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Abstract

We investigate an infinite balls-in-boxes scheme, in which boxes are arranged in nested
hierarchy and random probabilities of boxes are defined in terms of iterated fragmentation
of a unit mass. Gnedin and Iksanov (2020) obtained a multivariate functional central
limit theorem with centering for the cumulative occupancy counts as the number of balls
becomes large. We prove a counterpart of their result, in which centering is not needed
and the limit processes are not Gaussian. An application is given to the scheme generated
by a residual allocation model.

Keywords: functional limit theorem, infinite occupancy, nested hierarchy, residual allocation
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1. Introduction

The infinite occupancy scheme is an urn model that has numerous applications to statistics,
combinatorics, and computer science. It is often depicted as a balls-in-boxes model. One
throws balls successively and independently into an infinite array of boxes 1, 2, . . ., so that
each ball hits box k with positive probability pk, and

∑
k∈N pk = 1. This classical model

is usually called Karlin’s occupancy scheme because of Karlin’s seminal contribution (Karlin
1967). Features of the occupancy pattern emerging after the first n balls are thrown have been
intensively studied, see Gnedin, Hansen, and Pitman (2007) and Iksanov (2016) for surveys.

There is also a randomized version of the classical infinite occupancy scheme, in which the
hitting probabilities of boxes are positive random variables (Pk)k∈N with an arbitrary joint
distribution satisfying

∑
k∈N Pk = 1 almost surely (a.s.). We consider here a variant of

this occupancy scheme, which corresponds to a nested family of boxes. The construction is
conveniently described in terms of the genealogical structure of populations. Let I0 := {∅}
be the initial ancestor and I1 := {1, 2, . . .} be the set of the first generation boxes with some
random hitting probabilities P1, P2, . . .. Divide now each box i into subboxes i1, i2, . . . and
define the hitting probabilities of the subboxes by

P (ik) = PiP
(i)
k for k ∈ N,

where (P
(i)
k )k∈N is an independent copy of (Pk)k∈N. These subboxes are interpreted as the
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second generation boxes which form the set I2. We repeat this procedure for boxes of each
generation until an ∞-ary tree of nested boxes ∪k∈N0Ik has been constructed. Here, N0 =
N ∪ {0}. Note that the hitting probabilities of each generation boxes sum up to one by
construction, that is,

∑
v∈Ij P (v) = 1 a.s. for each j ∈ N.

We assume that the random probabilities of boxes and the outcome of throwing balls are
defined on a common probability space. For n, j, r ∈ N, denote by Kn,j,r the number of the
jth generation boxes υ ∈ Ij containing exactly r out of n first balls, and let

Kn,j(u) :=
n∑

r=dn1−ue

Kn,j,r, u ∈ [0, 1]

be a cumulative count of occupied boxes, where d·e is the ceiling function. With probability
one, the random function u 7→ Kn,j(u) is non-decreasing and right-continuous, hence belongs
to D[0, 1]. Here and hereafter, for an interval I ⊆ [0,∞) we denote by D(I) the Skorokhod
space on I, that is, the set of all càdlàg functions defined on I.

2. Related literature

The nested occupancy scheme in random environment is introduced in Bertoin (2008). Among
other things, it is proved there that, with both n and j diverging to infinity in such a way that
j ∼ a log n, where a is some positive constant, Kn,j(1) the number of occupied boxes in the
jth generation, properly normalized, satisfies a central limit theorem with random centering
as the number n of balls thrown tends to∞. Let Hn,j denote the index of the first generation
in which all the boxes have less then j balls, when n balls have been thrown and Gn,j denote
the index of the first generation in which there exists a box containing less then j balls. In
Joseph (2011) the a.s. asymptotic behaviour of these two random variables is investigated
when n → ∞. It turns out that Hn,j and Gn,j are of the order log n as n → ∞ and their
asymptotics depend on j, when j is smaller than the critical value j∗, and do not depend on
j, when j is larger than j∗. Businger (2017) is concerned with similar problems in a more
general setting (the underlying branching process is a multitype weighted branching process
rather than a weighted branching process). The three aforementioned articles investigated
late generations of the occupancy scheme in random environment, that is, generations whose
indices j are of the order log n. Iksanov and Mallein (2022) provide a full classification of
regimes of the a.s. convergence for the number of occupied boxes in the late generations,
thereby complementing the earlier results obtained in Bertoin (2008).

In Gnedin and Iksanov (2020) early generations (whose indices j do not depend on n) of the
nested occupancy scheme in random environment are treated. In particular, a multivariate
functional central limit theorem for the process ((Kn,1(u))u∈[0, 1], (Kn,2(u))u∈[0, 1], . . .), prop-
erly scaled, centred and normalized, is proved, with the scaling limit of each coordinate being
an a.s. continuous Gaussian process. Under the assumption that the hitting probabilities of
boxes are given by a residual allocation model (a.k.a. stick-breaking) weak convergence of
finite-dimensional distributions of (Kn,bjntc(1))t>0, properly normalized and centered, is ob-

tained in Iksanov, Marynych, and Samoilenko (2022d) for jn → ∞ and jn = o((log n)1/2) as
n→∞. A weaker version with jn = o((log n)1/3) as n→∞ appeared earlier in Buraczewski,
Dovgay, and Iksanov (2020).

Observe that the sequence ((− logP (v))v∈Ij )j∈N forms a branching random walk. In general,
the definition of a branching random walk does not require that

∑
v∈I1 P (v) = 1 a.s. A

branching random walk with (− logP (v))v∈I1 being a globally perturbed random walk (see
Section 6 for the definition) or a standard random walk is called an iterated perturbed random
walk or an iterated standard random walk. Closely related to the present setting are the
articles Bohun, Iksanov, Marynych, and Rashytov (2022), Iksanov, Rashytov, and Samoilenko
(2023), Iksanov, Marynych, and Rashytov (2022c) and Iksanov, Kabluchko, and Kotelnikova
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(2022b), in which various aspects of iterated perturbed random walks and iterated standard
random walks are investigated.

Multivariate functional central limit theorems for the number of boxes containing at least
1 ball, 2 balls, . . . and the number of boxes containing 1 ball, 2 balls, . . ., properly scaled,
normalized and centered, are proved in Iksanov, Kabluchko, and Kotelnikova (2022a) and Ik-
sanov and Kotelnikova (2022), respectively for a nested occupancy scheme with deterministic
probabilities.

3. Main result

Our purpose is to prove a functional limit theorem for ((Kn,1(u))u∈[0, 1], (Kn,2(u))u∈[0, 1], . . .),
properly scaled and normalized without centering. One consequence of our assumptions is
that the scaling limit of each component is an a.s. nondecreasing process, which particularly
cannot be Gaussian. Thus, even though our setting and that of Gnedin and Iksanov (2020)
look similar, the ideas exploited here and in Gnedin and Iksanov (2020) are quite different at
places.

For the given fragmentation law (Pk)k∈N, put Tk := − logPk for k ∈ N, ρ(t) :=
∑

k≥1 1{Pk≥1/t}
for t > 0, N(t) := ρ(et) and V (t) := EN(t) for t ∈ R. Let j ∈ N. Similarly, for the jth
generation put ρj(t) :=

∑
v∈Ij 1{P (v)≥1/t} for t > 0, Nj(t) := ρj(e

t) and Vj(t) := ENj(t) for
t ∈ R. Observe that ρ1 = ρ, N1 = N and V1 = V . Here is a basic recursive decomposition,
which will be essentially used throughout the paper:

Nj(t) =
∑
k∈N

N
(k)
j−1(t− Tk), t ∈ R, j ≥ 2, (1)

where (N
(1)
j−1(t))t≥0, (N

(2)
j−1(t))t≥0, . . . are independent copies of (Nj−1(t))t≥0, which are also

independent of T1, T2, . . .. Passing in (1) to the expectations yields

Vj(t) =

∫
[0, t]

Vj−1(t− y)dV (y), t ≥ 0, j ≥ 2, (2)

which shows that Vj is the j-fold Lebesgue-Stieltjes convolution of V with itself.

Throughout the paper we write⇒ for weak convergence in a function space. Now we formulate
the assumptions of our main result:

V (t) ∼ tα`(t), t→∞, (3)

for some α ≥ 0 and some ` slowly varying at ∞;

sup
t≥1

E(N(t))2

(V (t))2
<∞ (4)

and (N(ut)

V (t)

)
u≥0

⇒ (W (u))u≥0, t→∞ (5)

in the J1-topology on D[0,∞), where (W (u))u≥0 is an a.s. locally Hölder continuous process
with exponent β ∈ (0, 1]. The latter means that, for every T > 0 there exists an a.s. finite
random variable MT such that, for all x, y ∈ [0, T ],

|W (x)−W (y)| ≤MT |x− y|β a.s.

Put

Wj(u) :=

∫
[0, u]

(u− y)α(j−1)dW (y), u ≥ 0, j ∈ N,

where the integral exists as a pathwise Lebesgue-Stieltjes integral. Observe that W1 = W .

We are ready to state our main result.
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Theorem 1. Suppose (3), (4) and (5). Then(( Kn,j(u)

(log n)αj(`(log n))j

)
u∈[0, 1]

)
j∈N

⇒
(
cj−1(Wj(u))u∈[0, 1]

)
j∈N

, n→∞

in the product J1-topology on (D[0, 1])N, where

cj :=
(Γ(1 + α))j

Γ(1 + αj)
, j ∈ N0 (6)

and Γ is the Euler gamma function.

The remainder of the paper is structured as follows. Section 4 collects a number of preparatory
results, which are then used in Section 5 for the proof of Theorem 1. An application of
Theorem 1 to the occupancy scheme in random environment generated by a residual allocation
model is given in Section 6.

4. Auxiliary results

In this section we collect several auxiliary results.

Lemma 2. Suppose (3). Then, for each j ∈ N,

Vj(t) ∼ cjt
αj(`(t))j , t→∞ (7)

with cj given in (6).

Proof. Let j ≥ 2 and V̂ (s) :=
∫
[0,∞) e

−stdV (t) for s > 0. Then in view of (2)

(V̂ (s))j =

∫
[0,∞)

e−stdVj(t), s > 0. (8)

By Karamata’s Tauberian theorem (Theorem 1.7.1 in Bingham, Goldie, and Teugels (1987))
(3) is equivalent to

V̂ (s) ∼ Γ(1 + α)s−α`(1/s), s→ 0+,

whence
(V̂ (s))j ∼

(
Γ(1 + α)

)j
s−αj

(
`(1/s)

)j
, s→ 0 + .

Observe that `j is a slowly varying function. In view of (8), another application of Theorem
1.7.1 in Bingham, Goldie, and Teugels (1987) yields (7).

Lemma 3. Suppose (3) and (4). Then, for each j ∈ N,

sup
t≥1

E(Nj(t))
2

(Vj(t))2
<∞. (9)

Proof. We use mathematical induction. According to (4) inequality (9) holds with j = 1.
Assuming its validity for j = i− 1 we shall show that (9) also holds with j = i.

In view of E(Ni(t))
2 = E

(
Ni(t)− Vi(t)

)2
+ (Vi(t))

2 it suffices to prove

sup
t≥1

E(Ni(t)− Vi(t))2

(Vi(t))2
<∞. (10)

We first provide a convenient representation for I(t) := E
(
Ni(t)−Vi(t)

)2
. Using (1) we obtain

I(t) = E
(∑
k≥1

(
N

(k)
i−1(t−Tk)−EVi−1(t−Tk)

))2
=
∑
k≥1

E
(
N

(k)
i−1(t−Tk)−EVi−1(t−Tk)

)2
. (11)
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The last equality is a consequence of

E(
(
N

(r)
i−1(t− Tr)− EVi−1(t− Tr)

)(
N

(s)
i−1(t− Ts)− EVi−1(t− Ts)

)
|Gs) = 0 a.s.

for r < s, where Gk is the σ-algebra generated by N
(1)
i−1, . . . , N

(k−1)
i−1 and (Tl)l∈N, k ≥ 2. Here,

while the expression in the first parantheses is Gs-measurable, the conditional expectation of

the expression in the second parantheses is equal to 0 a.s., for Ts is Gs-measurable and N
(s)
i−1

is independent of Gs.
Further,

I(t) ≤
∑
k≥1

E(N
(k)
i−1(t− Tk))

2 =

∫
[0, t]

E(Ni−1(t− x))2dV (x).

Inequality (9) with j = i − 1 implies that E(Ni−1(t))
2 ≤ C(Vi−1(t))

2 for all t ≥ 1 and some
constant C ∈ (0,∞). Hence,∫

[0, t−1]
E(Ni−1(t− x))2dV (x) ≤ C

∫
[0, t]

(Vi−1(t− x))2dV (x) ≤ CVi−1(t)Vi(t)

= o((Vi(t))
2), t→∞

having utilized monotonicity of Vi−1 for the last inequality and Lemma 2 for the asymptotic
relation. Using monotonicity of y 7→ E(Ni−1(y))2 and Lemma 2 we infer∫

(t−1,t]
E(Ni−1(t− x))2dV (x) ≤ E(Ni−1(1))2(V (t)− V (t− 1)) = o((Vi(t))

2)

as t→∞. This completes the proof of (10).

Let (Yk)k∈N0 be a sequence of nonnegative random variables. Put M(t) =
∑

k≥0 1{Yk≤t} for
t ≥ 0 and assume that M(t) <∞ a.s. for t ≥ 0. For a function h ∈ D[0,∞), put

X(t) =

∫
[0, t]

h(t− y)dM(y), t ≥ 0.

In the terminology of the article Iksanov and Rashytov (2021) (X(t))t≥0 is a general shot
noise process with the response function h and the counting process M .

We state a slightly corrected version of Theorem 1 in Iksanov and Rashytov (2021). The
formulation in Iksanov and Rashytov (2021) contains an extra assumption, which is omitted
here.

Proposition 4. Fix any α > 0, λ ∈ (0, 1] and β ≥ 0. Let h : [0,∞)→ [0,∞) be a nondecreas-
ing function which varies regularly at ∞ of index β and a : [0,∞) → [0,∞) a nonincreasing
function which varies regularly at∞ of index −α. Assume that (a(t)M(ut))u≥0 ⇒ (Vλ(u))u≥0
as t → ∞ in the J1-topology on D[0,∞), where (Vλ(u))u≥0 is an a.s. nondecreasing random
process, which is a.s. locally Hölder continuous with exponent λ and satisfies Vλ(0) = 0 a.s.
Then (a(t)

h(t)
X(ut)

)
u≥0

⇒
(∫

[0, u]
(u− y)βdVλ(y)

)
u≥0

, t→∞

in the J1-topology on D[0,∞).

5. Proof of the main result

Theorem 1 is an immediate consequence of the following two results.
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Theorem 5. Suppose (3), (4) and (5). Then((Nj(ut)

Vj(t)

)
u≥0

)
j∈N

⇒
(cj−1
cj

(
Wj(u)

)
u≥0

)
j∈N

, n→∞

in the product J1-topology on (D[0,∞))N, with cj as given in (6).

Proposition 6. Suppose (3), (4) and (5). Then, for each j ∈ N,

sup
u∈[0, 1]

|Kn,j(u)− ρj(nu)|
Vj(log n)

P→ 0, n→∞,

where
P→ denotes convergence in probability.

Proof of Theorem 5. We claim it suffices to prove weak convergence of finite-dimensional dis-
tributions. According to the Cramér-Wold device, the task amounts to showing that, for any
i,m ∈ N, any nonnegative βr, k, r, k ∈ N, r ≤ i, k ≤ m and any nonnegative ur, k, r, k ∈ N,
r ≤ i, k ≤ m,

i∑
r=1

m∑
k=1

βr, k
Nr(ur, kt)

Vr(t)

d→
i∑

r=1

m∑
k=1

βr, k
cr−1
cr

Wr(ur, k), t→∞, (12)

where
d→ denotes one-dimensional distributional convergence. Since the product J1-topology

on (D[0,∞))N is used, tightness of the distributions of the converging processes is secured
by tightness of the distributions of their coordinates. The latter is ensured by Remark 2.1 in
Yamazato (2009), because, for each j ∈ N and each t > 0, the random function u 7→ Nj(ut)
is a.s. nondecreasing on [0,∞) and the limit process Wj is a.s. continuous (this can be easily
checked).

Using (1), write, for t ∈ R and j ≥ 2,

Nj(t) =
∑
k≥1

N
(k)
j−1(t−Tk) =

∑
k≥1

(N
(k)
j−1(t−Tk)−Vj−1(t−Tk))+

∑
k≥1

Vj−1(t−Tk) =: Xj(t)+Yj(t).

We shall prove that

m∑
k=1

β1, k
N1(u1, kt)

V1(t)
+

i∑
r=2

m∑
k=1

βr, k
Yr(ur, kt)

Vr(t)

d→
i∑

r=1

m∑
k=1

βr, k
cr−1
cr

Wr(ur, k), t→∞, (13)

and, for each j ∈ N,
Xj(t)

Vj(t)

P→ 0, t→∞. (14)

These limit relations entail (12). Note that, in view of the regular variation of Vj , (14)
guarantees that, for each u ≥ 0,

Xj(ut)

Vj(t)

P→ 0, t→∞.

Proof of (13). Since

Yr(ur, kt) =

∫
[0, ur, k]

Vr−1(t(ur, k − y))dyN(ty), t ≥ 0

and

W (ur, k) =

∫
[0, ur, k]

(ur, k − y)α(r−1)dW (y),
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(13) is equivalent to

m∑
k=1

β1, k
N1(u1, kt)

V1(t)
+

i∑
r=2

m∑
k=1

βr, k
Vr−1(t)V (t)

Vr(t)

∫
[0,ur, k]

Vr−1(t(ur, k − y))

Vr−1(t)
d
N(ty)

V (t)

d→
m∑
k=1

β1, kW (u1, k) +
i∑

r=2

m∑
k=1

βr, k
cr−1
cr

∫
[0,ur, k]

(ur, k − y)α(r−1)dW (y), t→∞. (15)

Let (tn)n∈N be an arbitrary sequence of positive numbers satisfying limn→∞ tn =∞. Accord-
ing to the Skorokhod representation theorem there exist processes ((Ñtn(y))y≥0)n∈N having
the same distribution as ((N(tny)/V (tn))y≥0)n∈N and a process W̃ having the same distribu-
tion as W , such that

lim
n→∞

Ñtn(y) = W̃ (y) a.s. on D[0,∞).

The distribution of the left- (right-) hand side of (15) does not change upon replacing
N(tny)/V (tn) with Ñtn(y) (W with W̃ ). Hence, (15) follows if we can show that

lim
n→∞

( m∑
k=1

β1, kÑtn(u1, k) +
i∑

r=2

m∑
k=1

βr, k
Vr−1(tn)V (tn)

Vr(tn)

∫
[0,ur, k]

Vr−1(tn(ur, k − y))

Vr−1(tn)
dÑtn(y)

)
=

m∑
k=1

β1, kW̃ (u1, k) +

i∑
r=2

m∑
k=1

βr, k
cr−1
cr

∫
[0,ur, k]

(ur, k − y)α(r−1)dW̃ (y) a.s. (16)

According to (5), the first sum on the left-hand side converges a.s. to the first sum on the
right-hand side. For r ≥ 2, the process Yr is an instance of a general shot noise process with
the response function Vr−1 and the counting process N , see the paragraph preceding Propo-
sition 4 for the definition. The function Vr−1 is nondecreasing and, by Lemma 2, regularly
varying at ∞ of index α(r − 1). The function 1/V is nonincreasing and, by assumption, is
regularly varying at ∞ of index −α. The process W is an a.s. locally Hölder continuous with
exponent β ∈ (0, 1]. Thus, the process Yr satisfies all the assumptions of Proposition 4, and
an application of this result yields( Yr(ut)

Vr−1(t)V (t)

)
u≥0

⇒ (Wr−1(u))u≥0, t→∞

in the J1-topology on D[0,∞) or equivalently(Yr(ut)
Vr(t)

)
u≥0

⇒ cr−1
cr

(Wr−1(u))u≥0, t→∞

because
Vr−1(t)V (t) ∼ (cr−1/cr)Vr(t), t→∞

by Lemma 2. This entails that each term on the left-hand side of (16) which corresponds to
a single r = 2, 3, ..., i converges a.s. to the corresponding term on the right-hand side of (16).
This proves (16) and thereupon (13).

Proof of (14). Fix any integer j ≥ 2. According to Markov’s inequality it is enough to
prove that E(Xj(t))

2 = o((Vj(t))
2) as t→∞. Invoking (11) we obtain

E(Xj(t))
2 =

∫
[0, t]

Var (Nj−1(t− x))dV (x) =

∫
[0, t−1]

. . .+

∫
(t−1, t]

. . . .

It follows from (9) that Var (Nj−1(t)) ≤ E(Nj−1(t))
2 ≤ C(Vj−1(t))

2 for some positive constant
C and t ≥ 1. Hence,

E(Xj(t))
2 ≤ C

∫
[0, t]

(Vj−1(t− x))2dV (x) + sup
y∈[0, 1]

E(Nj−1(y))2(V (t)− V (t− 1))

≤ CVj−1(t)Vj(t) + E(Nj−1(1))2V (t) = o((Vj(t))
2), t→∞.
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Here, the second inequality is justified by monotonicity of Vj−1 and (2), and the last equality
is secured by Lemma 2.

Proof of Proposition 6. Fix any j ∈ N. By Proposition 3.6 in Gnedin and Iksanov (2020), for
n ∈ N,

E
(

sup
s∈[0, 1]

|Kn, j(s)− ρj(ns)|
∣∣∣(P (v))v∈Ij

)
≤ 4
(
ρj(n)− ρj(y0n(log n)−2)

)
+ 2ρj(n)(log n)−1

+

∫ ∞
1

x−2(ρj(nx)− ρj(n))dx+ 2 sup
s∈[0, 1]

(ρj(en
s)− ρj(e−1ns)), (17)

where y0 ∈ (0, 1) is a deterministic constant which does not depend on n, nor on (P (v))v∈Ij .

In view of Theorem 5 and Lemma 2,(Nj(s log n+ 1)

Vj(log n)
,
Nj(s log n− 1)

Vj(log n)

)
s≥0

⇒ ((cj−1/cj)Wj(s), (cj−1/cj)Wj(s))s≥0, n→∞

in the J1-topology on D[0,∞)×D[0,∞), whence

sups∈[0, 1](ρj(en
s)− ρj(e−1ns))

Vj(log n)
=

sups∈[0, 1](Nj(s log n+ 1)−Nj(s log n− 1))

Vj(log n)

P→ 0, n→∞.

To complete the proof, according to Markov’s inequality, it suffices to show that the expecta-
tion of each of the first three terms in (17) divided by Vj(log n) converges to 0 as n→∞.

For the first term, this follows from the fact, which is a consequence of Lemma 2, that the
function t 7→ Vj(log t) is slowly varying at ∞. For the second term, this is trivial. For the
third term, write

lim
n→∞

E
∫∞
1 x−2(ρj(nx)− ρj(n))dx

Vj(log n)
= lim

n→∞

∫ ∞
1

x−2
Vj(log(nx))

Vj(log n)
dx− 1

=

∫ ∞
1

x−2 lim
n→∞

Vj(log(nx))

Vj(log n)
dx− 1 = 0

having utilized slow variation of t 7→ Vj(log t) for the last equality. The penultimate equality is
justified by Lebesgue’s dominated convergence theorem in combination with Potter’s bound
(Theorem 1.5.6(i) in Bingham, Goldie, and Teugels (1987)): for all x ≥ 1 and large n,
Vj(log(nx))/Vj(log n) ≤ 2x1/2.

6. An application to a residual allocation model

Assume that (Pk)k∈N follow a residual allocation model

Pk = U1U2 · . . . · Uk−1(1− Uk), k ∈ N, (18)

where U1, U2, . . . are independent copies of a random variable U taking values in (0, 1) and
satisfying

P{| logU | > x} ∼ x−ρL(x), x→∞ (19)

for ρ ∈ (0, 1) and some L slowly varying at ∞. We intend to apply Theorem 1 to the
corresponding infinite occupancy scheme in random environment. To this end, we first check
that, under (18) and (19), conditions (3), (4) and (5) hold true with α = ρ, `(t) = (Γ(1 −
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ρ)Γ(1 + ρ)L(t))−1 and W being a constant multiple of an inverse ρ-stable subordinator S←ρ ,
say. The process S←ρ is defined by

S←ρ (u) := inf{v ≥ 0 : Sρ(v) > u}, u ≥ 0,

where (Sρ(v))v≥0 is a ρ-stable subordinator with − logEe−sSρ(1) = Γ(1− ρ)sρ for s ≥ 0.

Let (ξk, ηk)k∈N be independent copies of a random vector (ξ, η) with positive arbitrary de-
pendent components. Denote by (Sk)k∈N0 the zero-delayed standard random walk with in-
crements ξk, that is, S0 := 0 and Sk := ξ1 + . . . + ξk for k ∈ N. Put

T ∗k := Sk−1 + ηk, k ∈ N.

The random sequence (T ∗k )k∈N is known in the literature as a (globally) perturbed random
walk, see Section 1 in Iksanov (2016). With Pk as in (18),

Tk = − logPk = | logU1|+ . . .+ | logUk−1|+ | log(1− Uk)|, k ∈ N,

that is, (Tk)k∈N is a particular instance of the perturbed random walk with

(ξ, η) = (| logU |, | log(1− U)|). (20)

Throughout this section, N(t) =
∑

k≥1 1{Tk≤t} and V (t) = EN(t) =
∑

k≥1 P{Tk ≤ t}, t ∈ R
for the particular (Tk)k∈N as above.

Condition (3). Write, for s > 0,∫
[0,∞)

e−std
(∑
k≥1

P{T ∗k ≤ t}
)

= Ee−sη
∑
k≥0

Ee−sSk = Ee−sη(1− Ee−sξ)−1.

As a consequence,∫
[0,∞)

e−std
(∑
k≥1

P{T ∗k ≤ t}
)
∼ (1− Ee−sξ)−1, s→ 0 + .

We shall apply this limit relation to (ξ, η) as in (20).

By Corollary 8.1.7 in Bingham, Goldie, and Teugels (1987), (19) is equivalent to 1−Ee−s| logU | ∼
Γ(1− ρ)sρL(1/s) as s→ 0+, whence∫

[0,∞)
e−stdV (t) ∼ (1− Ee−s| logU |)−1 ∼ (Γ(1− ρ)sρL(1/s))−1, s→ 0 + .

Invoking Theorem 1.7.1 Bingham, Goldie, and Teugels (1987) yields

V (t) ∼ 1

Γ(1− ρ)Γ(1 + ρ)

tρ

L(t)
, t→∞, (21)

that is, condition (3) does indeed hold with α = ρ and `(t) = (Γ(1− ρ)Γ(1 + ρ)L(t))−1.

Condition (4). Since N(t) ≤ 1 +
∑

k≥1 1{| logU1|+...+| logUk|≤t} =: N̂(t) for t ≥ 0 a.s. and, un-

der (19), supt≥1(E(N̂(t))2/(V (t))2) <∞ by Theorem 1.5 in Iksanov, Marynych, and Meiners
(2016), condition (4) holds true.

Condition (5). By part (B4) of Theorem 3.2 in Alsmeyer, Iksanov, and Marynych (2017),

(P{| logU | > t}N(tu))u≥0 ⇒ (S←ρ (u))u≥0, t→∞

in the J1-topology on D[0,∞). In view of (21), this is equivalent to(N(tu)

V (t)

)
u≥0

⇒ Γ(1− ρ)Γ(1 + ρ)(S←ρ (u))u≥0, t→∞.

According to Lemma 3.4 in Owada and Samorodnitsky (2015), the process S←ρ is a.s. locally
Hölder continuous with exponent smaller than ρ.

An application of Theorem 1 yields the following.
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Theorem 7. Suppose (18) and (19). Then

(((L(log n))jKn,j(u)

(log n)ρj

)
u∈[0, 1]

)
j∈N

⇒
( 1

(Γ(1− ρ))j−1Γ(1 + ρ(j − 1))

(∫
[0, u]

(u− y)ρ(j−1)dS←ρ (y)
)
u∈[0, 1]

)
j∈N

, n→∞

in the J1-topology on (D[0, 1])N.
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