
N

p
+

1)
x

!N
!Γ

(r
)Γ

(N
p

−
r

+
1)

Γ
(N

−
N

p
−

x
+

1)
x

∈
{0

,1
,.

..
,N

(1
−

p
)}

N
∈

N
>

0
N

p
,r

∈
R

>
0

N
p

≤
N

r
≤

N
p

N
r

(1
−

p
)

N
p

+
1

r
N

(1
−

p
)(

N
+

1)
(N

p
−

r
+

1)
(N

p
+

1)
2

(N
p

+
2)

B
et

a-
bi

no
m

ia
l

Be
ta

Bi
n(

n
,α

,β
)

=
N

H
(n

+
α

+
β

−
1,

α
,α

+
β

−
1)

Γ
(n

+
1)

Γ
(x

+
α

)Γ
(n

−
x

+
β

)Γ
(α

+
β

)
Γ

(x
+

1)
Γ

(n
−

x
+

1)
Γ

(n
+

α
+

β
)Γ

(α
)Γ

(β
)

x
∈

{0
,1

,.
..

,n
}

n
∈

N
>

0
α

,β
∈

R
>

0
r

≤
N

p

n
α

α
+

β
n

α
β

(α
+

β
+

n
)

(α
+

β
)2

(α
+

β
+

1)

D
is

cr
et

e
U

ni
fo

rm
D

U
(A

)
1

A
+

1
x

∈
{0

,1
,.

..
,A

}
A

∈
N

>
0

A 2
(A

+
1)

2
−

1
12

P
ól

ya
–E

gg
en

be
rg

er
PE

(x
,N

,n
,N

p
,c

)
( n x

)∏ x
−

1
z

=
0

(N
p

+
c
z

)
∏ n−

x
−

1
z

=
0

(N
−

N
p

+
c
z

)
∏ n−

1
z

=
0

(N
+

c
z

)
x

∈
{0

,1
,.

..
,n

}
n

,N
∈

N
>

0
,n

<
N

,
p

∈
[0

,1
],

c
∈

R
n

p
n

p
(1

−
p
)N

+
c
n

N
+

c

In
th

is
ta

bl
e,

P
M

F
m

ea
ns

pr
ob

ab
ili

ty
m

as
s

fu
nc

ti
on

,Γ
(t

)
=
∫ ∞ 0

u
t−

1
e−

u
du

,( n x

) =
n

!/
[x

!(
n

−
x

)!
],
N

=
{0

,1
,2

,.
..

},
N

>
0

=
{1

,2
,3

,.
..

},
R

>
0

de
no

te
s

th
e

se
t

of
po

si
ti

ve
re

al
nu

m
be

rs
(w

it
ho

ut
0)

.



90 Classify Positive Univariate Probability Distributions

2.3. Negative hypergeometric or beta-binomial distribution

The negative (or inverse) hypergeometric variable is curiously still little known to such an
extent that it is presented as a “forgotten distribution” by Miller and Fridell (2007). This
distribution is however the counterpart of the negative binomial distribution when sampling
is without replacement.
Consider a population of size N that has a proportion p of favorable events. Thus Np units
are ‘favorable’ and N(1 − p) are not ‘favorable’. Suppose that drawings are repeated without
replacement until r favorable events occur. The negative hypergeometric random variable,
X ∼ NH (N, r, Np), counts the number of failures until obtaining r favorable events.
The PMF of a negative hypergeometric random variable, denoted by X ∼ NH (N, r, Np), is

Pr(X = x) = p(x; N, r, Np) =
(x+r−1

x

)(N−x−r
Np−r

)( N
Np

)
=

(
x + r − 1

x

)
[N(1 − p)]x(Np)r

N r+x (1)

=
(

N − Np

x

)
(x + r − 1)x(N − x − r)N−Np−x

NN−Np

=
(

N − Np

x

)
(r)x(Np − r + 1)N−Np−x

(Np + 1)N−Np
(2)

= Γ(Np + 1)Γ(x + r)Γ(N − x − r + 1)Γ(N − Np + 1)
x!N !Γ(r)Γ(Np − r + 1)Γ(N − Np − x + 1) (3)

= 1
B(r, Np − r + 1)

(x + 1)r−1(N − Np − x + 1)Np−r

(N − Np + 1)Np
, (4)

with x ∈ {0, 1, . . . , N(1−p)}, N ∈ {1, 2, . . . }, and Np ∈ {1, 2, . . . , N}, and r ∈ {1, 2, . . . , Np}.
The notation N r = N !/(N−r)! is the falling factorial. The notation N r = (N+r−1)!/(N−1)!
is the rising factorial. Moreover

B(α, β) = Γ(α)Γ(β)
Γ(α + β) .

E(X) = Nr(1 − p)
Np + 1 , var(X) = rN(1 − p)(N + 1)(Np − r + 1)

(Np + 1)2(Np + 2) .

When N tends to infinity, the negative hypergeometric random variable reduces to the neg-
ative binomial random variable. The similarity between these two variables is striking by
comparing Expression (1) with the distribution of probability of the negative binomial. Using
Expression (3), non–integer values can be used for Np and r. The negative hypergeometric
distribution can be generalized for non–integer values for r and Np.

The beta-binomial distribution is a negative hypergeometric distribution with another parametriza-
tion that is frequently used in Bayesian statistics. The beta-binomial distribution is the bi-
nomial distribution Bin(n, p) in which the probability of success p has a beta distribution. If
X has a beta-binomial distribution, then

Pr(X = x) = Γ(n + 1)Γ(x + α)Γ(n − x + β)Γ(α + β)
Γ(x + 1)Γ(n − x + 1)Γ(n + α + β)Γ(α)Γ(β) , (5)

where n ∈ N>0, α, β ∈ R>0. If we take, n = N −Np, α = r, β = Np−r+1, the right-hand-side
of (5) is equal to (3). We then have

E(X) = nα

α + β
, and var(X) = nαβ(α + β + n)

(α + β)2(α + β + 1) .
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2.4. Negative hypergeometric random variable: case r = 1

When r = 1, the PMF of a negative hypergeometric random variable with r = 1, denoted by
NH (N, 1, Np), is

Pr(X = x) = p(x; N, 1, Np) =
(N−x−1

Np−1
)( N

Np

)
= p

(N − x − 1)Np−1

(N − 1)Np−1 = p
(N − Np)x

(N − 1)x
,

with x ∈ {0, 1, . . . , N(1 − p)}, N ∈ {0, 1, 2, . . . }, and N(1 − p) ∈ {0, 1, . . . , N}.

E(X) = N(1 − p)
Np + 1 , var(X) = N(1 − p)(N + 1)(Np)

(Np + 1)2(Np + 2) .

2.5. Discrete uniform distribution

The PMF of the Discrete uniform random variable DU(A) is

Pr(X = x) = p(x; 0, A) = 1
A + 1 , x ∈ {0, 1, . . . , A},

with A = 0, 1, 2, 3, . . . .

E(X) = A

2 , var(X) = (A + 1)2 − 1
12 .

The discrete uniform distribution is a special case of the negative hypergeometric distribution.
Indeed,

NH (N, 1, 1) = DU(N − 1).

2.6. Pólya–Eggenberger distribution

The Pólya–Eggenberger random variable was first introduced by Eggenberger and Pólya (1923,
1928) (see also Johnson, Kemp, and Kotz 2005, pp. 258–259). Mahmoud (2008) has dedicated
a book to the Pólya Urn Models. Suppose that we have an urn containing N balls with Np
white balls and N − Np black balls. At each trial a ball is selected and is replaced in the
urn with c balls of the same color. Value c can be negative. In this case −c balls of the same
color are removed from the urn after the drawing.
The Pólya–Eggenberger random variable, PE(x, N, n, Np, c), counts the number of white balls
selected after n trials:

Pr(X = x) = p(x; N, n, Np, c)

=
(

n

x

)∏x−1
z=0(Np + cz)

∏n−x−1
z=0 (N − Np + cz)∏n−1

z=0 (N + cz)
,

x = 0, . . . , n.

E(X) = np, var(X) = np(1 − p)N + cn

N + c
.

The special cases of the Pólya–Eggenberger distribution are presented in Table 2.

2.7. Link between the discrete variables

Consider a sequence of m independent and identically distributed random variables and com-
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Table 2: Some special cases of the Pólya–Eggenberger distribution
c = −1 PE(N, n, Np, −1) = H (N, n, Np) Hypergeometric
c = 0 PE(N, n, Np, 0) = Bin(n, p) Binomial
c = 1 PE(N, n, Np, 1) = NH (N + n − 1, N − 1, Np) Negative hypergeometric

or equivalently
c = 1 PE(Np + 1, N − Np, r, 1) = NH (N, r, Np) Negative hypergeometric

pute the conditional distribution of Xj with respect to the sum:

Pr
(

Xj = x

∣∣∣∣∣
m∑

i=1
Xi = S

)
= Pr (

∑m
i=1 Xi = S|Xj = x)

Pr(
∑m

i=1 Xi = S) Pr(Xj = x)

= Pr (
∑m

i=1 Xi − Xj = S − x|Xj = x)
Pr(

∑m
i=1 Xi = S) Pr(Xj = x)

= Pr (
∑m

i=1 Xi − Xj = S − x)
Pr(

∑m
i=1 Xi = S) Pr(Xj = x).

The distributions of the sums and the distributions of the conditional distributions are pre-
sented in Table 3 for several discrete random variables. These results are well–known and
are cited in Johnson et al. (2005). The link between the negative binomial and the negative
hypergeometric is due to Patil and Seshadri (1964) and Kagan, Linnik, and Rao (1973).

Table 3: Let X1, . . . , Xm a sequence of m independent random variables. Computation of the
distributions of the sums of these variables and of variables Xj conditionally to this sum.

Variable Xi S =
∑m

i=1 Xi Xj |S

Poiss(λ) Poiss(mλ) Bin(S, 1
m)

Bern(p) Bin(m, p) H (m, S, 1)

Bin(n, p) Bin(mn, p) H (nm, S, m)

Geom(1 − p) NB(m, p) NH (S + m − 1, 1, m − 1)

NB(r, p) NB(mr, p) NH (S + mr − 1, r, mr − 1)

In the other direction, the results presented in Table 4 show that the distributions presented
in the last column of Table 3 converge in distribution to the distributions of the first column of
this table. Most of these results are well–known except the negative binomial approximation
of the negative hypergeometric distribution studied by López-Blázquez and Salamanca-Miño
(2001) and the binomial approximation of the negative hypergeometric distribution that can
be obtained by approximating the raising factorial by a power function in Expression (2) (see,
for instance Terrell 1999, p. 182).
Following Miller and Fridell (2007), we can summarize these discrete distributions into two ta-
bles. Table 5 presents the usual distributions for sampling with and without replacement with
the special case n = 1. Table 6 presents the corresponding negative (or inverse) distributions.

3. Continuous distributions

3.1. The most usual continuous distributions

The most usual continuous distributions are described in Table 7. The exponential random
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Table 4: Asymptotic results between discrete distributions

H (N, n, Np) D−→
N→∞

Bin(n, p)

NH (N, 1, Np) D−→
N→∞

Geom(1 − p)

NH (N, r, Np) D−→
N→∞

NB(r, p)

NH (N + nr − 1, zr, rn − 1) D−→
r→∞

Bin
(
N, z

n

)
NB

(
r,

r

λ + r

)
D−→

r→∞
Poiss(λ)

Bin
(

n,
λ

n

)
D−→

n→∞
Poiss(λ)

Table 5: Basic distributions for sampling with and without replacement. When n = 1,
sampling with and without replacement are confounded.

Sampling Sampling
without replacement with replacement

any n ∈ N Hypergeometric Binomial
n = 1 Bernoulli Bernoulli

Table 6: Negative (or inverse) distributions corresponding to Table 5

Sampling Sampling
without replacement with replacement

any r ∈ N Negative Hypergeometric Negative Binomial
r = 1 Negative Hypergeometric r = 1 Geometric

variable is denoted by Exp(λ), where λ > 0. The gamma random variable is denoted by
Gamma(r, θ), where r > 0, θ > 0. When r = 1 and θ = 1/λ the gamma variable reduces to
the exponential variable. The beta random variable (∈ [0, 1]) is denoted by Beta(α, β), where
α > 0, β > 0. The continuous uniform random variable (in [0, 1]) is denoted by CU(0, 1) and
is is the special case of the beta distribution when α = 1 and β = 1.

Table 7: Continuous distributions of probability
Notation PDF Support Parameters Mean Variance

Gamma(r, θ) xr−1e−x/θ

Γ(r)θr x ∈ R>0 r, θ ∈ R>0 rθ rθ2

Exp(λ) λe−λx x ∈ R>0 λ ∈ R>0
1
λ

1
λ2

Beta(α, β) xα−1(1−x)β−1

B(α,β) x ∈ [0, 1] α, β ∈ R>0
α

α+β
αβ

(α+β)2(α+β+1)

CU(a, b) 1
b−a x ∈ [a, b] a, b ∈ R>0, a < b a+b

2
(b−a)2

12
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3.2. Relationships between the continuous variables

There also exists links between these continuous variables. As for the discrete variables
(see Table 3), consider the sequence X1, . . . , Xm of independent continuous variables. We
can derive the conditional distribution of one of these variables to their sum. The resulting
relations are given in Table 8

Table 8: Let X1, . . . , Xm a sequence of m independent random variables. Computation of the
distributions of the sum S of these variables and of variable Xj conditionally to this sum.

Xi S =
∑m

i=1 Xi Xj |S

Exp(θ) Gamma(m, θ) Beta(1, (m − 1))

Gamma(r, θ) Gamma(mr, θ) Beta(r, (m − 1)r)

As in the discrete case, it is possible to return from the last column of Table 8 to the first
column by asymptotic results given in Table 9.

Table 9: Asymptotic results between continuous univariate distributions related to the con-
ditioning on the sum presented in Table 8

m
Beta(1, m)

λ
D−→

m→∞
Exp(λ)

mθ Beta(r, m) D−→
m→∞

Gamma(r, θ)

4. Using prior distribution for the parameters
A compound probability distribution is the distribution obtained when one of the parameter
of an original distribution is itself a random variable. In the framework of Bayesian inference,
a prior probability distribution is a probability distribution used to model the parameter of
another distribution, to produce a posterior distribution. For instance, for a Bernoulli random
variable Bern(p), the prior for p can be a beta random variable Beta(α, β). In this case, the
posterior distribution is

∫ 1

0
px(1 − p)1−x pα(1 − p)β)

B(α, β) dp = B(b − x + 1, a + x)
B(α, β) . (6)

Expression (6) is the PMF of the beta-binomial distribution with n = 1 (BetaBin(n = 1, α, β)).
A list of composition is given in Table 10.

Table 10: Composition of some discrete distributions
Original distribution Distribution of the parameter Marginal distribution

Poiss(λ) λ ∼ Gamma(r, θ) NB
(
r, θ

1+θ

)
Poiss(λ) λ ∼ Exp(1/θ) Geom

(
θ

1+θ

)
Bern(p) p ∼ Beta(α, β) BetaBin(1, α, β)

Bin(n, p) p ∼ Beta(α, β) BetaBin(n, α, β)
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5. Relations between the discrete and the continuous variables
Relations between random variables are described in Leemis and McQueston (2008), Leemis,
Luckett, Powell, and Vermeer (2012), Johnson, Kotz, and Balakrishnan (2000) and Johnson
et al. (2005). Some relations are however unheralded. The geometric distribution is usually
said to be a discrete analogue of the exponential distribution (Johnson et al. 2005, p. 210).
The negative binomial is also considered as the discrete analogue of the gamma distribution
(Young 1970; Adell and de la Cal 1994). The analogy between these two variables can be
seen directly by comparing the probability distributions of these variables in Figure 1.
A probably less known relation is the link between the negative hypergeometric distribution
and the beta distribution (Särndal 1968; Bowman, Kastenbaum, and Shenton 1992). A
proof of the convergence of distribution, due to Eggenberger and Pólya (1923), is presented
in Mahmoud (2008, p. 53) for the Pólya urn model where the negative hypergeometric
distribution arises as a special case. The analogy between these two variables can be seen
directly when we compare their distributions of probability in Figure 2. These relations
are presented in Table 11. An interesting special case is that Beta(1, 1) has a continuous
uniform distribution in [0, 1]. Analogously, NH (N, 1, 1) has a discrete uniform distribution
on {0, 1, . . . , N − 1}.

0 20 40 60 80 0 20 40 60

0 10 20 30 40 50 60 70 0 10 20 30 40 50 60

Figure 1: Adjustment of negative binomial distributions by continuous gamma distributions.
The parameters of the negative binomial variables are (r = 1, p = 0.025), (r = 2, p = 0.05),
(r = 4, p = 0.1) and (r = 8, p = 0.2).

Table 11: Analogy between discrete and continuous distributions
NH (N, r, Np)

N − Np

D−→
N→∞
p→0

Np−r+1→β

Beta(r, β)

NH (N, 1, Np)
N − Np

D−→
N→∞
p→0

Np→β

Beta(1, β)

pθNB(r, p) D−→
p→0

Gamma(r, θ)

p
Geom(1 − p)

λ

D−→
p→0

Exp(λ)

DU(A)
A

D−→
A→∞

CU(0, 1)
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Figure 2: Adjustment of beta-binomial distributions by continuous beta distributions. The
parameters of the beta-binomial variables are (n = 50, α = 1, β = 1), (n = 50, α = 0.5, β =
0.5), (n = 50, α = 2, β = 2), (n = 50, α = 2, β = 0.5).

The relations between the variables contained in Tables 3, 4, 6, 8, 9, and 8 are summarized
in Figure 3. Other relations are presented in Morris and Lock (2009) (see also Morris 1982,
1983).

6. The importance of links between variables

6.1. Relation between point processes and sampling algorithms

Our classification of probability distributions makes it possible to establish links between
very different areas of statistics. The analogy between continuous and discrete distributions
is known in the theory of point processes. For example, the discrete analogue of the well-
known continuous Poisson process is the Bernoulli process (Daley and Vere-Jones 2007). For
the Poisson process, the time elapsing between two increments of the counting process follows
an exponential distribution. The Bernoulli process is a sequence of independent Bernoulli
random variables with the same parameter. The number of trials required to obtain a success
follows a geometric distribution, which is the discrete analogue of the exponential distribution.
In sampling theory, the Bernoulli design is a sampling design in which each unit is selected
with the same probability independently of the other units (Wilhelm, Qualité, and Tillé 2017).
Let us also consider a sequence of n continuous random variables U1, . . . , Un with a uniform
distribution in [0, 1]. The order statistic U(1), . . . , U(n) is the sequence of values sorted in in-
creasing order. The difference U(t+1) −U(t) follows a beta distribution (see, for instance David
and Nagaraja 2004). In the theory of sampling from finite population U = {1, . . . , k, . . . , N},
suppose that we select a simple random sample without replacement of fixed size n. The
number of non-selected units between two selected units has a negative hypergeometric dis-
tribution. This property had already been used by Vitter (1987) to propose a rapid skip
algorithm for implementing simple random sampling. We can jump over a certain number of
units in the population to land directly on the next unit to be selected. The analogy between
the negative hypergeometric and the beta distributions therefore make it possible to establish
a link between non-parametric statistics and survey sampling theory.
Wilhelm et al. (2017) studied continuous processes in which the distribution of the interval
between two increments is either a gamma distribution or a beta distribution. By adjusting the
parameters of the distributions, it is possible to produce either a systematic sampling effect
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or a clustering effect. Tillé, Wilhelm, and Qualité (2018) then studied discrete processes.
They showed that we can pass from a systematic design to a simple design and finally to a
design with a cluster effect by simply adjusting the parameters of a negative hypermeometric
distribution. Second-order inclusion probabilities are even computable.

6.2. Generalized regression and link function
In generalized linear models, a link function is used to adapt to the specificity of the dependent
variables. If a variable is dichotomous, logistic regression can be used. If the variable is
discrete and non-negative, Poisson regression can be used. Regression with a gamma link
function is the continuous analogue of regression with a negative binomial link function. For
continuous variables between 0 and 1, Kieschnick and McCullough (2003) and Ferrari and
Cribari-Neto (2004) have used beta variable for the link function.
For a discrete variable between 0 and n, the link function could be a beta-binomial (or
negative hypergeometric) variable. Beta-binomial regression is little known, but it is the
discrete analogue of beta regression. This relatively little-known method has nevertheless
been the subject of several publications (Forcina and Franconi 1988; Martin, Witten, and
Willis 2020; Najera-Zuloaga, Lee, and Arostegui 2018; Martin et al. 2020). It would certainly
suit the analysis of data such as Likert rating scales (Likert 1932) whose values are integer
between 1 and n.

7. Conclusions
The classification we propose draws a parallel between discrete and continuous distributions.
The sampling algorithms can then be seen as discrete point processes. We can also envisage
the use of link functions that are rarely used in generalised regression.

Appendix: Compound distributions

Binomial with n Poisson is Poisson
If X ∼ Bin(n, p), with n ∼ Poiss(λ) is Poiss(pλ). Indeed,

∞∑
n=x

(
n

x

)
px(1 − p)n−x e−λλn

n! = pxe−λλx

x!

∞∑
n=x

(1 − p)n−xλn−x

(n − x)!

= pxe−λ

x! λxeλ(1−p) = (pλ)xe−pλ

x! .

Binomial with n Geometric is Geometric
If X ∼ Bin(n, p), with n ∼ Geom(π) is Geom(π/(p + π(1 − p))). Indeed,

∞∑
n=x

(
n

x

)
px(1 − p)n−xπ(1 − π)n = π(1 − π)xpx

x!

∞∑
n=x

n!
(n − x)! (1 − p)n−x(1 − π)n−x

= π(1 − π)xpx

x!
x!

(p + π(1 − p))x+1

=
[ (1 − π)p

(p + π(1 − p))

]x π

(p + π(1 − p)) .

Binomial with n Negative Binomial is Negative Binomial
If X ∼ Bin(n, p), with n ∼ NB(π, r) is NB(π/(p + π(1 − p)), r).
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Poisson with λ Gamma is negative binomial

If X ∼ Poiss(λ), with γ ∼ Gamma(r, (1 − p)/p) is NB(r, p). Indeed,∫ ∞

0

λx

x! e−λ · λr−1 e−λ(1−p)/p( p
1−p

)r Γ(r)
dλ

= (1 − p)rp−r

x! Γ(r)

∫ ∞

0
λr+x−1e−λ/p dλ

= (1 − p)rp−r

x! Γ(r) pr+x Γ(r + x) = Γ(r + x)
x! Γ(r) px(1 − p)r.
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