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Editorial
Compositional data (CoDa) are random vectors representing parts of a whole which

carry only relative information such as parts per unit, percentages or ppm along with
other relative units such as molar compositions. Different fields have typical examples,
for instance in Geology (geochemical elements), Economics (income/expenditure dis-
tribution), Medicine (body composition: fat, bone, lean), Genetics (genotype frequency),
Chemistry (chemical composition), Ecology (abundance of different species), Paleontolo-
gy (foraminifera taxa), Agriculture (nutrient balance ionomics), Environmental Sciences
(soil contamination), Sociology (time-use surveys), the Food Industry (food composition:
fat, sugar, etc.) or questionnaire surveys (ipsative data). The particular nature of CoDa
renders most classical statistical techniques on compositions incoherent, as they were de-
vised for unbounded real vectors. Modern CoDa analysis is founded on an own geometric
structure for the simplex, i.e. an appropriate representation of the sample space of CoDa.
Practitioners interested in CoDa can find a forum where information, material and ideas
can be exchanged on the CoDaWeb (www.compositionaldata.com).

Specialist researchers, data analysts, postgraduate students or simply those with a ge-
neral interest in CoDa or other constrained data sets, meet periodically at CoDaWork, the
international Workshop on Compositional Data Analysis. This volume is a collection of
noteworthy contributions to CoDaWork 2015 (L’Escala, Girona, Spain) rounded off with
the fourth paper The Mathematics of Compositional Analysis where the authors provide
a precise and unequivocal definition of the concepts of composition, CoDa sample space
and subcomposition, on which all CoDa analysis is based. From the central, fundamental
idea that a composition is an equivalence class and the sample space is the correspon-
ding quotient space, it is shown that a logarithmic isomorphism induces a metric space
structure. This structure allows for standard statistical analyses on the coordinates of com-
positions to be carried out.

The first contribution to this volume (A Logistic Normal Mixture Model for Composi-
tional Data Allowing Essential Zeros) extends the additive logistic normal distribution to
handle essential zeros for continuous CoDa; where an essential zero in CoDa is a zero
component which is not caused by rounding or some other difficulty in measurement, but
rather, is genuinely believed to be zero.

In the second paper (Changing the Reference Measure in the Simplex and Its Weighting
Effects), among the number of weighting techniques presented, the authors show changes
that appear in the algebraic-geometric structure of the simplex, as well as some effects
in elementary statistics and exploratory tools, when one applies a change of reference
measure of the simplex.

The third contribution, entitled Bayesian Estimation of the Orthogonal Decomposition
of a Contingency Table, introduces a Bayesian approach for a decomposition of a table
into an independent table and an interaction table. Using a Dirichlet prior distribution for
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the multinomial probabilities, a simulation of its posterior allows for the independence of
the observed contingency table and cell interactions to be checked.

Finally, the last paper (Compositional Uncertainty Should Not Be Ignored in High-
Throughput Sequencing Data Analysis) deals with the compositions generated by high
throughput sequencing. The approach illustrated, one which can be extended to high-
dimensional count CoDa, merges Bayesian estimation with log-ratio techniques. When
examining the effect of using various approaches to estimating the value of zero, the
combination of estimating technical variation and the centered log-ratio transformation is
shown to provide a large increase in selectivity.

We would like to thank the authors and the referees involved in this volume, as well
as the editorial team from the Austrian Journal of Statistics, for their outstanding contri-
bution. After six editions of CoDaWork, this volume demonstrates that this hot research
topic is continuously growing and evolving with the new advances in its theoretical basis
and new methodological developments, all of which will have an enormous impact on
applied fields. The next CoDaWork will be in Abbadia San Salvatore (Siena, Italy), 2017
5-9 June: you are kindly invited to participate!

Josep Antoni Martín-Fernández, Santiago Thió Fernández de Henestrosa
(Guest Editors)

University of Girona
Department of Computer Science, Applied Mathematics and Statistics
Campus Montilivi
17003 Girona
Spain

Girona, June 2016
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A Logistic Normal Mixture Model for

Compositional Data Allowing Essential Zeros

John Bear
Statistical Consulting Lab,

University of Arizona, U.S.A.

Dean Billheimer
Statistical Consulting Lab,

University of Arizona, U.S.A.

Abstract

The usual candidate distributions for modeling compositions, the Dirichlet and the
logistic normal distribution, do not include zero components in their support. Methods
have been developed and refined for dealing with zeros that are rounded, or due to a value
being below a detection level. Methods have also been developed for zeros in compositions
arising from count data. However, essential zeros, cases where a component is truly absent,
in continuous compositions are still a problem.

The most promising approach is based on extending the logistic normal distribution to
model essential zeros using a mixture of additive logistic normal distributions of different
dimension, related by common parameters. We continue this approach, and by imposing
an additional constraint, develop a likelihood, and show ways of estimating parameters
for location and dispersion. The proposed likelihood, conditional on parameters for the
probability of zeros, is a mixture of additive logistic normal distributions of different
dimensions whose location and dispersion parameters are projections of a common location
or dispersion parameter. For some simple special cases, we contrast the relative efficiency
of different location estimators.

Keywords: composition, subcomposition, essential zero, logistic normal, projection.

1. Introduction

An essential zero in compositional data is a zero component which is not caused by rounding
or some other difficulty in measurement, but rather, is genuinely believed to be zero. This is
fundamentally a different problem than that addressed by recent work on rounded zeros, or
below-detection level zeros, such as in Palarea-Albaladejo and Mart́ın-Fernández (2015) and
references therein. Although there are recent workable Bayesian approaches to zeros in compo-
sitions from count data, Mart́ın-Fernández, Hron, Templ, Filzmoser, and Palarea-Albaladejo
(2014) and references therein, essential zeros in continuous compositions still present a prob-
lem.

We develop an approach proposed by Aitchison and Kay (2003) to extend the logistic nor-
mal distribution to accommodate essential zeros. Aitchison (1986) and Aitchison and Kay
(2003) note that a key feature compositional data is that ratios of the components contain all
pertinent information about the composition. Essential zeros complicate this feature in that
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they contain no information about the other components of the composition. In addition, an
observation containing an essential zero is at the boundary of the simplex and is a composition
of smaller dimension.

2. Previous work

In addition to the work mentioned above, there have been other approaches to zeros in com-
positions. Work by Butler and Glasbey (2008) mapped a latent Gaussian variable to a com-
position, but seems only to work for two and three-part compositions. An additional concern
is that it does not preserve ratios of parts in subcompositions. In contrast, Leininger, Gelfand,
Allen, and Silander Jr (2013) have developed a more practical treatment of compositions as
coming from a latent Gaussian random variable where the compositional component is zero
when the latent Gaussian component is less than or equal to zero. They develop a hierarchical
power model with the transformation Xk = (max(0,Zk))

γ

1+
∑d
k′=1(max(0,zk′ ))γ

where Zk is the kth normal

component and Xk is the corresponding compositional component. D is the number of parts
in the composition, d = D − 1, and XD = (1 +

∑d
k′=1(max(0, Z ′k))

γ)−1. The corresponding
inverse transformation is Zk = (Xk/XD)1/γ if Xk > 0, and Zk ≤ 0 (latent) if Xk = 0, for
k = 1, 2, . . . , d. To estimate parameters they use MCMC. One limitation of their approach is
also a limitation of ours: we require one component of the composition to be strictly positive.

Work by Stewart and Field (2011) uses a multiplicative logistic normal mixture model that al-
lows them to consider the univariate log odds for the ith component to be normally distributed
where the ith component is not zero. It works well for their applications, in particular regres-
sion, but does not capture covariance easily.

Scealy and Welsh (2011) transform compositions into directional data on the hypersphere,
and develop a regression model using the Kent distribution, Kent (1982), which tolerates
zeros, though they write, “When any of the components of u are distributed too close to 0,
boundary issues arise and in this case we need to pursue alternative approaches since the
fitted Kent model (and the von Mises-Fisher model) may have significant support outside the
positive orthant.” A further issue with their approach is that their square root transformation
does not preserve ratios of parts in subcompositions.

Our goal here is to extend the additive logistic normal distribution to handle essential zeros
for continuous data.

3. Motivating example

Suppose we have compositional data on how much Bill spends on rice, lentils, and spices when
he buys food. Suppose he buys in bulk, and occasionally the store is out of either the spices
or lentils, but they always have plenty of rice. Table 1 shows a set of such compositions where
some of the entries, for spices or lentils, are zero. Our goal is to develop a model for data like
these by extending the additive logistic normal distribution.

4. Definitions (from Aitchison, 1986)

Definition: The d-dimensional simplex embedded in D-dimensional real space is the set of
compositions, x, defined by

Sd = {x = (x1, . . . , xd, xD) : x1 > 0, . . . , xD > 0;
D∑

i=1

xi = 1},

where d = D − 1. If x = (x1, x2, . . . , xd, xD)T , then x−D = (x1, x2, . . . , xd)
T . The additive

logratio transformation, alr, is defined as follows:

alr : Sd → Rd
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Table 1: Composition of food expense

spices lentils rice

1 0.16 0.00 0.84
2 0.17 0.00 0.83
3 0.16 0.00 0.84
4 0.00 0.37 0.63
5 0.00 0.37 0.63
6 0.00 0.37 0.63
7 0.12 0.33 0.55
8 0.11 0.34 0.56
9 0.12 0.32 0.56

10 0.10 0.34 0.56
11 0.10 0.33 0.57
12 0.11 0.33 0.55

x 7→ y =(log(x1/xD), log(x2/xD), . . . , log(xd/xD))T . (1)

We define the shorthand log(x−D/xD) = (log(x1/xD), log(x2/xD), . . . , log(xd/xD))T . Since
alr is one-to-one, its inverse exists. It is called the logistic transformation, alr−1, defined as

alr−1 : Rd → Sd (2)

y 7→ x = (x1, x2, . . . , xd, xD)T , where for (i = 1, . . . , d),

xi = exp(yi)/{exp(y1) + · · ·+ exp(yd) + 1}
xD = 1/{exp(y1) + · · ·+ exp(yd) + 1}.

5. Simplifying assumption

In this section we outline our method for building a mixture distribution for dealing with
compositions containing essential zeros, but leave most of the details about the weights for
later. A key simplifying assumption we make throughout is that one of the parts of the
composition, the Dth component, is never zero. We allow zeros anywhere else but not in the
last component.

In a set of logistic normal data without zeros, the likelihood has been shown to be permutation
invariant (Aitchison 1986). In our extension which allows zeros, if some parts are never zero,
the likelihood is invariant to the choice of which one of those nonzero parts is chosen as the
reference provided the same reference part is used throughout the data set.

Let x = (x1, x2, . . . , xd, xD)T be a composition with xi < 1 for all i ∈ {1, 2, . . . , d,D} and
xD > 0. For i ∈ {1, 2, . . . , d}, consider two possibilities. Either xi = 0 or xi > 0. Let
W = {i : i ∈ {1, 2, . . . , d}, xi > 0}. That is, W is the set of indices for the parts of x (other
than xD) which are nonzero (positive). For any given composition x, W is the set of all the
indices of the nonzero components of x. There are 2d − 1 possible sets W . There are 2d − 1
and not 2d because W cannot be empty. If W were empty that would require that xD = 1
in order for x to be a composition, but we have already said we require all xi < 1 including
xD. Each pattern of zeros corresponds to a different set W . We index them as W` with
` ∈ {1, 2, . . . , 2d − 1}. They are elements of the power set, W` ∈ P({1, 2, . . . , d}). Sometimes
we refer to these sets with incidence vectors where the ith component VW` i = 1 ⇐⇒ xi > 0
and VW` i = 0 ⇐⇒ xi = 0.

Each W` has some probability of occurrence, P (W`). Although some pattern can be not
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present P (W`) = 0, the probabilities must sum to one,

2d−1∑

`=1

P (W`) = 1.

We use the probabilities P (W`) as the weights in a mixture distribution. For the other distri-
butions making up our mixture, we use logistic normal distributions L(x;µW`

,ΩW`
) derived

from a single parent logistic normal distribution L(x;µ,Ω) . They are in fact projections from
the parent. We will call the distributions derived from the parent distribution subdistributions
once we define them. So the mixture distribution will be denoted as follows, once we define
a few more terms,

g(x;µ,Ω) =
2d−1∑

`=1

P (W`)L(x;µW`
,ΩW`

).

In the parent distribution, L(x;µ,Ω), µ is a d-part location parameter vector, µ ∈ Rd, and Ω
is a d× d positive definite dispersion matrix. To ease the discussion we will refer to µ and Ω
as mean vector and variance-covariance matrix respectively, although they are not moments
of the distribution. For the distributions derived from the logistic normal parent distribution,
the parameters µW`

and ΩW`
are defined in terms of the parameters µ, and Ω, and the set

of indices of nonzero components of x, W`, and a selection matrix BW`
.

Let W` ⊂ {1, 2, 3, . . . , d} be a nonempty set of indices (of the nonzero components of x);
without loss of generality we can order the indices from least to greatest

W` = {j1, j2, . . . , jJ} where 0 < j1 < j2 < . . . < jJ ≤ d.

Now we define our J × d selection matrix, BW`
= [Bi,m]. For i ∈ {1, 2, . . . , J}, and m ∈

{1, 2, . . . , d}, with W` = {j1, j2, . . . , jJ}, we define the elements of [Bi,m] to be Bi,ji = 1 and
Bi,m 6=ji = 0. For example, let x = (.2, 0, .3, 0, .25, .25), a 6-part composition, with x6 > 0.
The set of nonzero indices is W` = {1, 3, 5}, and the selection matrix is

BW`
= B{1,3,5} =




1 0 0 0 0
0 0 1 0 0
0 0 0 0 1


 .

Now it is easy to define µW`
and ΩW`

. We define:

µW`
= (BW`

)(µ).

ΩW`
= (BW`

)(Ω)(BT
W`

).

With this structure, the mixture distribution can be more fully specified.

g(x;µ,Ω) =
2d−1∑

`=1

P (W`)L||W`||(x;µW`
,ΩW`

) where

• ||W`|| refers to the cardinality of the set W`.

•
∑
P (W`) = 1.

• µ is a d-part vector in Rd.

• µW`
is a subvector of µ corresponding to the W` pattern of zeros.

• ΩW`
is a submatrix of a d× d positive definite covariance matrix corresponding to the

W` pattern of zeros.
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5.1. Multivariate normal foundation

Now we extend the notation for the inverse of the additive logratio transformation, alr−1, from

Aitchison (1986). We use the new symbols, ãlr and ãlr
−1

. We define them in terms of W and
D, the maximum index. Let W ⊂ {1, 2, . . . , d} be a pattern of zeros, i.e., a set of indices of
nonzero components of x and denote them: W = {i1, i2, . . . , ir}, and let j ∈ {1, 2, . . . , d,D}.
In our approach there is a tight correspondence between the yi variables of a multivariate
normal vector and the xi parts of a composition, possibly one containing essential zeros.

yi = log(xi/xD) for i = 1, 2, 3, . . . , d.

Composition: x = (x1, x2, x3, . . . , xd, xD )T

| | | |
alr transformed vector: y = log(x−D/xD) = (y1, y2, y3, . . . , yd, � )T .

When there is an essential zero in the composition in one of the xi parts, e.g., in x2, we use
� as a placeholder so things line up, for example:

Composition: x = (x1, 0, x3, . . . , xd, xD )T

| | |
ãlr transformed subvector: y = log(x−{2,D}/xD) = (y1, �, y3, . . . , yd, � )T .

(3)

When we have an essential zero in the ith part of the composition, we have a selected subvector
of the y’s which does not contain an element corresponding to yi. The requirement that xD > 0
is what allows us to maintain this strict correspondence between xi and yi.

Now we define ãlr
−1

ãlr
−1

(y,W,D) = (x1, . . . , xd, xD)T where, (4)

xj =





exp(yj)/{exp(yi1) + exp(yi2) + . . .+ exp(yir) + 1} if j ∈W
0 if j /∈W & j ∈ {1, . . . , d}
1/{exp(yi1) + exp(yi2) + . . .+ exp(yir) + 1} if j = D.

Next we turn to defining an extension to the logistic normal distribution. Let x = (x1, x2, x3, . . . ,
xd, xD)T be a composition, and let y = log(x−D/xD) = (y1, y2, y3, . . . , yd)

T . Then x is defined
to have a logistic normal distribution with location µ and dispersion Ω, written x∼L(µ,Ω), if
y∼N (µ,Ω). Note also that if y∼N (µ,Ω), and B is a selection matrix as mentioned in Section
5, then By is also multivariate normal with distribution:

By∼N (Bµ,BΩBT ).

And finally, recall that also in Section 5 we used W` to represent the set of indices of the
nonzero components of x. BW`

is the selection matrix that selects those components when
we perform these matrix multiplications:

µW`
= (BW`

)(µ),

ΩW`
= (BW`

)(Ω)(BT
W`

).

With all these definitions in place we are now in a position to define a logistic normal distri-
bution with essential zeros.
Definition:

Let x = (x1, x2, x3, . . . , xd, xD)T be a composition with xD > 0.

Let W` = {i1, i2, . . . , ir} ⊂ {1, 2, . . . , d} be a nonempty set of indices of nonzero

components of x.
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Let BW`
be the corresponding selection matrix.

Let y = log(BW`
x−D/xD) = (yi1 , yi2 , . . . , yir)

T = ãlr(x,W`, D) be the logratios of the nonzero

components of x.

If for every set W` of indices of nonzero components of x, we have y∼N (µW`
,ΩW`

), then x
has a logistic normal distribution with essential zeros, written x∼L(µ,Ω), with probability
density function

g(x;µ,Ω) =

2d−1∑

`=1

P (W`)L||W`||(x;µW`
,ΩW`

),

where
∑

P (W`) = 1.

µ is a d -part vector in Rd.

µW`
is a subvector of µ corresponding to the W` pattern of zeros.

Ω is a d× d positive definite covariance matrix.

ΩW`
is a square submatrix of Ω, corresponding to the W` pattern of zeros.

For the case where W = {1, 2, . . . , d} the composition x = (x1, x2, . . . , xD)T has the additive
logistic normal distribution, Ld(µ,Ω).

5.2. Common expectations and variances

The definition of ãlr
−1

enables compositions from different subdistributions to be used to
estimate parameters of their shared parent distribution. Let x1 = (x11, x21, . . . , xD1)

T , and
let x2 = (x12, x22, . . . , xD2)

T with

x1∼L||W1||(µW1
,ΩW1), and (5)

x2∼L||W2||(µW2
,ΩW2). (6)

The two sets of nonzero indices, W1,W2 need not have any elements in common, nor do they
need to have the same number of elements, though x1 and x2 both have D elements. Suppose
they have an index, m, in common: m ∈ W1 ∩ W2. By properties of the logistic normal

distribution (Aitchison 1986, p. 116), and the definition of ãlr
−1

in Equation 4 we have:

E log(xm1/xD1) = Eym = µm = Eym = E log(xm2/xD2). (7)

And similarly,

Var[log(xm1/xD1)] = Var[ym] = σ2m = Var[ym] = Var[log(xm2/xD2)]. (8)

Thus, compositions from different subdistributions of the same logistic normal distribution
can be used to estimate the parameters of their shared parent distribution.

6. Data blocks

Now that we have a correspondence between multivariate normal variables and compositions
with zeros, we could derive a density function using the standard formula for transformed
variables, analogous to Aitchison (1986, chapter 6). However, for estimating parameters it
is more convenient to work in the space of the transformed variables (multivariate normal
projections).

Here we apply the techniques and notation of block matrices and matrix calculus to do some
preparation in order to build a likelihood and attack the problem of finding estimators for the
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parameters. We discuss two sets of estimators, a general maximum likelihood estimator, and
a simpler pair of estimators reminiscent of method of moments estimators.

6.1. Block matrices of compositions

We write a collection of compositional data with zeros, X, as a column of blocks of compo-
sitions where each block, X`, has a particular pattern of zeros throughout. That is, for a
particular block, X`, and i ∈ {1, 2, . . . , d}, the ith column of X` is either all positive, or all
zero. Let

X
n×D

=




X1

X2
...

Xb


 . (9)

The dimensions of the blocks are: X1
r1×D

, X2
r2×D

, . . . , Xb
rb×D

and the sum of their vertical dimensions

is r1 + r2 + . . .+ rb = n, where n is the number of data points.

We use ` to indicate a block, and t to indicate a composition (row) in that block. Next
we define the patterns of zeros in each block. Here i ∈ {1, 2, . . . , D}. For ` ∈ {1, 2, . . . , b},
let W` ⊂ {1, 2, . . . , d} be the set of indices of strictly positive components of X`. For ` ∈
{1, 2, . . . , b},

X` = [xti], where





xti > 0 if i = D,

xti > 0 if i ∈W`,

xti = 0 if i /∈W` and i 6= D.

(10)

6.2. Transformations - ratios and logratios

We have already defined the alr transformation for the case where there are no zeros in
(1). Next we extend alr to ãlr for a block matrix of compositions, X

r`×D
which may contain

zeros. We do this by defining a selection matrix BW`
corresponding to set W`. We still have

W` ⊂ {1, 2, 3, . . . , d} being a nonempty set of indices of the nonzero components of x, and
without loss of generality we can order the indices from least to greatest:

W` = {j1, j2, . . . , jJ} where 0 < j1 < j2 < . . . < jJ < D. (11)

Now we define our (J + 1)×D selection matrix, BW`
= [Bp,m]. We use J + 1 here because

we construct the selection matrix so that the final, Dth, component of the data is always
selected. This is slightly different than before. Previously we constructed B to conform to
the parameters µ(d× 1) and Ω(d× d).

For p ∈ {1, 2, . . . , J + 1}, and m ∈ {1, 2, . . . , D}, with W` = {j1, j2, . . . , jJ}, (12)

we define the elements of [Bp,m] to be Bp,jp = 1 and Bp,m 6=jp = 0. (13)

X`B
T
W`

is a matrix where each row vector is a composition without zeros.

X`B
T
W`

=




xT1
xT2
...

xrT`


BT

W`
=




x11 x12 . . . x1(J+1)

x21 x22 . . . x2(J+1)
...

...
...

xr`1 xr`2 . . . xr`(J+1)


 . (14)
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We define ãlr(X`,W`, D) = alr(X`B
T
W`

) =




alr(xT1 )
alr(xT2 )

...
alr(xTr`)




r`×(J+1)

=




yT1
yT2
...

yTr`




r`×J

. (15)

Let Y`
r`×J

= ãlr(X`,W`, D) (16)

Each row vector in Y` is a vector of reals, all potentially from the multivariate normal dis-
tribution corresponding to the `th pattern of zeros. Note that we cannot form a single block
matrix, Y, from the collection of Y` because they can have different numbers of columns.

6.3. Illustration - spices, lentils, and rice

In our example about compositions of spending on spices, lentils, and rice (Table 1), there
are three patterns of zeros. Tables 2-4 show the result of applying the ãlr transformation.

X1 corresponds to rows 1-3 and its set of indices is W1 = {1}.
X2 corresponds to rows 4-6 and its set of indices is W2 = {2}.
X3 corresponds to rows 7-12 and its set of indices is W3 = {1, 2}.

Table 2: Y1 = ãlr(X1, {1}, 3)

log(spices/rice)

1 -1.66
2 -1.59
3 -1.68

Table 3: Y2 = ãlr(X2, {2}, 3)

log(lentils/rice)

4 -0.52
5 -0.52
6 -0.51

Table 4: Y3 = ãlr(X3, {1, 2}, 3)

log(spices/rice) log(lentils/rice)

7 -1.56 -0.52
8 -1.64 -0.51
9 -1.52 -0.57

10 -1.72 -0.51
11 -1.77 -0.53
12 -1.58 -0.51

6.4. Means

The matrix Y` contains rows of compositions with the same pattern of zeros. We refer to the
tth row vector of Y` as yT`t. We refer to the mean as the vector ȳ`, and define it as:

ȳ`
J×1

=
1

r`
(1Tr`Y`)

T . (17)
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Here we are using 1r` to represent an r`×1 column vector of ones. ȳ` is a column vector. We
define it this way because of how we intend to use it in quadratic forms from the multivariate
normal density.

7. Simple estimators

7.1. Mean

It is also possible to construct simpler estimators relying on properties of the normal distri-
bution. For the location, if X

n×D
= [xti] is a collection of n compositional data points with

zeros, and the Dth component always strictly positive, we can define a simple estimator of

the mean,
∗
µ = (

∗
µ1,

∗
µ2, . . . ,

∗
µd)

T . Let ni be the number of elements of the ith column of X
that are nonzero. For i ∈ {1, 2, . . . , d}, and t ∈ {1, 2, . . . , n}, define

∗
µi =

1

ni

∑

{t:xti 6=0}
log(xti/xtD). (18)

By the assumption of normality of the logratios, the estimator
∗
µ is unbiased.

In the spices-lentils-rice example,
∗
µ = (log(spices/rice): -1.635 , log(lentils/rice): -0.523 ).

For ease of interpretation, we convert the estimator back to a composition with the alr−1

transformation giving: (spices: 0.109 , lentils: 0.332, rice: 0.559 ). That is, our estimate of
Bill’s mean expenditure is 10.9% on spices , 33.2% on lentils, and 55.9% on rice.

7.2. Variance

Here we show how to find estimators for variances and covariances using maximum likeli-
hood estimators for normal random variables. For a single random composition, x, with
components x1, x2, . . . , xD, we substitute log(xi/xD) into the MLE for variances of normal

random variables. We use
∗
σ
2

ii for the estimator of the variances of the logratios log(xi/xD),
for i ∈ {1, 2, . . . , d}, and t ∈ {1, 2, . . . , ni}.

∗
σ
2

ii =
1

ni

∑

{t:xti 6=0}

(
log(xti/xtD)− ∗µi

)2
. (19)

If we want an unbiased estimator, we can divide by (ni − 1) instead of ni. As with means,

the different
∗
σii are based on different numbers of observations, ni.

7.3. Covariance

It only makes sense to talk about estimating the covariance of the variables log(xi/xD) and
log(xj/xD) when both xti and xtj are not 0 so we define nij = ||{t : xti 6= 0 & xtj 6= 0}||. That
is, nij is the number of data points where both xti and xtj are not 0. As we did with variance,
we can start with the canonical maximum likelihood formula for estimating covariance among
normally distributed variables, and substitute in appropriate logratios.

∗
σij =

1

nij

∑

{t:xti 6=0 & xtj 6=0}
(log(xti/xtD)− ∗µi)(log(xtj/xtD)− ∗µj) (20)

Note that
∗
σij is based on nij observations, while

∗
µi and

∗
µj are based on ni and nj observations,

respectively. The formula in Equation 20 is based on the maximum likelihood estimator for
covariance of normal variables. For unbiased estimators we would divide by (nij − 1) instead
of nij .
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Our estimator for the d× d variance-covariance matrix is
∗
Ω = [

∗
σij ]. There are two potential

problems with this approach. There could be i, j, i 6= j, such that whenever xi > 0, xj = 0.
In that case we cannot estimate the covariance. Also, irrespective of that, the estimate of the

variance-covariance matrix,
∗
Ω, might not be positive definite.

In the spices-lentils-rice example,

∗
Ω =

(
0.00648 −0.00096
−0.00096 0.00035

)

which is positive definite.

8. Maximum likelihood estimators

For the case where there are no zeros, the location estimator described earlier is a maximum
likelihood estimator (MLE), but in general the estimator we found earlier is not an MLE.
From now on we will call that estimator the simple estimator, to contrast it with the MLE,
which we derive next.

We start by finding the location MLE given Ω for 3-part compositions, show it is unbiased,
and then show the relative efficiency of the simple estimator with to the MLE. Assume we
have a set of logistic normal compositional data with b different patterns of zeros as in (9).

x11, . . . ,x1r1
i.i.d.∼ L||W1||(BW1µ,BW1ΩBT

W1
) (rows of X1)

x21, . . . ,x2r2
i.i.d.∼ L||W2||(BW2µ,BW2ΩBT

W2
) (rows of X2)

...

xb1, . . . ,xbrb
i.i.d.∼ L||Wb||(BWb

µ,BWb
ΩBT

Wb
). (rows of Xb) (21)

In a block of data, as in (21), we use x`t to refer to the tth compositional observation with
W` pattern of zeros. We define y`t = ãlr(x`t,W`, D), and to ease notation, we write in terms
of y`t.

8.1. Likelihood

First we write the full likelihood and log likelihood for D-part compositions, and then restrict
ourselves to 3-part compositions. The full likelihood is:

L(µ,Ω|r1, . . . , rb,y11, . . . ,ybrb) = (22)

b∏

`=1

r∏̀

t=1

P (W`)

(2π)||W`||/2|BW`
ΩBT

W`
|1/2 exp

[
− 1

2
(y`t −BW`

µ)T (BW`
ΩBT

W`
)−1(y`t −BW`

µ)
]
.

The constant

b∏

`=1

r∏̀

t=1

P (W`)

(2π)||W`||/2|BW`
ΩBT

W`
|1/2 (23)

is independent of µ, so for purposes of maximizing the likelihood with respect to µ, we can
treat it as a single constant, C.

L(µ,Ω|r1, . . . , rb,y11, . . . ,ybrb)

= C

b∏

`=1

r∏̀

t=1

exp
[
− 1

2
(y`t −BW`

µ)T (BW`
ΩBT

W`
)−1(y`t −BW`

µ)
]

(24)
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= C exp
[
− 1

2

b∑

`=1

r∑̀

t=1

(y`t −BW`
µ)T (BW`

ΩBT
W`

)−1(y`t −BW`
µ)
]
. (25)

Taking the log gives:

logL(µ,Ω|r1, . . . , rb,y11, . . . ,ybrb) (26)

= logC − 1

2

b∑

`=1

r∑̀

t=1

(y`t −BW`
µ)T (BW`

ΩBT
W`

)−1(y`t −BW`
µ). (27)

For the simple case of three-part compositional data with some zeros in component one, and
some zeros in component two, the parent distribution for the transformed data is bivariate
normal,

N (µ,Ω) where µ =

[
µ1
µ2

]
, and Ω =

[
s11 s12
s12 s22

]
(28)

For the full bivariate normal distribution,

A = Ω−1 =
1

s11s22 − s212

[
s22 −s12
−s12 s11

]
. (29)

For the two univariate normal distributions, the inverses of the variances are: 1
s11

and 1
s22

.

In these formulas,
y1j1 is the jth data point among the univariate data from the first component.
y2j2 is the jth data point among the univariate data from the second component.
y3j is a 2-part vector with data from both components,

[
y1j1
�

] [
�
y2j2

] [
y3j1
y3j2

]
. (30)

In the example, the y1j1 correspond to elements of Table 2, log(spices/rice). The y2j2 corre-
spond to elements of Table 3, log(lentils/rice), and y3j1 correspond to elements of Table 4,
both log(spices/rice) and log(lentils/rice).

We define the means of these matrices in the usual way.

1

r1

r1∑

j=1

y1j1 = ȳ11
1

r2

r2∑

j=1

y2j2 = ȳ22
1

r3

r3∑

j=1

y3j =

[
ȳ31
ȳ32

]
(31)

Partial derivatives

∂ logL(µ|Y,Ω, r1, r2, r3)

∂µ1
=

1

s11
r1(ȳ11 − µ1) +

s22
s11s22 − s212

r3(ȳ31 − µ1) +
−s12

s11s22 − s212
r3(ȳ32 − µ2) (32)

∂ logL(µ|Y,Ω, r1, r2, r3)

∂µ2
=

1

s22
r2(ȳ22 − µ2) +

s11
s11s22 − s212

r3(ȳ32 − µ2) +
−s12

s11s22 − s212
r3(ȳ31 − µ1) (33)
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MLE for location, given Ω

We set the partial derivatives equal to zero, replace µ with µ̂, and solve. The result is:

µ̂1|Ω, r1, r2, r3 =
(r1ȳ11 + r3ȳ31)(r2 + r3)s11s12 − r1ȳ11r2s212 + (ȳ22 − ȳ32)r2r3s11s12

(r1 + r3)(r2 + r3)s11s22 − r1r2s212
(34)

µ̂2|Ω, r1, r2, r3 =
(r2ȳ22 + r3ȳ32)(r1 + r3)s11s12 − r2ȳ22r1s212 + (ȳ11 − ȳ31)r1r3s12s22

(r1 + r3)(r2 + r3)s11s22 − r1r2s212
(35)

In the case where there are no univariate data from the second component, i.e, r2 = 0, we
have:

(µ̂1|Ω, r1, r2, r3)
∣∣∣
r2=0

=
r1ȳ11 + r3ȳ31

(r3 + r1)
=

1

(r3 + r1)




r3∑

j=1

y3j1 +

r1∑

j=1

y1j1


 . (36)

That shows that when we have r2 = 0, the MLE (µ̂1|Ω, r1, r2, r3) is equal to our simple
estimator for µ1. Similarly, when r1 = 0, (µ̂2|Ω, r1, r2, r3) is equal to our simple estimator for

µ2. It also turns out that (µ̂1|Ω, r1, r2, r3)
∣∣∣
r3=0

= ȳ11, and when r3 = 0, the simple estimator

is also ȳ11, so they are equal in that case as well.

8.2. Unbiasedness of conditional MLE for 3-part composition

To show that µ̂|Ω, r1, r2, r3 is unbiased, we start by pointing out the expectations of the var-
ious means:

E[ȳ11] = E


 1

r1

r1∑

j=1

y1j1


 =

1

r1

r1∑

j=1

E [y1j1] = µ1 (37)

E[ȳ22] = E


 1

r2

r2∑

j=1

y2j2


 =

1

r2

r2∑

j=1

E [y2j2] = µ2 (38)

E

[[
ȳ31
ȳ32

]]
= E


 1

r3

r3∑

j=1

y3j


 =

1

r3

r3∑

j=1

E [y3j ] =

[
µ1
µ2

]
(39)

When we take the expectation in expression(34), the term with (ȳ22 − ȳ32) vanishes because
E[ȳ22] = E[ȳ32]. That leaves only terms with E[ȳ11] = µ1 and E[ȳ31] = µ1, which we can
factor:

E [µ̂1|Ω, r1, r2, r2] =
µ1
[
(r1 + r3)(r2 + r3)s11s12 − r1r2s212

]

(r1 + r3)(r2 + r3)s11s22 − r1r2s212
= µ1 (40)

This shows that µ̂1 is unbiased. By symmetry we get that µ̂2 is unbiased.

8.3. General maximum likelihood estimators

For the general case of MLE for higher dimensions than shown here, the log likelihood can
be differentiated, and the score functions can be solved with a computer algebra system. In
addition, the Hessian can be checked to verify the solution is a maximum. We have done
this for the case of 3-part compositions and do not anticipate any obstacles to extending the
program to handle the general case of D-dimensions.
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9. Variances of location estimators

Next we find variances of the two location estimators, the MLE, and the simple estimator.
Both are unbiased. A question we need to answer is, what is the efficiency of the simple

estimator relative to the MLE. We have been using µ̂ for the MLE. We continue to use
∗
µ for

the simple estimator (of the location). In our discussion,

efficiency(
∗
µ1, µ̂1) =

Var(µ̂1)

Var(
∗
µ1)

. (41)

9.1. Variances of location estimators

The variances of the MLE and the simple location estimator are derived in the Appendix.
They are:

Var(µ̂1|Ω, r1, r2, r3) =
r3

(
(r3 + r2)

2s311s
2
22 + r22s

2
11s

2
12s22 − 2r2(r3 + r2)s

2
11s

2
12s22

)
+ r2r

2
3s

2
11s

2
12s22 + r1s11((r3 + r2)s11s22 − r2s212)2

((r23 + (r2 + r1)r3 + r1r2)s11s22 − r1r2s212)2
(42)

Var(µ̂2|Ω, r1, r2, r3) =
r3

(
(r3 + r1)

2s322s
2
11 + r21s

2
22s

2
12s11 − 2r1(r3 + r1)s

2
22s

2
12s11

)
+ r1r

2
3s

2
22s

2
12s11 + r2s22((r3 + r1)s22s11 − r1s212)2

((r23 + (r2 + r1)r3 + r1r2)s11s22 − r1r2s212)2
(43)

Var(
∗
µ1|Ω, r1, r2, r3) =

s11
r1 + r3

. (44)

Var(
∗
µ2|Ω, r1, r2, r3) =

s22
r2 + r3

. (45)

9.2. Relative efficiency of location estimators

The first thing we show is that when the covariance element of Ω is zero, i.e, s12 = 0, then

Var(µ̂) = Var(
∗
µ).

Var(µ̂1|Ω, r1, r2, r3) =
r3

(
(r3 + r2)

2s311s
2
22 + r22s

2
11s

2
12s22 − 2r2(r3 + r2)s

2
11s

2
12s22

)
+ r2r

2
3s

2
11s

2
12s22 + r1s11((r3 + r2)s11s22 − r2s212)2

((r23 + (r2 + r1)r3 + r1r2)s11s22 − r1r2s212)2
(46)

Evaluate at s12 = 0.

Var(µ̂1|Ω, r1, r2, r3)
∣∣∣
s12=0

=
r3
(
(r3 + r2)

2s311s
2
22

)
+ r1s11((r3 + r2)s11s22)

2

((r23 + (r2 + r1)r3 + r1r2)s11s22)2
(47)

Factor numerator and denominator.

Var(µ̂1|Ω, r1, r2, r3)
∣∣∣
s12=0

=
(r3 + r2)

2s311s
2
22(r3 + r1)

(r3 + r1)2(r3 + r2)2s211s
2
22

=
s11

r3 + r1
= Var(

∗
µ1). (48)

Similarly,

Var(µ̂2|Ω, r1, r2, r3)
∣∣∣
s12=0

=
s22

r3 + r2
= Var(

∗
µ2). (49)

We have already shown in Section 8.1.2 that when r2 = 0, µ̂1 =
∗
µ1, and when r1 = 0, µ̂2 =

∗
µ2;

and when r3 = 0, µ̂1 =
∗
µ1, and µ̂2 =

∗
µ2. Next we need to compare the variance of

∗
µ with the

variance of µ̂ in cases where the estimators are not obviously the same.
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Figure 1: Efficiency of
∗
µ relative to µ̂ with low covariance (0.2)

We consider a sample of 100 compositions from a logistic normal distribution with the number
of zeros in part 1 ranging from 0 to 100, and similarly for part 2. We calculate the relative
efficiency. These are not simulations; they are calculations based on the expressions for the
variances of the estimators. We consider all possible combinations of r1, r2, r3 such that
r1 + r2 + r3 = 100. A larger sample would give roughly the same picture, just with finer
granularity. In addition, while we want to understand the effect of the covariance term s12 for
every possible value between −1 and 1, we get a feel for the space by choosing three values,
s12 ∈ {0, 0.2, 0.8}. For simplicity we choose s11 = s22 = 1.

In all three figures, we plot Var(µ̂2)/Var(
∗
µ2) versus Var(µ̂1)/Var(

∗
µ1). In Figure 1 we use a

small covariance term, s12 = 0.2. In Figure 2 we use a large covariance, s12 = 0.8. In both
figures, we shade by the size of r1 relative to r2. We already showed in (48) and (49) that

when s12 = 0, the relative efficiency of
∗
µ with respect to µ̂ is 1, so there is no plot for s12 = 0.

Figure 1 shows the relationship between efficiency of
∗
µ1 and

∗
µ2 and the relative sizes of r1

and r2. In the worst case, when r1 >> r2, the efficiency of
∗
µ1 approaches 1, and the efficiency

of
∗
µ2 falls off toward 0.97. A point to note here is that for a relatively small covariance, 0.2,

the simple estimator,
∗
µ has a variance almost as small as that of µ̂. We will save discussion

of the bands or striations for Figure 3.

Figure 2, which shows efficiency based on a covariance of 0.8, has the same pattern as Figure 1,

but with larger variances for
∗
µ, smaller efficiency. Here the worst cases can have an efficiency

of less than 0.5 for either component of
∗
µ, though when the efficiency of

∗
µ1 is that small, the

efficiency of
∗
µ2 is very near 1.

Figure 3 shows the same points, for a covariance of 0.8, but shaded by the value of r3. To
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Figure 2: Efficiency of
∗
µ relative to µ̂ with high covariance (0.8)

help decipher it, we show a subset of the points in Figure 4.

Figure 4 shows a subset of the points, only the points where r3 ∈ {1, 2, 3, 4, 61, 62, 63, 64}.
When r3 is very small there is a wide range of possibilities for r1 and r2. The four leftmost
points in the upper left of Figure 4 are points where r1 is 1 or 2; r2 is somewhere between
94 and 97, and r3 is 2, 3, or 4. In these cases, the sample for estimating µ1 is very small,
from 3 to 6 points, some from univariate data and some from the bivariate data. In that case,
the MLE has a much smaller variance than the simple estimator. In that same case, there
is a much larger sample from univariate data for estimating µ2, upwards of 90 points, plus a
handful of points from the bivariate data. In that case, the difference between the variance

of
∗
µ2 and µ̂2 is very small.

Graphs with negative covariances, −0.2, and −0.8 look the same as with positive covariances,
and are omitted for the sake of brevity.

9.3. Summary of relative efficiency

Both the simple estimator for the location,
∗
µ, and the maximum likelihood estimator, µ̂, are

unbiased given Ω. The simple estimator’s efficiency relative to the MLE tends to decrease as
the covariance component of Ω increases. We say “tends” because even with a covariance of

0.8, there are cases where the efficiency of both components of
∗
µ relative to µ̂ is very close

to one.

When there are relatively few zeros, and they are balanced,
∗
µ has a variance almost as small

as µ̂. The more zeros there are, or the more unbalanced their distribution is, the larger the
variance of one or more components of the simple estimator.
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Figure 3: Efficiency of
∗
µ relative to µ̂ with high covariance (0.8) and relative to r3

10. Subcompositional coherence

One of the reasons for using the logistic normal approach is that, in the base case without
zeros, it preserves subcompositional coherence, described by Aitchison and Egozcue (2005)
p. 831, as follows, “Subcompositional coherence demands that two scientists, one using full
compositions and the other using subcompositions of these full compositions, should make
the same inference about relations within the common parts.” This implies that the subcom-
position of a location estimator equals the location estimator for the subcomposition.

In the presence of zeros, do we maintain this property? It depends on which estimators are
used. We have shown that in general when there are zeros, the MLE for the mean is not
the same as the simple estimator for the mean. The MLE does not preserve subcomposi-
tional coherence when we have zeros. The simple estimators, by construction, do preserve
subcompositional coherence provided the same Dth component is in both. Thus for inference,
there is a choice to be made between maintaining subcompositional coherence and maximizing
likelihood.

The issue of the relationship between compositions containing zeros, and subcompositional
coherence, has been addressed from other points of view as well. Greenacre (2011) introduced
a measure of subcompositional incoherence and suggested ways of getting it small enough
for practical purposes in the paradigm of correspondence analysis. Scealy and Welsh (2014)
argue more generally that although logratio methods for analyzing compositions have their
uses, some of the principles that have been used to motivate them, such as subcompositional
coherence, should not be taken to be as important as has been argued, e.g., by Aitchison
(1994).
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Figure 4: Efficiency of
∗
µ relative to µ̂ with high covariance (0.8). r3 ∈ {1 : 4, 61 : 64}.

11. Discussion

The goal has been to extend the additive logistic normal distribution to cope with essen-
tial zeros. We have done that by requiring that the final component of each composition
be nonzero, and by projecting compositions with zeros onto smaller dimensional subspaces,
thereby addressing the issues of division by zero, and the log of zero. We arrive at a mixture
of logistic normals where each distribution has a mean and a covariance parameter which are
projections from a common mean and covariance.

We construct two sets of estimators, simple estimators,
∗
µ,
∗
Ω, and maximum likelihood estima-

tors, µ̂, Ω̂. These are estimated using all of the compositions in the data, regardless of where
the zeros occur, assuming that the Dth component is always nonzero. The simple estimators
preserve subcompositional coherence, while the maximum likelihood estimators do not.

There are some limitations to this approach. In addition to the assumption that the Dth part
is always nonzero, we assume that each composition has at least one more nonzero part, i.e.,
the vertices of the simplex are not in the support of the distribution. We assume a common
mean and variance. Obviously, for a data set where different zero patterns have different
means or variances or both, this model would not be appropriate. It is possible for the simple
estimator of the covariance to produce a nonpositive definite matrix. If that happens, one
possible approach is to estimate the covariance matrix using only the compositions that do
not contain zeros. Another possible approach, once more work is done, would be to use the
MLE. Currently, though, we do not have a general software solution for finding the MLE.
One last concern is that a data set might have two parts which are never positive at the same
time, in which case, the simple estimator for the covariance cannot be found.
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In compositional data zeros are a common occurrence. We developed this logistic normal
mixture model with the intention of making analysis of such data easier. For future work, we
plan to extend existing compositional data methods for inference, graphing, clustering, etc.,
to work with this distribution.
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13. Appendix

13.1. Variance of location MLE, µ̂

Next we derive the variance of the location MLE, µ̂|Ω, r1, r2, r3. First we rewrite the expres-
sion (34) so that each of the ȳ terms stands alone.

µ̂1|Ω, r1, r2, r3 =

(r23 + r2r3)s11s22ȳ31 − r2r3s11s12ȳ32 + r2r3s11s12ȳ22 + ((r1r3 + r1r2)s11s22 − r1r2s212)ȳ11
(r23 + (r2 + r1)r3 + r1r2)s11s22 − r1r2s212

(50)

To find the variance of µ̂1|Ω, r1, r2, r3, we need to replace r1ȳ11 with
∑r1

j=1 y1j1; r2ȳ22 with∑r2
j=1 y2j2; r3ȳ31 with

∑r3
j=1 y3j1; and r3ȳ32 with

∑r3
j=1 y3j2. We also make some other substi-

tutions to simplify the algebra.

Let k31 = (r3 + r2)s11s22. (51)

Let k32 = r2s11s12. (52)

Let k22 = r3s11s12. (53)

Let k11 = (r3 + r2)s11s22 − r2s212. (54)

Let kdenom = (r23 + (r2 + r1)r3 + r1r2)s11s22 − r1r2s212. (55)

With these in place, we get

µ̂1|Ω, r1, r2, r3 =
1

kdenom


k31

r3∑

j=1

y3j1 − k32
r3∑

j=1

y3j2 + k22

r2∑

j=1

y2j2 + k11

r1∑

j=1

y1j1




=
1

kdenom




r3∑

j=1

(k31y3j1 − k32y3j2) + k22

r2∑

j=1

y2j2 + k11

r1∑

j=1

y1j1


 . (56)

The y2j2 are i.i.d. univariate normal; the y1j1 are i.i.d. univariate normal; and the y3j are
i.i.d bivariate normal, so the variance of the estimator is:

Var(µ̂1|Ω, r1, r2, r3) =

(
1

kdenom

)2

Var




r3∑

j=1

(k31y3j1 − k32y3j2)


+ Var


k22

r2∑

j=1

y2j2


+ Var


k11

r1∑

j=1

y1j1




 .

(57)
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Var(y2j2) = s22 and Var(y1j1) = s11, so

Var(µ̂1|Ω, r1, r2, r3) =

(
1

kdenom

)2

Var




r3∑

j=1

(k31y3j1 − k32y3j2)


+ k222r2s22 + k211r1s11


 .

(58)

To find the variance of the remaining sum requires the facts that y3j are i.i.d., and that
Cov(y3j1, y3j2) = s12.

Var




r3∑

j=1

(k31y3j1 − k32y3j2)


 =

r3∑

j=1

Var(k31y3j1 − k32y3j2)

=

r3∑

j=1

[Var(k31y3j1) + Var(k32y3j2)− 2k31k32Cov(y3j1, y3j2)]

=

r3∑

j=1

[
k231s11 + k232s22 − 2k31k32s12

]

=r3
[
k231s11 + k232s22 − 2k31k32s12

]
. (59)

With that we can write the variance of the MLE, µ̂1.

Var(µ̂1|Ω, r1, r2, r3) =
(

1

kdenom

)2 [
r3
(
k231s11 + k232s22 − 2k31k32s12

)
+ k222r2s22 + k211r1s11

]
. (60)

Substituting the values for the k’s back in gives:

Var(µ̂1|Ω, r1, r2, r3) =
r3

(
(r3 + r2)

2s311s
2
22 + r22s

2
11s

2
12s22 − 2r2(r3 + r2)s

2
11s

2
12s22

)
+ r2r

2
3s

2
11s

2
12s22 + r1s11((r3 + r2)s11s22 − r2s212)2

((r23 + (r2 + r1)r3 + r1r2)s11s22 − r1r2s212)2
(61)

Symmetry also gives the variance of µ̂2 given Ω.

Var(µ̂2|Ω, r1, r2, r3) =
r3

(
(r3 + r1)

2s322s
2
11 + r21s

2
22s

2
12s11 − 2r1(r3 + r1)s

2
22s

2
12s11

)
+ r1r

2
3s

2
22s

2
12s11 + r2s22((r3 + r1)s22s11 − r1s212)2

((r23 + (r2 + r1)r3 + r1r2)s11s22 − r1r2s212)2
(62)

13.2. Variance of simple location estimator,
∗
µ

Our simple estimator for the location is
∗
µ =

[ ∗
µ1
∗
µ2

]
. Here we concern ourselves with Var(

∗
µ1)

and then rely on symmetry to arrive at the variance of
∗
µ2.

∗
µ1 =

1

r1 + r3




r1∑

j=1

y1j1 +

r3∑

j=1

y3j1


 (63)

Var(
∗
µ1) = Var


 1

r1 + r3




r1∑

j=1

y1j1 +

r3∑

j=1

y3j1






=
1

(r1 + r3)2
Var




r1∑

j=1

y1j1 +

r3∑

j=1

y3j1



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=
1

(r1 + r3)2
(r1s11 + r3s11)

=
s11

r1 + r3
. (64)

By symmetry, Var(
∗
µ2) =

s22
r2 + r3

. (65)
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Abstract

Under the assumption that the Aitchison geometry holds in the simplex, standard
analysis of compositional data assumes a uniform distribution as reference measure of
the space. Changing the reference measure induces a weighting of parts. The changes
that appear in the algebraic-geometric structure of the simplex are analysed, as a step
towards understanding the implications for elementary statistics of random compositions.
Some of the standard tools in exploratory analysis of compositional data, such as center,
variation matrix and biplots are studied in some detail, although further research is still
needed. The main result is that through a progressive down-weighting of some parts, the
geometry of the space approaches that of the corresponding subcomposition. In this way,
the coherence between standard and down-weighted analyses is preserved.

Keywords: simplex, sigma-additive measures, subcomposition, weighting, Bayes space, biplot,
center, variability.

1. Introduction

When analysing a composition, some parts may heavily influence the results. A typical
example are inaccuracies in the measurements in some not fully relevant parts. They can
dominate the analysis, producing a large contribution to variability or to distances. Also,
relevance of some parts in a given problem can call for weighting techniques to adapt the
simplex geometry accordingly. There are a number of weighting techniques that can be useful
in this sense (e.g. Filzmoser and Hron 2015). Among them, the change of reference measure of
the simplex has several implications that need to be fully understood for a consistent analysis.
This contribution is aimed at showing changes that appear in the algebraic-geometric structure
of the simplex, as well as some effects in elementary statistics and exploratory tools.

One of the most fruitful concepts in compositional analysis is that of subcomposition (Aitchi-
son 1986). In Aitchison (1992), some reasonable principles for a coherent analysis of subcom-
positions were established. Beyond the idea that compositional analyses should be scale in-
variant, those principles included the assumption that distances between compositions should
be greater than or equal to those observed in a subcomposition. This principle, called sub-
compositional dominance (Aitchison 1992; Aitchison, Barceló-Vidal, Mart́ın-Fernández, and
Pawlowsky-Glahn 2000; Egozcue 2009), highlights a change of the geometry of subcomposi-

http://www.ajs.or.at
http://www.ajs.or.at/
http://dx.doi.org/10.17713/ajs.v45i4.126
www.osg.or.at
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tions (for instance, a change in inter-distances between two data-points in the subcomposition)
with respect to the original geometry of the full composition. Taking a subcomposition can
be considered as an extreme case of down-weighting, since the influence of some parts of the
composition is removed from the analysis. However, there are cases in which the complete
removal of the influence of some parts of the original composition is not desirable. This
motivates the idea of weighting compositions as a continuous transition from the full compo-
sition, endowed with the corresponding Aitchison geometry (Pawlowsky-Glahn and Egozcue
2001), to a subcomposition, endowed with the induced Aitchison geometry, which differs in
dimension and metrics (distances, inner product, norm).

Apparently, there are many ways of weighting compositions so that a transition from a
full composition to a subcomposition is performed. However, fulfilling all coherence re-
quirements is quite challenging. One option deserving attention is the one proposed for
Bayes spaces (Boogaart, Egozcue, and Pawlowsky-Glahn 2010; Egozcue, Pawlowsky-Glahn,
Tolosana-Delgado, Ortego, and Boogaart 2013b) and, more specifically, for Bayes Hilbert
spaces (Egozcue, Dı́az-Barrero, and Pawlowsky-Glahn 2006; Boogaart, Egozcue, and Pawlowsky-
Glahn 2014). Bayes Hilbert spaces are spaces of measures and densities, and their algebraic-
geometric structure is an extension of the Aitchison geometry of the simplex. In fact, in
(Boogaart et al. 2014), it is shown that the simplex, endowed with the Aitchison geometry,
is a particular case of a Bayes Hilbert space. In the development of Bayes Hilbert spaces,
a reference probability measure is introduced as a parameter regulating the geometry of the
measures and densities in the space. This kind of approach provides a way of coherently
introducing weighting strategies, both in the simplex and in the analysis of compositional
data. The present aim is to start studying the change of reference measure in the simplex,
being conscious that there is a long way from the general theory of Bayes Hilbert spaces to
applications in compositional data analysis. Special attention is paid to the transition from
the geometry of the simplex SD for compositions to the geometry of Sd, d < D, where sub-
composititions are defined. The main difficulties are interpretative, as usual in compositional
data analysis.

The structure of the paper is as follows: Section 2 translates the milestones of Bayes Hilbert
spaces into the case of compositions, with special emphasis on the role of the reference mea-
sure. Section 3 introduces the centered log-ratio transformation (clr) with respect to an
arbitrary reference measure in the simplex, following the definition in Boogaart et al. (2014)
for general Bayes Hilbert spaces. Section 4 gets into details of metric concepts under a change
of the reference measure, such as orthogonality, bases, and balances. A proposition on domi-
nance of distances is there stated (see proof in Appendix A). Section 5 gives an introduction to
distributions of random compositions, their variability and centre under a weighted geometry
of the simplex. Section 6 shows how variation matrix and biplots work under weighting using
an example of electoral results.

2. Change of reference measure for compositions

Consider D categories c1, c2, . . . , cD; they represent a partition of a measurable space Ω. A
D-part composition x = (x1, x2, . . . , xD) in the D-part simplex SD assigns a proportion xi to
the category ci. Assuming that the composition x is closed to 1, the proportion assigned to
the whole space Ω is just 1. For any subset of categories, the proportion assigned is the sum
of the corresponding proportions. For instance, the proportion assigned to the subset {c1} is
x1, and the proportion assigned to the subset {c1, c2} is x1 +x2. From this point of view, the
composition x defines a finite additive measure on Ω, which is denoted µx{·}. The argument
of this measure is any subset of Ω. Examples are µx{Ω} = 1, µx{∅} = 0, µx{c1} = x1,
µx{c1, c2} = x1 + x2.

Measures can be represented by densities. The idea is that sums (integrals) on a subset of Ω
give the measure of this subset. In the case of the simplex SD, the density is identified with
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the composition x, as for any subset A ⊆ Ω it satisfies

µx{A} =
∑

ci∈A
xiP0{ci} , P0{ci} = 1 , i = 1, 2, . . . , D ,

where the uniform measure P0{·} on Ω has been made explicit as reference measure. Note that
P0{Ω} = D and addends of sums (integrals) along the composition are equally weighted with
1 = P0{ci}. The reference measure specified as p0 = (P0{c1}, P0{c2}, . . . , P0{cD}) is a non-
closed uniform measure. Therefore, it is compositionally equivalent to the neutral element of
the simplex n = (1/D, 1/D, . . . , 1/D). The conclusion is that a composition x ∈ SD defines
a measure µx on Ω specifying the measure of each elementary subset {ci} and, at the same
time, x is the density of µx with respect to the uniform reference measure P0, which density
is p0. In mathematical terms, the density (composition) x is the Radon-Nikodym derivative
of µx with respect to the reference measure P0 which can be written as

x =
dµx
dP0

, µx{A} =

∫

A

dµx
dP0

dP0 =
∑

ci∈A
xi P0{ci} ,

for any A ⊆ Ω. When P0 is the unitary and uniform reference measure, there is no need to
distinguish between x as a composition, as a measure or as a density. These facts change
when weights are introduced through the reference measure.

To analyse the effects of a change of reference measure as a means to introduce weights,
consider an arbitrary array of positive weights, p = (p1, p2, . . . , pD). The corresponding
measure P is then characterised by P{ci} = pi, for i = 1, 2, . . . , D, and by the measure of the
whole space, P{Ω} =

∑D
i=1 pi. Note that p is the density of P with respect to the uniform

measure P0. A question is now to look for the density of the measure µx with respect to the
new reference measure P . This density is y = x/p = (x1/p1, x2/p2, . . . , xD/pD). In fact, for
A ⊆ Ω,

µx{A} =
∑

ci∈A
xi =

∑

ci∈A
yi pi =

∑

ci∈A

xi
pi
pi . (1)

The measure µx is thus retrieved from two different densities, x when considering the uniform
reference P0, and y for a reference P . Note that y is a vector which components do not add
to one, i.e. it is not closed. However, it is compositionally equivalent to Cy = x 	 p, as its
components are proportional (Pawlowsky-Glahn, Egozcue, and Tolosana-Delgado 2015).

If the reference measure P is represented by the vector of weights p, the composition Cy
is just a perturbation of x, a shift in the simplex, recalling that the perturbation-difference
	 includes the closure, C, and, consequently, Cy = x 	 p = x 	 Cp. From now on, the
non-closed version of y is denoted y(p) when the reference measure needs to be specified.
Following Boogaart et al. (2010) and Boogaart et al. (2014), a weighted perturbation and
powering can be defined for densities like y(p) such that they operate linearly in the weighted
simplex. However, their use is not recommended in this context as standard perturbation (⊕)
and powering (�) are easily interpreted and computed in the applications. This avoids linear
operations with the shifted densities Cy(p) = x	 p . In practice, weighted compositions will
be used only in the computation of distances and inner products, as explained below.

3. Centred log-ratio with respect to a reference measure

In Boogaart et al. (2014), the clr-transformation of a density f with respect to a given reference
measure P , is defined as

clrP (f)(x) = log f(x)− 1

P{Ω}

∫

Ω
log f(ξ) dP{ξ} , x ∈ Ω , (2)

where Ω is the measurable set where the density f is defined. In the present case, Ω is the
set of the D parts or categories of SD, namely ci, i = 1, 2, . . . , D. Therefore, the values of x
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in such an expression correspond to the ci’s. Since f is a density of a measure with respect
to the reference measure P , it can be identified with the density y = x/p , as introduced in
Section 2. With these identifications, the clrp-transformation of the simplex with respect to
the measure P , represented by p = (p1, p2, . . . , pD), is

clrp(y) =

(
log

y1

gp(y)
, log

y2

gp(y)
, . . . , log

yD
gp(y)

)
, gp(y) = exp

(
1

sp

D∑

i=1

pi log yi

)
, (3)

where sp =
∑D

i=1 pi, and gp(·) denotes a weighted geometric mean of the parts yi. It is
remarkable that p, the reference measure of the categories ci, is not closed to D, and that
P{Ω} = sp, while for P0 the uniform reference measure sp0 = D . Note also that y can be
closed or not, as Equation 3 is scale invariant.

An important characteristic of clrp(y) is that the weighted sum of its D components is zero,
that is

D∑

i=1

pi log
yi

gp(y)
= 0 , (4)

generalising the ordinary clr in SD, for which the sum of its components (weights equal to 1)
is zero. This has a geometric interpretation in the space RD, where a point has coordinates
log(y) = (log y1, log y2, . . . , log yD). As illustrated in Figure 1, which shows a scheme for
D = 2, to obtain the ordinary clr of a generic point log(y), the point is orthogonally projected
onto a hyperplane through the origin whose orthogonal vector is (1, 1, . . . , 1) (Aitchison 1986;
Pawlowsky-Glahn et al. 2015). When using a non-uniform p = (p1, p2, . . . , pD) the procedure
to get clrp(y) is to orthogonally project the point log(y) onto a hyperplane whose orthogonal
vector is p, as shown by the inner product in RD implicit in Equation 4. Summarising, clrp
is a projection of log(y) on a hyperplane whose normal vector is p.

●

●

●

●
log y1

log y2

(log y1,log y2)

(1,1)

clr

clrp

p

Figure 1: Generic 2-part composition (y1, y2), log-transformed into (log y1, log y2). Two reference measures
with densities (1, 1) (uniform, blue arrow) and p (red arrow) are considered. The point (log y1, log y2) is
projected, parallel to the reference arrow, on the clr-plane (blue) and on the clrp-plane (red), thus obtaining
the respective transformations.

A particular case of interest is that of

pi = 1 , i = 1, 2, . . . , D − 1 , pD = ε , (5)

for which P{Ω} = (D−1) + ε. When ε→ 0, the D-th part is down-weighted from 1 to ε� 1.
For small enough ε, the weighted geometric mean gp in Equation 3 approaches the ordinary
geometric mean of the first D−1 parts of y. A consequence is that the first D−1 components
of clrp(y) approach the ordinary clr of the subcomposition formed by (y1, y2, . . . , yD−1). This
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suggests that this kind of reference measures may approach the induced Aitchison geometry
on the subcomposition.

4. Metrics under change of reference

The clr transformation can be used to define the inner product in SD, as was done in Bayes
Hilbert spaces (Boogaart et al. 2014, Def. 2). There, the proposed definition was

〈y1,y2〉B2 =
1

P{Ω}〈clrP (y2), clrP (y1)〉 ,

where 〈·, ·〉 is the ordinary inner product in RD. This definition leads to an inner product in
SD which, for a uniform reference measure P0, with weights p0 = (1, 1, . . . , 1), is

〈y1,y2〉a =
1

D
〈clr(y2), clr(y1)〉 , (6)

which is not the standard in compositional data analysis due to the factor 1/D. This inner
product is not suitable for compositional data analysis, as it does not fulfill the principle
of subcompositional dominance of distances. For instance, consider the 3-part compositions
u = (0.1, 0.7, 0.2) and v = (1/3, 1/3, 1/3). Their distance, in the geometry induced by
the inner product (6) in S3, is d3(u,v) = 0.805. Taking the subcomposition formed by
the first and second part and computing the distance in S2 according to (6), the result is
d2(u,v) = 0.973. Since d3(u,v) < d2(u,v), the principle of subcompositional dominance is
violated.

The discussion about the role of the constant 1/D in the inner product is related to the fact
that in Boogaart et al. (2014) the reference measure was assumed to satisfy P0{Ω} = 1. If
0 < P0{Ω} < +∞, the value P0{Ω} is irrelevant when one does not try to compare results
of an analysis using different reference measures, as was the case in that contribution. On
the contrary, in Egozcue et al. (2006) the reference is implicitly assumed to be proportional
to the length of the interval supporting the densities of the Hilbert space, that is P0{Ω} is
adapted for each support Ω. Here this second strategy has been adopted so that analytical
results using different references become comparable, fulfilling the subcompositional coherence
requirements. This strategy of normalizing the reference measures has a consequence which
might be uncomfortable for some readers, namely that p0, or in general p, are not only non-
closed compositions, but convey also information about the size of Ω, P{Ω} =

∑D
i=1 P{ci}.

In the following development, p or p0 appear to be closed when represented as elements of
the simplex, but retain their absolute values when the components are used as weights in
sums (integrals) along compositions or clr images.

To match the present definition to the standard practice in compositional data analysis
(Aitchison 1986; Aitchison and Egozcue 2005; Egozcue, Barceló-Vidal, Mart́ın-Fernández,
Jarauta-Bragulat, Dı́az-Barrero, and Mateu-Figueras 2011; Pawlowsky-Glahn et al. 2015)
and to the subcompositional dominance of distances, the factor 1/D in (6) is suppressed. Re-
member that multiplication by a real scalar in an inner product does not change its character.

In the case of using a reference measure represented by the weights p, the appropriate defini-
tion of the weighted Aitchison inner product is

〈y1,y2〉p =

D∑

i=1

pi log
y1i

gp(y1)
log

y2i

gp(y2)
, (7)

where yk = y
(p)
k , k = 1, 2 are in SD. The expression in the right hand side of Equation (7) is

an inner product of the clrp as real vectors with respect to the measure P .
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The weighted Aitchison norm, derived from the inner product, is ‖y‖2p = 〈y,y〉p, and an
explicit expression of the distance is

d2
p(y1,y2) = 〈clrp(y1)− clrp(y2), clrp(y1)− clrp(y2)〉p =

D∑

i=1

pi

(
log

y1i

gp(y1)
− log

y2i

gp(y2)

)2

.

This expression of weighted distance can be written in matrix notation

d2
p(y1,y2) = (clrp(y1)− clrp(y2)) diag(p) (clrp(y1)− clrp(y2))> ,

where the clrp are row vectors and diag(p) is a diagonal (D,D)-matrix containing the weights
p. These definitions coincide with those of the ordinary Aitchison geometry of SD whenever
p = p0 = (1, 1, . . . , 1). When p 6= p0, the inner product differs from the ordinary Aitchison
inner product and, consequently, also norm and distance are different.

To get a further intuition of what is changing with p, it is instructive to build orthonormal
basis of the simplex according to the change of reference. It allows to show how these bases
appear under a change of p in particular cases.

A straightforward technique for obtaining orthonormal basis of the simplex and their respec-
tive coordinates (Egozcue, Pawlowsky-Glahn, Mateu-Figueras, and Barceló-Vidal 2003) is
that of sequential binary partitions (SBP) (Egozcue and Pawlowsky-Glahn 2005, 2006). Like
in the standard case (reference measure P0), when using a reference measure with the weights
p, the procedure is based on a partition coded as in Table 1, but the formulae to obtain the
contrast matrix are modified. Table 1 shows a generic sign code for an SBP, adding weights
p as column labels (second row) for further comment on the generalised technique.

Table 1: A generic table of an SBP for a five-part composition. Weights from the reference
measure are placed in the second row, under the part label. Rows are labelled as balances bi
for further reference.

parts y1 y2 y3 y4 y5

weights p1 p2 p3 p4 p5

b1 +1 −1 −1 −1 +1
b2 +1 0 0 0 −1
b3 0 +1 −1 −1 0
b4 0 0 +1 −1 0

Denote the entries of the matrix code as θij , i = 1, 2, . . . , D− 1, j = 1, 2, . . . , D. For the case
in Table 1, D = 5 and, for instance, θ32 = +1. When using the standard reference measure
p0 = (1, 1, . . . , 1), the clr coefficients of an element of the basis, that is of a balancing element,
are given by

ψij =





+ 1
n+
i

√
n+
i n

−
i

n+
i +n−

i

if θij = +1

− 1
n−
i

√
n+
i n

−
i

n+
i +n−

i

if θij = −1

0 if θij = 0 ,

(8)

where n+
i denotes the number of +1, respectively n−i of −1, in the i-th row of the code table.

When using the reference measure which weights pj are not unity, these formulas for the clrp
of balancing elements are the same except that n+

i , n−i are

n+
i =

∑

θij=+1

pj , n−i =
∑

θij=−1

pj .

The contrast matrix Ψ, with entries ψij , i = 1, 2, . . . , D, j = 1, 2, . . . , D − 1, fulfills the
conditions

Ψ diag(p) Ψ> = ID−1 , diag(p) Ψ>Ψ = ID −
1

D
p>1 , (9)



Austrian Journal of Statistics 31

where Im is the (m,m)-identity matrix; p and 1 = (1, 1, . . . , 1) are taken as row D-vectors,
and diag(p) is a (D,D) diagonal matrix with entries equal to the components of p. The first
condition is equivalent to saying that balancing elements are unitary compositions mutually
orthogonal. In fact, their clrp are unitary and orthogonal in the weighted Euclidean geometry.

Coordinates of a density y ∈ SD with respect to an orthonormal basis are found carrying out
the inner product of a balancing element in the basis with the density y = x/p. In general,
these coordinates are termed weighted isometric log-ratio coordinates and denoted by ilrp.
In the particular case in which they are obtained using an SBP, they are called weighted
balances. For simplicity, these weighted balances are denoted bi, i = 1, 2, . . . , D − 1, with no
reference to the weights associated with the change of measure (as shown in Table 1). The
ilrp coordinates can be obtained using the matrix expression

ilrp(y) = b = clrp(y) diag(p) Ψ> , (10)

where compositions and their clrp and ilrp transforms are considered row-vectors. Note that
each component of b = (b1, b2, . . . , bD−1) is a weighted inner product of clrp(y) with the
corresponding clrp of a balancing element. The inverse ilrp transformation is readily obtained
using the properties (9) of Ψ

Cy = C exp(ilrp(y)Ψ) , clrp(y) = ilrp(y)Ψ ,

being the first of these relations formally identical to the standard inverse ilr with reference
measure P0. The relationship of ilrp(y) and ilr(x) is developed in Appendix B.

Although Equation 10 is useful from a computational point of view, an explicit expression of
balances gives a deeper insight into the meaning of weighted balances. Consider a sign code
of a step in an SBP, for which n+

i , n−i are given. The corresponding weighted balance is

bi =

√
n+
i n
−
i

n+
i + n−i

log



∏

(θij=+1) y
pj/n

+
i

j

∏
(θij=−1) y

pj/n
−
i

j


 , (11)

where the products span over the parts corresponding to the sign code θij . When the weights
pj = 1, the balance reduces to the standard balances, as n+

i , n−i are then the number of +1
and −1 in the i-th row of the sign code, respectively. The main feature, when the reference
is not p0, is that the ratios within the logarithm are ratios of a kind of weighted geometric
means. Note that, in general, n+

i , n−i are not integers and each part is powered to the weight
corresponding to that part. When some pj is small, relative to other weights, it plays a
minor role in these weighted geometric means. Furthermore, the weighted balances are scale
invariant log-contrasts, that is, if the composition y is multiplied by a positive constant, the
weighted balance remains unaltered.

Expressing inner products, norms, and distances as functions of weighted coordinates ilrp can
be useful, because they are exactly those of the standard Euclidean geometry. For the inner
product and square-distance they are

〈y1,y2〉p = 〈ilrp(y1), ilrp(y2)〉 , d2
p(y1,y2) = d2(ilrp(y1), ilrp(y2)) , (12)

where 〈·, ·〉, d(·, ·), are the ordinary Euclidean inner product and distance.

Whenever there is a change in the geometry of compositions, the subcompositional dominance
of distances is a critical point. In the standard approach, the distance between any two compo-
sitions x1, x2 ∈ SD is da(x1,x2). After taking a given subcomposition in Sd, d < D, the dis-

tance between the respective subcompositions, x
(d)
1 ,x

(d)
2 , satisfies da(x

(d)
1 ,x

(d)
2 ) ≤ da(x1,x2).

In this case, both spaces have integer reference measures with P{ΩD} = D and P{Ωd} = d
and, for D = 3, d = 2 the corresponding weights are (1, 1, 1) and (1, 1, 0), respectively. When
changing the reference measure by down weighting some of the weights, a dominance of dis-
tances is expected, as it occurs when taking subcompositions. The dominance of distances
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Figure 2: Evolution of weighted square-distances between three measures represented by the
compositions x1 = (0.1, 0.7, 0.2),x2 = (0.5, 0.3, 0.2),x3 = (0.9, 0.08, 0.02) ∈ S3 with respect to
the reference measure P0 with weights p0 = (1, 1, 1). With yi = xi/p, square-distance curves
are dp(y1,y2) (black), dp(y1,y3) (blue), dp(y2,y3) (red). Reference measure is p = (1, 1, ε)
and x-axis is scaled as P{Ω} = 1 + 1 + ε. The three square-distances monotonically increase
from P{Ω} = 2 to P{Ω} = 3. The end points of the curves at P{Ω} = 2 and P{Ω} = 3 are
equal to standard Aitchison square-distances in S2 and S3 respectively.

y1 y2

y3

Figure 3: The unit circle (black, full line) in the uniform reference. After change of origin to
(1, 1, ε), ε = 0.5 (black, dashed), 0.1 (green), 0.05 (blue), and 0.01 (red), the circle is shifted
towards the vertex y3.
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can be stated as follows.

Proposition (dominance of distances) Let x1, x2 be two compositions in SD, endowed
with the reference measure P0, with weights p0 = (1, 1, . . . , 1). Consider two reference
measures, P1 and P2, represented by their respective weights p1 = (p11, p12, . . . , p1D) and
p2 = (p21, p22, . . . , p2D), such that all their components are 0 < pki ≤ 1, for k = 1, 2,

i = 1, 2, . . . , D and Pk{Ω} =
∑D

i=1 pki. Define y
(pk)
j = xj/pk for k = 1, 2 and j = 1, 2. Then,

p1i ≤ p2i, i = 1, 2, . . . , D ⇒ dp1(y
(p1)
1 ,y

(p1)
2 ) ≤ dp2(y

(p2)
1 ,y

(p2)
2 ) .

It is worth to remark that the notation of distances like dp1(y
(p1)
1 ,y

(p1)
2 ) could be changed to

dp1(x1,x2), as distances assigned to shifted y’s are equal to those of the original compositions
x’s. This is due to the fact that x and y are densities of the same measure, namely µx, with
respect to different reference measures.

Figure 2 shows the evolution of square-distances between three compositions x1 = (0.1, 0.7, 0.2),
x2 = (0.5, 0.3, 0.2), x3 = (0.9, 0.08, 0.02) with respect to the uniform reference in S3 when the
reference measure changes progressively. The reference measure is (1, 1, ε), with ε going from
0 to 1. The plot is scaled according the P{Ω} = 1+1+ε. The square-distances increase mono-
tonically, from distances corresponding to the subcomposition (y1, y2) to square-distances with
the standard reference p0 = (1, 1, 1). This result is expected after the previous proposition.

An experiment has been conducted to show how the changes of reference modify distances and
shapes. Five different reference measures p = (1, 1, ε) have been considered with ε equal to 1,
0.5, 0.1, 0.05, 0.01, so that they approach progressively the geometry of the subcomposition
of the two first parts. The unit circle centered at the neutral element was shifted by the five
reference measures. Figure 3, shows this unit circle (black) and the sequence of perturbations
as a consequence of the change of origin. Note that the transformed circle is shifted to the
vertex which weight is reduced, as expected after dividing each part by the corresponding
weight.

After the change of origin, each point on the circles was ilr-transformed using the correspond-
ing weights according to the SBP sign code

y1 y2 y3

+1 −1 −1
0 +1 −1

,

which has been selected to avoid a balance representing the subcomposition (y1, y2). Figure
4 (left panel) shows the coordinates of the circles, to show the changes of the distances
between points on the same circle. Note that the centers of the ellipses do not coincide, as
they correspond to the closure of the reference measure (1, 1, ε). The main feature is the
progressive stretch of the original circle. For very small ε the ellipse tends to degenerate into
a segment following the direction of the subcomposition (y1, y2). Similarly, Figure 4 (right
panel) shows the deformation of a grid originally at −1, 0, 1 in both axes (black). The new
references are ε = 0.1 (blue), and 0.01 (red). The grid is progressively tilted and distances
between nodes decrease as ε decreases. Although straight-lines are preserved, their angles
change, thus showing the change of geometry when changing the reference.

5. Elementary statistics

The change of reference measure and its associated weighting have consequences in the defi-
nitions of elementary concepts of compositional statistics. Variability and center are the two
main concepts examined below. Both concepts are redefined following previous developments
in the statistical analysis of compositional data, just looking for the influence of the weighting.
These new definitions are intended to match the standard concepts whenever the weights are
unity over the categories defining the composition.
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Figure 4: Left panel: the five circles in Figure 3 after weighted ilr-transformation. Reference
measures are (1, 1, ε), ε = 1 (black), ε = 0.5 (brown), 0.1 (blue), 0.05 (green), and 0.01 (red).
Right panel: a regular grid at points −1, 0, −1 in both axes after change of origin and
weighted ilr transformation. Weights are (1, 1, ε), ε = 1 (black), 0.1 (blue), and 0.01 (red).

Let X be a random composition (density) in SD (Pawlowsky-Glahn et al. 2015, ch. 6) which,
for some selected ilr coordinates denoted X∗ in RD−1, is absolutely continuous with joint
probability density (pdf) f∗X. Therefore, f∗X(x) is a function defined on RD−1, the space
of the ilr coordinates, with the standard definitions from probability theory. Assume also
that a new reference measure is chosen and it is represented by a set of positive weights p.
Accordingly, the random composition Y = X	p corresponds to the change of reference and
its distribution only differs from that of X in a shift of the center. The ilrp coordinates of
Y, denoted Y∗, are also random, but their distribution on RD−1 is a transformation of the
previous pdf f∗X, here denoted as f∗, where the subscript is dropped when it corresponds to
the composition Y. In Appendix B it is shown that the transformation from X∗ = ilr(X) to
Y∗ = ilrp(Y) is a linear (affine) transformation. For instance, this means that, if X has a
normal distribution on the simplex (Mateu-Figueras, Pawlowsky-Glahn, and Egozcue 2013;
Pawlowsky-Glahn et al. 2015) and, thus, X∗ is multivariate normal on RD−1, the distribution
of Y∗ is also a multivariate normal on RD−1. As a conclusion, the normality of ilrp coordinates
is maintained when the weights p of the reference measure change.

Following the general formalism developed by Fréchet (1948) for metric spaces, the first
milestone to be defined is the (total) variability of Y with respect to an arbitrary point
η ∈ SD. It is defined as

totVarp[Y;η] = E[d2
p(Y,η)] ,

provided that the expectation exists. The distance d2
p(Y,η) is a function of the coordinates

Y∗ = ilrp(Y) and the expectation E[·] is taken with respect to their pdf f∗. Since d2
p(Y,η) =∑

(Y ∗i −η∗i )2 (Equation 12), the minimum of Varp[Y;η] is attained for η∗ = E[Y∗], a standard
result in real multivariate statistics. Based on this result, the weighted center and total
variance are

Cenp[Y] = ilr−1
p (E[Y∗]) = clr−1

p (E[Y∗]) , totVarp[Y] = E[d2
p(Y,Cenp[Y])] . (13)

Note that this kind of approach has been used in Pawlowsky-Glahn and Egozcue (2001) and
in Boogaart and Tolosana-Delgado (2013), but total variance is there called metric variance.

Despite the previous expression of Cenp[Y] in Equation 13, the weighted center of a random
composition only depends on the weights in p through the shift applied, that is

Cenp[Y] = Cen[X]	 p , or, equivalently, Cen[X] = Cenp[Y]⊕ p ,
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where Cen and ⊕ are the ordinary center and perturbation of random compositions, respec-
tively, and Y = X	 p, thus enhancing the linearity of expectations.

Decompositions of total variance underlays many standard statistical methods, thus remarking
its upmost importance. Equation 13 leads to decompositions of the total variance when the
reference measure p is not p0. Similarly to those described in Egozcue et al. (2011), we obtain

totVarp[Y] =
D−1∑

i=1

Var[ ilrp,i(Y) ]

=
D∑

i=1

piVar[ clrp,i(Y) ]

=
1

2sp

D∑

i=1

D∑

j=1

pipjVar

[
ln
Yi
Yj

]
,

(14)

where sp =
∑D

i=1 pi, ilrp,i(Y) = y∗i and clrp,i(Y) is the i-th component of clrp(Y). Note that
the decomposition of totVarp[Y] into ilrp variance components points out that totVarp[Y]
is the trace of the covariance matrix of ilrp(Y), and that totVarp[Y] is not the sum of clrp
variances, but a weighted sum of them.

The decompositions of the total variance are closely related to the relationships between the
covariance matrices of the ilrp coordinates and the clrp coefficients. These relationships can
be summarized as

Σp = Ψ diag(p) Σc
p diag(p) Ψ> , Σc

p = Ψ ΣpΨ> ,

where Ψ is the (D− 1, D)-contrast matrix of the ilrp, Σp is the covariance matrix of Y∗ and
Σc
p is the covariance matrix of clrp(Y).

Also, the variation matrix (Aitchison 1986) plays an important role in the statistics of com-
positional data. Its entries are variances of simple log-ratios, ln(Xi/Xj). At least, it has two
important uses: (a) it constitutes a simple and interpretable representation of the variability
(second order moments) of the random composition, identifying the binary sources of vari-
ability relative to the total variance; and (b) each entry of the variation matrix is a measure
of the compositional dissociation, as opposite of association, between the two parts involved.
Point (a) is reflected in the fact that the covariance matrices of ilr-coordinates and clr coef-
ficients can be retrieved from the variation matrix (Pawlowsky-Glahn et al. 2015, Appendix
A). Concerning point (b), large entries, relative to other entries, point out most dissociated
pairs of parts. The measurement of compositional association of two parts, understood as
proportionality between them, is motivated by the fact that Var[ln(Xi/Xj)] = 0 implies that
Xi and Xj are strictly proportional (Egozcue, Lovell, and Pawlowsky-Glahn 2013a; Lovell,
Pawlowsky-Glahn, Egozcue, Marguerat, and Bähler 2015).

Inspired by the third decomposition of weighted total variance in Equation 14, a weighted
variation matrix can be defined as a (D,D)-matrix Tp with entries

tp,i,j = pipjVar

[
ln
Yi
Yj

]
, i, j = 1, 2, . . . , D .

The relationship of Tp with the covariance matrix of ilrp coordinates is

Σp = −1

2
ΨTpΨ> .

The decomposition of weighted total variance and the relationships between covariance matri-
ces reduce to the standard ones whenever the reference measure is P = P0, that is, whenever
p = (1, 1, . . . , 1).
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Table 2: Weights, p (second row) and p
(sub)
i (third row), for each part used in the analysis

of the Cat10 data set. Weights p
(sub)
i are only used in an example of biplot. Center of the

composition, expressed in percent, for the original composition (forth row), and for the shifted
composition Y = X	 p (fifth row).

party abs nota null C’s CiU ERC ICV PSC PP other

pi 0.1 0.3 0.3 1 1 1 1 1 1 0.5

p
(sub)
i 0.001 0.001 0.001 1 1 1 1 1 1 0.001

Cen[X] (%) 38.9 1.9 0.5 0.9 27.6 5.5 3.0 9.6 5.2 6.8
Cenp[Y] (%) 84.1 1.4 0.4 0.2 6.0 1.2 0.6 2.1 1.1 2.9

6. Exploratory tools

In compositional data analysis, the main specific exploratory tools are the variation matrix
(Aitchison 1986), principal component analysis of the clr transformed compositional sample
(Aitchison 1983) and its corresponding biplots (Aitchison and Greenacre 2002), and the com-
positional dendrogram (Pawlowsky-Glahn and Egozcue 2011). These three tools take slightly
different forms when taking a reference measure different from P0. In order to show how to
use and interpret the weighted versions in an exploratory analysis, the data from the Catalan
parliament (Spain) elections in November 2010 (Cat10) have been selected. This data set
was previously analysed in Egozcue and Pawlowsky-Glahn (2011) (see also Pawlowsky-Glahn
et al. 2015).

The data set Cat10 contains the number of votes obtained by several parties, including ab-
stention (abs), null (null) and none of the above or blank votes (nota) in n = 41 electoral
districts. The major parties contesting the elections were Convergència i Unió (CiU), Par-
tit dels Socialistes de Catalunya (PSC), Ciutadans-Partido de la Ciudadańıa (C’s), Esquerra
Republicana de Catalunya (ERC), Iniciativa per Catalunya Verds-Esquerra Unida i Alterna-
tiva (ICV) and Partit Popular (PP). Other minor parties are amalgamated in other. The
present analysis focusses on the whole composition of votes, that is, the D = 10 parts of the
composition: abs, nota, null, CiU, C’s, ERC, ICV, PP, PSC, other.

A first step in exploratory analysis is to choose suitable weights for the 10 parts involved. The
situation in most political elections is that votes to parties show a homogeneous preference
to a given party, meanwhile “abs”, “nota”, “null” and “other” mix non-homogeneous support
to democratic elections or other situations, thus suggesting to weight them differently. Well
defined parties were weighted by 1. The abstention is the more heterogeneous group of electors
and the choice for its weight was 0.1. The electors that choose blank vote (nota) and null vote
(null) can be considered less heterogeneous than abstention, as they express something similar
to “I want to vote, but none of the contesting parties convinced me”; these two categories have
been weighted by 0.3. Votes to parties included in “other” are well defined, but directed to
different parties with different programmes; there is a well defined intention in the vote, but
the amalgamation of different parties makes the group heterogeneous; the category “other”
is weighted by 0.5. The vector of weights p chosen is shown in the second row of Table
2. These weights have been chosen to show the effects of weighting, and not to carry out
a sound analysis of the data set. Methods to establish suitable weights should be object of

further research. The third row of Table 2 shows an alternative set of weights p
(sub)
i that

will be used only for illustrating how these weights make the analysis to be close to that of
a subcomposition of the well defined parties. The forth row of Table 2 shows the center of
the composition, expressed in percent. The fifth row is the center Cenp[Y] (also in percent),
which is not useful for interpretation, but for comparison with Cen[X]. Note how the percent
of “abs”, with weight 0.1, increased when dividing by the weight. The same fact may occur
for all parts with weights less than one, but closure hides this fact. Note that the center is
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Table 3: Weighted variation matrix for Cat10 data. Last column: weighted clrp variances,
piVar(clrp,i[Y]), adding to weighted total variance. Upper triangle: elements of the weighted
variation matrix (values greater than or equal to 0.30 are highlighted in boldface). Lower
triangle: product of weights pipj . Two last rows: weighted total variance and total variance
(uniform reference).

Abs Nota Null C’s CiU ERC ICV PSC PP other clrp var.
Abs 0.002 0.005 0.029 0.007 0.020 0.008 0.006 0.011 0.007 0.001
Nota 0.03 0.008 0.164 0.009 0.027 0.040 0.031 0.073 0.017 0.014
Null 0.03 0.09 0.238 0.022 0.015 0.078 0.064 0.111 0.020 0.039
C’s 0.10 0.09 0.30 0.563 0.870 0.270 0.320 0.160 0.303 0.308
CiU 0.10 0.30 0.30 1.00 0.077 0.157 0.142 0.268 0.034 0.054
ERC 0.10 0.30 0.30 1.00 1.00 0.249 0.262 0.459 0.052 0.153
ICV 0.10 0.30 0.30 1.00 1.00 1.00 0.101 0.189 0.085 0.051
PSC 0.10 0.30 0.30 1.00 1.00 1.00 1.00 0.122 0.133 0.051
PP 0.10 0.30 0.30 1.00 1.00 1.00 1.00 1.00 0.193 0.113
other 0.05 0.15 0.15 0.50 0.50 0.50 0.50 0.50 0.50 0.054
totVarp 0.836
totVar 1.020

a composition of a “mean electoral district”, and that variability around this center may be
large. This can be checked, for instance, on C’s, which minimum percentage is 0.3% and
its maximum is 2.8% across the sample of electoral districts, what in turns may represent a
number of electors from 3046 up to 1,572,425 for the surroundings of Barcelona. Therefore,
reporting mean values or centers needs to be complemented with the analysis of variability.

The weighted variation matrix is shown in the upper triangle of Table 3. In the lower triangle
of Table 3, the cross products of weights pipj are specified. When the entries of the weighted
variation matrix are divided by the corresponding pipj they result in the corresponding entry
of the traditional variation matrix with reference P0. Terms in the weighted variation matrix
larger than or equal to 0.30 are highlighted in boldface. They constitute the larger sources
of variability in the data set. Most of them correspond to C’s, whose votes are irregularly
distributed over electoral districts. This fact is confirmed by the weighted clrp variances,
as the largest value corresponds to C’s as well. Small values in the weighted variation ma-
trix suggest association between parts, i.e. approximate proportionality, although this needs
further analysis to be confirmed (Egozcue et al. 2013a; Lovell et al. 2015). The strongest as-
sociations appear between abs, nota, null, with traditionally nationalist parties in Catalonia,
i.e. CiU, ERC, and even with PSC. Compared to the variation matrix published in Egozcue
and Pawlowsky-Glahn (2011), the possible associations appear stronger in Table 3. This is
due to the fact that the 2011 analysis was performed without any weighting in the reference.
Differences in the variances of simple log-ratios of not down-weighted parts are the conse-
quence of dividing entries in Table 3 by n−1 = 40, while in 2011 the divisor was n = 41. The
weighted total variance is 0.836, smaller than that obtained with unit weights (1.020), using
in both cases the same divisor (n− 1 = 40).

In compositional data analysis, principal component analysis (PCA) is commonly performed
using the singular value decomposition (SVD) of the clr-transformed data set (Aitchison
1983). The scores, multiplied by the singular values, are proportional to ilr-coordinates, such
that their variances are proportional to the square singular values. The loadings matrix
contains the clr representation of the principal directions. The last singular value is zero,
as the clr data sum to zero for each data point. Similar features are expected for a PCA
performed on a weighted composition using its weighted clrp transformed values. However,
when the clrp-transformed data set is SVD-decomposed, the square singular values are no
longer proportional to ilrp variances and they do not provide a decomposition of the weighted
total variance. The way proposed here consists of dividing the clrp data previous to SVD, so
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that resulting square singular values add to the total variance.

LetX be a compositional data set in SD; therefore, X is a (n,D)-matrix and n is the size of the
sample. After selecting some positive weights, p, each row of the data matrix is accordingly
shifted and is written as Y = X 	 p. Applying the clrp transformation to each row yields
clrp(Y ). This clrp-transformed data set is centered and weighted with the square-root of the
weights in p, that is

A = [clrp(Y )− (clrp(Y ))] diag(
√
p) ,

where clrp(Y ) denotes the average by columns of clrp(Y ). The SVD of A,

A = UΛV > ,

has the standard properties of an SVD. Among these properties, some of them are reinter-
preted in the compositional framework. The singular values contained in the diagonal matrix
Λ = diag(λ1, λ2, . . . , λD−1, 0) are positive and in decreasing order of magnitude; the last one is
zero due to the property of the clrp(Y ) that the weighted sum of its components adds to zero
(Equation 4). The non-standardized scores UΛ are ilrp-coordinates whose sample variances

are λ2
i /(n− 1). The sample total variance is totVarp(Y ) =

∑D−1
i=1 λ2

i /(n− 1). The D− 1 first
columns of V > contain the contrast matrix corresponding to the ilrp. The loadings are given
by the columns of diag(1/

√
p)V Λ, where diag(1/

√
p) appears to compensate the previous

weighting in A.

A covariance biplot (Aitchison and Greenacre 2002) is a simultaneous projection of U (scores)
and V Λ (loadings) onto two principal directions, usually the first two. The percent of weighted
total variance explained in such a projection is given by

100
λ2

1 + λ2
2∑D−1

i=1 λ2
i

.

This kind of biplots have been obtained for the data set Cat10. Figure 5 shows four different
cases: top-left panel shows the biplot when the reference is p0 = (1, 1, . . . , 1); top-right panel

adopts the weights pi shown in Table 2; bottom-left panel shows the biplot when using p
(sub)
i

also shown in Table 2 (third row). Finally, the bottom-right panel shows the biplot obtained
using the subcomposition of individual parties, excluding “abs”, “nota”, “null”, and “other”,
and using the reference p0 for the subcomposition.

The first impression is that the two biplots in the upper part of Figure 5 appear to be quite
similar, as the main features are preserved. In fact, the clr-variables corresponding to well
defined parties are projected very similarly. For instance, the first principal axis is dominated
by the clr-variables corresponding to C’s on one side, and CiU and ERC on the opposite side,
which can be identified with a balance of non-nationalist versus nationalist Catalan parties;
this fact was previously observed in the weighted variation matrix. The second principal
axis is mainly influenced by the links between PP-ICV and PSC-ICV, leading to identify
the second principal axis with a balance of right versus left wing parties. In fact, the three
parties involved are perceived by electors as right wing (PP), very moderate social-democratic
(PSC) and left wing (ICV). However, when looking at the clr-variables corresponding to down-
weighted parts (abs, null, nota, other), the shortening of the corresponding parts proportional
to
√
pi is apparent. For example, the role of clr-other in the projection has been reduced in

an appreciable way.

In the bottom-left panel of Figure 5, the weights p
(sub)
i (Table 2) have been used in order to

approach a subcompositional analysis of the parties C’s, CiU, ERC, ICV, PP, PSC. As the
rest of the parts are severely down-weighted, they appear as very short rays from the origin
(labels are overlapping). Compared with the subcompositional analysis (bottom-right panel,
Figure 5), it is clear that, exception made of these short rays, the rest is almost identical
in the two bottom biplots. See, for instance, that the total variance of the two cases are,

respectively, 0.7020 (weights p
(sub)
i ) and 0.7016 (unit weights in the subcomposition) and
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Figure 5: Covariance biplots of Cat10 dataset. Top-left panel: uniform reference p0 =
(1, 1, . . . , 1), total variance 1.020. Top-right panel: weights given in Table 2, weighted to-
tal variance 0.836. Bottom-left panel: extreme weighting, given in Table 2, weighted total
variance 0.7020. Bottom-right panel: subcomposition of parties, total variance 0.7016.

the corresponding proportions of explained total variance in the two dimensional projections
are very close. This illustrates the fact, that down-weighting some parts is a path towards
subcompositional analysis.

The fact that the projection changes only slightly from top to bottom of Figure 5 indicates
that most of the variance introduced by “abs” is small (see Table 3) and that of “nota” and
“null” is not well represented in the first and second principal axes. A feature that is clear
in the weighted biplot (top-right panel) is that the link “null-other” is almost parallel to the
second axis and to the link PSC-ICV: the variance of this two log-ratios are mainly included in
the second principal component. The “nota” and “null” votes are quite associated one to each
other across electoral districts as the rays appear almost parallel (see also Table 3). When
they are down weighted (top-right panel) the main effect is that the corresponding rays are
equally shortened as the weights were equal for these two parts.

The so called balance-dendrogram is not discussed here in detail, as the changes to be in-
corporated when using weights are quite obvious. Firstly, a balance-dendrogram presents
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a hierarchical structure describing an SBP, which in the weighted case is identical to the
standard case. The decomposition of the total variance changes quantitatively with weight-
ing, as indicated in Equation 14 (second member). Finally, the position of mean balances is
substituted by the new mean weighted balances. However, the qualitative structure of the
dendrogram remains the same.

The present study of different exploratory tools for compositional data analysis is only pre-
liminary. Details on interpretation and methods to assess weights require further study.

7. Conclusions and further research

A weighting strategy for the analysis of compositions is proposed. It is based on the theory
of Bayes Hilbert spaces. However, some modifications have been introduced to fulfill the
principle of dominance of distances when down-weighting some parts of the composition.
When the weights considered are unitary in each part, that is, when there is no down or
up-weighting, the approach is reduced to the standard compositional data analysis. If some
parts are down-weighted approaching zero, the weighted geometry of the simplex tends to the
ordinary Aitchison geometry of the corresponding subcomposition.

In order to use the proposed weighting approach, it is advisable to deal with compositional
data as usual for linear operations, using the standard perturbation and powering. When
distances or inner products are involved in the analysis, they are computed in two steps:
first, shifting the compositional data by 	p, that is, dividing each part by the corresponding
weight; and second, computing clrp (Equations 3 or 16) or ilrp (Equation 10) to find the
required distances or inner products in a straightforward way.

Statistical consequences of weighting compositions need to be studied in the future. Standard
tools of exploratory analysis, as variation matrix, biplots or balance-dendrogram, clustering
and others, will be influenced by weighting. The reason is that distances between compositions
and computation of variances-covariances are influenced as well. Thus, the proposed weighting
approach is only a first step towards developing effective weighting techniques applicable to
compositional data analysis.
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A. Dominance of distances under change of reference

In Section 4 the following proposition was stated:

Proposition (dominance of distances). Let x1, x2 be two compositions in SD, endowed
with the reference measure P0, which weights are p0 = (1, 1, . . . , 1). Consider two refer-
ence measures, P1 and P2, represented by their respective weights p1 = (p11, p12, . . . , p1D)
and p2 = (p21, p22, . . . , p2D), such that all their components are 0 < pki ≤ 1, for k = 1, 2,

i = 1, 2, . . . , D and Pk(Ω) =
∑D

i=1 pki. Define y
(pk)
j = xj/pk for k = 1, 2 and j = 1, 2. Then,

p1i ≤ p2i, i = 1, 2, . . . , D ⇒ dp1(y
(p1)
1 ,y

(p1)
2 ) ≤ dp2(y

(p2)
1 ,y

(p2)
2 ) .

Proof: The change of reference from p2 to p1 with p1i ≤ p2i, i = 1, 2, . . . , D, can be
conceived as a sequence of intermediate changes of reference for which only one weight p2i

is changed to p1i at each step. These steps can be ordered, for instance, with the index
i = 1, 2, . . . , D. The sequence of weights can be the following.

step initial reference final reference

1-st p2 = (p21, p22, . . . , p2D) to q1 = (p11, p22, . . . , p2D)
2-nd q1 = (p11, p22, . . . , p2D) to q2 = (p11, p12, . . . , p2D)
. . . . . . . . . . . .
i-th qi−1 = (p11, p12, . . . , p1,i−1, p2i, . . . , p2D) to qi = (p11, p12, . . . , p1i, p2,i+1, . . . , p2D)
. . . . . . . . . . . .
D-th qD−1 = (p11, p12, . . . , p1,D−1, p2D) to p1 = (p11, p12, . . . , p1D)

As one weight decreases at each step, the statement is proven if the distance dqi(y
(qi)
1 ,y

(qi)
2 ) is

less than or equal to dqi−1(y
(qi−1)
1 ,y

(qi−1)
2 ), for i = 1, 2, . . . , D, where qD = p1. The i-th step

consists of changing the weight p2i into p1i, while all other weights remain equal. Consider
that ilrqi corresponds to a partition (SBP) that separates the i-th part of the composition
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from the other D − 1 parts. For both sets of weights qi and qi−1 all weighted balances are

equal except the first one, denoted b
(qk)
i , k = i− 1, i. Equation 12 implies that

d2
qi−1

(y
(qi−1)
1 ,y

(qi−1)
2 )− d2

qi
(y

(qi)
1 ,y

(qi)
2 )

=
[
b
(qi−1)
i (y

(qi−1)
1 )− b(qi−1)

i (y
(qi−1)
2 )

]2
−
[
b
(qi)
i (y

(qi)
1 )− b(qi)

i (y
(qi)
2 )

]2
. (15)

Using the expression of balances (11), it holds

b
(qk)
i (y

(qk)
` ) =

√
qkin

−
i

qki + n−i
log

y`i
∏
j 6=i y

qki/n
−
i

`j

, k = i− 1, i, ` = 1, 2,

where qki = p2i if k = i − 1, and qki = p1i if k = i. Moreover, the values of the parts of the
compositions are y`j = xj/p2j if j < i and y`j = xj/p1j if j > i. As a result, the differences
of balances in Equation 15 simplify to

b
(qk)
i (y

(qk)
1 )− b(qk)

i (y
(qk)
2 ) =

√
qkin

−
i

qki + n−i
log

(
x1ix2i∏

j 6=i(xj/qkj)
qkj/n

−
i

)
,

where the closure constants associated with the change x` = y`⊕qk cancel within the balance,
as it is scale invariant. Remarkably, the logarithmic term does not depend on k, as the weights
qkj , j 6= i, are equal for qk, k = i−1, i. Substituting these differences of balances in Equation
15 it yields

d2
qi−1

(y
(qi−1)
1 ,y

(qi−1)
2 )− d2

qi
(y

(qi)
1 ,y

(qi)
2 ) =

p2in
−
i

p2i + n−i
− p1in

−
i

p1i + n−i
=

n−i (p2i − p1i)

(p2i + n−i )(p1i + n−i )
≥ 0 ,

since it was assumed that p2i ≥ p1i. This proves the statement. �

B. Relationship between ordinary and weighted clr and ilr

In this appendix the relationship between ordinary and weighted clr and ilr is studied. The
main goal is to prove that this relationship is linear up to additive terms. The expressions ob-
tained are not central in the developed theory but they help to understand how the probability
distributions of random compositions change under change of reference.

Let x be a composition in SD, taken as a density of a measure µ with respect to the uniform
reference measure P0, given by p0 = (1, 1, . . . , 1). An alternative reference measure repre-
sented by the weights p = (p1, p2, . . . , pD) is considered, and the corresponding density of µ
is then y = x/p. The weighted centered log-ratio of y (Equation 3) is

clrp(y) = logy − log(gp(y))1 ,

where gp(·) denotes the weighted geometric mean of the arguments (Equation 3), 1 is a row
vector of D ones and logx, logy and logp are taken as row vectors. Then, log(gp(y))1 is
a row vector with all components equal to gp(y). Moreover, log(y) = log(x) − log(p) and
log(gp(y)) = (1/sp)

∑
pi(log xi− log pi), with sp =

∑
pi. Using matrix notation this leads to

log(gp(y))1 =
1

sp
(logx− logp)p>1 .

Substitution into the definition of clrp(y) yields

clrp(y) = (logx− logp)

[
ID −

1

sp
p>1

]
, (16)
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where ID is the (D,D)-identity matrix. Equation 16 shows that clrp(y) is a linear transfor-
mation of logx up to additive terms depending on p. The ordinary clr(x) can be written

clr(x) = logx

[
ID −

1

D
1>1

]
,

which can be substituted into Equation 16. The resulting expression is

clrp(y) = clr(x)− log(p)− log(gp(x))1 + log(gp(p))1 + log(g(x))1 . (17)

In order to relate ordinary and weighted ilr, assume that ilr-coordinates of x are

ilr(x) = clr(x) Ψ>0 , with Ψ0Ψ>0 = ID−1 , Ψ>0 Ψ0 = ID −
1

D
1>1 ,

that is, Ψ0 is an ordinary contrast matrix (Egozcue et al. 2011). The weighted ilrp-coordinates
are computed as in Equation 10 using the weighted contrast matrix Ψ,

ilrp(y) = clrp(y) diag(p) Ψ> .

Substituting Equation 17 and taking into account that 1 diag(p) Ψ> = 0, it yields

ilrp(y) = (clr(x)− logp) diag(p) Ψ> .

Inserting ID = Ψ>0 Ψ0 + (1/D)1>1 after clr(x), the desired relationship is

ilrp(y) = ilr(x) Ψ0 diag(p) Ψ> − logp diag(p) Ψ> , (18)

which shows that ilrp(y) is a linear transformation of ilr(x), up to additive terms depending
only on p and the selected weighted contrast matrix Ψ.
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Abstract

In a multinomial sampling, contingency tables can be parametrized by probabilities
of each cell. These probabilities constitute the joint probability function of two or more
discrete random variables. These probability tables have been previously studied from
a compositional point of view. The compositional analysis of probability tables ensures
coherence when analysing sub-tables. The main results are: (1) given a probability table,
the closest independent probability table is the product of their geometric marginals; (2)
the probability table can be orthogonally decomposed into an independent table and an
interaction table; (3) the departure of independence can be measured using simplicial
deviance, which is the Aitchison square norm of the interaction table.

In previous works, the analysis has been performed from a frequentist point of view.
This contribution is aimed at providing a Bayesian assessment of the decomposition. The
resulting model is a log-linear one, which parameters are the centered log-ratio transfor-
mations of the geometric marginals and the interaction table. Using a Dirichlet prior
distribution of multinomial probabilities, the posterior distribution of multinomial prob-
abilities is again a Dirichlet distribution. Simulation of this posterior allows to study the
distribution of marginal and interaction parameters, checking the independence of the
observed contingency table and cell interactions.

The results corresponding to a two-way contingency table example are presented.

Keywords: interaction, independence, simplicial deviance, multinomial sampling, Aitchison
geometry of the simplex, orthogonal decomposition, R.

1. Introduction
Contingency tables have been studied for a long time. There are many examples, dating
from the beginning of the XX-th century which afforded elementary, but relevant, questions
about such kind of data (e.g. Yule 1912). Along the XX-th century many advances have been
achieved. The introduction of log-linear models (Nelder 1974) and generalized linear models
(McCullagh and Nelder 1983; Nelder and Wedderburn 1972) were important milestones in the
study of contingency tables. From the seventies up to now many extensions, improvement of
methods and generalisations have been presented, for instance, see Everitt (1977), Darroch,
Lauritzen, and Speed (1980), Chambers and Welsh (1993), or Goodman (1996). However,
challenges are still pendent for a straightforward solution, specially for the study of n-way

http://www.ajs.or.at
http://www.ajs.or.at/
http://dx.doi.org/10.17713/ajs.v45i4.136
www.osg.or.at
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contingency tables.

From the compositional point of view, the contingency tables have been studied only recently,
with the early precedent of Kenett (1983). In the workshop CoDaWork 2008 (Girona, Spain)
Egozcue, Dı́az-Barrero, and Pawlowsky-Glahn (2008) introduced a perturbation-decomposition
model for tables of multinomial parameters, thus opening new possibilities of analysis. This
contribution was followed by other compositional attempts and applications (Gallo 2015;
Fačevicová and Hron 2013). The approach proposed in Egozcue, Pawlowsky-Glahn, Templ,
and Hron (2015) is a kind of log-linear model but it has some differences with the standard
ones. The main differences are the way in which marginals are found and the definition of
interactions.

Here, the model based on the orthogonal decomposition of multinomial contingency tables is
used to carry out a Bayesian estimation of both close independent multinomial parameters
and the subsequent interactions. The present goal is to show that orthogonal decomposition
of multinomial contingency tables can be addressed using Bayesian estimation techniques.
The zero problem, typical in compositional data analysis, is here overcome by estimating
the model parameters (probabilities) underlying the contingency table, which are considered
compositional parameters. Zeros in the observations do no produce any problem as their
likelihood is well defined. This is a traditional way of dealing with zeroes in generalized
linear models as multinomial logistic regression models (Nelder 1974) or Bayesian estimation
of multinomial probabilities (e.g. Pawlowsky-Glahn, Egozcue, and Tolosana-Delgado 2015).

In Section 2, the main features of the model based on orthogonal decomposition of contingency
tables are recalled. Some definitions of the Bayesian framework are introduced in Section 3.
Examples are presented in Section 4.

2. Orthogonal decomposition model
Two-way contingency tables coming from a multinomial sampling are considered. They are
generated by a row-classification into I classes, and a column-classification made of J classes.
The total number, N , of classified individuals is then distributed on the I × J cells of the
contingency table (CT) according to the classification. The number of individuals pertaining
to the ij-cell is denoted nij for i = 1, 2, . . . , I, and j = 1, 2, . . . , J . The whole contingency
table containing these counts is denoted N. The table N, as an array of counting random vari-
ables, is assumed to be multinomial distributed and its corresponding probability parameters
denoted by pij i = 1, 2, . . . , I, and j = 1, 2, . . . , J . When arranged in a table, these probability
parameters are called probability table (PT). The sample space of a CT, like N, is I×J times
the non-negative integers restricted to add to N . They are not conceived as compositional
data, even when the frequencies N/N are computed. In fact, they can contain zero-counts and
only can correspond to fractions with N as denominator. Alternatively, the probability pa-
rameters P are considered compositional. This can be summarized as (a) P is in SD, D = I ·J ;
(b) perturbation and powering, denoted ⊕, � respectively, are vector space operations, and
the dimension of SD is D − 1; (c) the centered log-ratio (clr) transformation is defined and
inner product, norm and distances in SD are the ordinary Euclidean inner product, norm and
distance of the clr transformed PT’s. As well-known for SD (Pawlowsky-Glahn and Egozcue
2001), the simplex endowed with ⊕, �, and the Aitchison inner product is a D−1-dimensional
Euclidean space. More explicitly, consider two PT’s, P and Q and a real number α. The
perturbation W = P ⊕Q is a PT with entries wij = pijqij/

∑
km pkmqkm, k = 1, . . . , I and

m = 1, . . . , J . The α-powering W = α�P is a PT with entries wij = pαij/
∑

km p
α
km. The clr

of a PT is an (I × J)-array, V = clr(P) which entries are

vij = log(pij)−
1

D

I∑

k=1

J∑

m=1

log pkm .

The inverse clr-transformation is P = C exp(V), where exp operates componentwise and C is
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the closure operator. For any vector of D strictly positive real components,

z = (z1, z2, . . . , zD) ∈ RD+ , zi > 0 for all i = 1, 2, . . . , D ,

the closure of z to κ > 0 is defined as

C(z) =

[
κ · z1∑D
i=1 zi

,
κ · z2∑D
i=1 zi

, . . . ,
κ · zD∑D
i=1 zi

]
.

Denoting clr(P) = V and clr(Q) = W, the Aitchison inner product, 〈·, ·〉a, and distance,
da(·, ·), of PT’s is

〈P,Q〉a = 〈V,W〉 =
I∑

i=1

J∑

j=1

vijwij , d2
a(P,Q) =

I∑

i=1

J∑

j=1

(vij − wij)2 ,

where 〈·, ·〉 denotes the ordinary Euclidean inner product of arrays.

In these definitions, commonly used in compositional data analysis, there are, at least, two
key points. The first one is the interpretability of the perturbation. Perturbation of PT’s cor-
respond to apply the Bayes formula to a PT, containing prior probabilities, using a likelihood
arranged as a PT, up to the closure operation. The second point is that the subcompositional
coherence (Pawlowsky-Glahn et al. 2015; Egozcue 2009), is guaranteed. In the case of PT’s,
subcompositional coherence assures that distance between two sub-tables have Aitchison dis-
tance smaller than or equal to the distance between the parent PT’s.

The main result in Egozcue et al. (2008, 2015) is that, independent PTs constitute an (I −
1)(J − 1)-dimensional linear subspace of SD. This means that any PT can be projected
orthogonally on this subspace. The consequence is that P is decomposed in a unique way as

P = Pind ⊕Pint , Pind ⊥ Pint , (1)

where Pind is the projection of P on the independent subspace, and Pint is in the orthogonal
complement. The PT Pint is called interaction PT. The independent PT is on its turn
decomposed into two new PT’s, called marginal PT’s, which have equal rows and equal
columns respectively. The independent PT is then decomposed as

Pind = (1Ir
>)⊕ (c1>J ) , (2)

where r, c are compositions in SJ and SI respectively, and they are treated as column vectors
for matrix notation. The symbols 1I and 1J are column-vectors, with I and J components
respectively, all of them equal to 1.

Equations 1 and 2 can be transformed by taking clr, which yields

clr(P) = clr(Pind) + clr(Pint) = 1I(clr(r))> + clr(c)1>J + clr(Pint) . (3)

It should be remarked that clr(r) and clr(c) are clr transformations of compositions in SJ
and SI respectively and they are not PT’s.

The marginal row and column, r and c respectively, are obtained from P as the closed
geometric means by columns and rows of P respectively. This feature indicates that the
nearest independent PT, in the sense of Aitchison geometry in SD, is not obtained from the
traditional (arithmetic) marginals. This is an important difference from common analysis
of contingency tables. As a consequence, clr(Pind) has the property that its arithmetic and
geometric marginals are equal up to a closure; and the geometric marginals of Pint are neutral
in the simplex (i.e. all their elements are equal).

The decomposition in Equation 3 implicitly defines a log-linear model which is revealed after
taking clr−1 in Equation 3. The log-linear model is then

P = C exp[clr(Pind) + clr(Pint)] = C exp[1I(clr(r))> + clr(c)1>J + clr(Pint)] , (4)



48 Bayesian Estimation of the Orthogonal Decomposition of a Contingency Table

where the parameters are the J-coefficients in clr(r), the I coefficients in clr(c) and the
D = I · J coefficients in clr(Pint). However, coefficients of any clr add to zero, and the
number of free parameters is (J − 1) + (I − 1) + (IJ − 1) = IJ + I + J − 3. The number of
clr-parameters in Equation 4 can be reduced to IJ + I + J − 3 using ilr-coordinates, but this
strategy is not used here as the clr-parameters can be interpreted directly.

In order to interpret the results when the log-linear model is fitted to a CT, some derived
parameters may be useful. When the norm ‖Pint‖a is null, Pint is the neutral element in SD
and P is an independent PT. Therefore, ‖Pint‖2a is an overall measure of dependence which
was named simplicial deviance. When considered relative to the Aitchison square norm of P,
it can be called relative simplicial deviance. The corresponding definitions are

∆2(P) = ‖Pint‖2a , R2
∆(P) =

‖Pint‖2a
‖Pind‖2a + ‖Pint‖2a

, (5)

where ‖Pind‖2a+‖Pint‖2a = ‖P‖2a due to the orthogonal decomposition (Equation 1). Remark-
ably, ∆2(P) does not depend on the marginals of P; such a property is not shared by R2

∆(P).
However R2

∆(P) has clear interpretation based on the facts of 0 ≤ R2
∆(P) ≤ 1, R2

∆(P) = 0
implies independence of P, whereas R2

∆(P) = 1 indicates that the nearest independent PT
to P is the neutral (uniform) PT, and it can be considered as a pure interaction PT.

In order to interpret the coefficients of V = clr(Pint) it should be taken into account that the
simplicial deviance is decomposed

∆2(P) = ‖Pint‖2a =
I∑

i=1

J∑

j=1

v2
ij , (6)

so that each cell contributes to the simplicial deviance with v2
ij thus deserving the name of

cell interaction. A way of presenting these cell interactions is computing their relative value
to the simplicial deviance or expressing them as percent of contribution. However, the signs
of vij are important as they indicate whether the probability in the cell pij is smaller than the
predicted probability using Pind (negative vij) or it is larger than this predicted probability
(positive vij). It has been proposed to use an interaction array reporting in each cell the
value sign(vij)(v

2
ij/∆

2(P)). Unfortunately, the values of vij cannot be interpreted separately
as they add to zero. The analyst should look for large absolute values in the interaction array
coupled by positive-negative interactions. Cells interactions are then interpreted jointly as
the sources of interaction are frequently coupled.

3. Bayesian analysis

Assume that an I × J contingency table N has been observed as the result of a multinomial
sampling. After adopting the log-linear model (Equation 4), the multinomial probabilities
pij can be expressed as functions of the clr’s of the geometric marginals clr(r) = z(r) =

(z
(r)
1 , z

(r)
2 , . . . , z

(r)
J ), clr(c) = z(c) = (z

(c)
1 , z

(c)
2 , . . . , z

(c)
I ), and the entries of V = clr(Pint)

denoted vij . Hence, the likelihood of these parameters, given the observation has the form

L(z(r), z(c),V |N) = K ·
I∏

i=1

J∏

j=1

p
nij

ij ,

where all pij are functions of z(r), z(c),V and K the normalizing constant corresponding to the
multinomial density. In order to simplify the estimation procedure, a Dirichlet distribution
(e.g. Aitchison 1986) can be chosen as initial joint distribution of the pij . If the chosen
parameters of the Dirichlet distribution are aij > 0, the final or posterior distribution of
the parameters is again a Dirichlet distribution with parameters pij + aij and, therefore, the
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posterior distribution is

f(z(r), z(c),V |N) =
Γ (
∑

k

∑
m akm)∏

k

∏
m Γ(akm)

I∏

i=1

J∏

j=1

p
nij+aij−1
ij ,

∑

k

∑

m

pij = 1 , (7)

The goals of the Bayesian procedure are, at least, three: (a) estimation of posterior distribu-
tion of parameters z(r), z(c), V and their marginal distributions; (b) checking the hypothesis
of independence of the observed CT; (c) study the distribution of the cell interactions vij and
checking whether they can be considered null or not. These three tasks are hardly carried
out using the explicit distribution (Equation 7). A way out consists of drawing independent
realisations from Equation 7, and then, studying the simulated sample of parameters thus
accomplishing goal (a).

Checking independence of the observed CT is performed through a predictive p-value (Bayarri
and Berger 2000; Meng 1994) as proposed in goal (a). Assume that for each possible set of

posterior parameters, z
(r)
0 , z

(c)
0 , V0, a likelihood ratio test is carried out on the hypothesis

H0 : z(r) = z
(r)
0 , z(c) = z

(c)
0 , V = 0 , (8)

using the statistic

Λ = −2 log

(
L(z

(r)
0 , z

(c)
0 ,V = 0 |N)

L(ẑ(r), ẑ(c), V̂ |N)

)
, (9)

where ẑ(r), ẑ(c), V̂ denote the maximum likelihood estimators based on the sample CT.
Asymptotically with N , the statistic Λ has distribution χ2 with degrees of freedom IJ +
I + J − 3. This corresponds to the number of estimated parameters, compared with no free

parameter in H0. For each set of values z
(r)
0 , z

(c)
0 , V0, one p-value αp0 is obtained. The p-value

αp0, as a function of the observed CT, has uniform distribution under asymptotic conditions
(Robins, van der Vaart, and Ventura 2000). A predictive p-value, α, with asymptotic uniform
distribution, is obtained using

α = Φ

(
1

m

m∑

k=1

Φ−1
(
α

(k)
p0

))
, (10)

where the sum goes through the set of p-values corresponding to the m-simulated sample of

parameters z
(r)
0 , z

(c)
0 ; and Φ denotes the standard normal distribution function (Ortego 2015).

Small values of α suggest rejection of the independence H0.

The assessment of the hypothesis that a single cell interaction vij is null is performed using
Bayesian discrepancy p-values (Gelman, Meng, and Stern 1996), that is, computing the pos-
terior probability of vij ≤ 0 across the simulated sample. When this p-value is small (near to
zero), or large (near to 1), rejection of vij is suggested. This accomplishes goal (c).

4. A simple example

4.1. Marks in a subject

The marks obtained by N = 104 students in a exam of a college-level statistics subject are
considered. Theoretical and practical (mostly problems) questions in the exams are marked
separately. In this context, we want to know if the performance in theoretical questions can
be considered independent from the performance in practical questions.

The results of the exam may be classified into four groups: A,B,C,D, corresponding to the
numeric interval of Spanish marks over 10 points. The results corresponding to this group of
students have been organized in a two-way table T (Table 1). We assume that these marks
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Table 1: Two-way contingency table containing the marks of the May examination of 104 students. Mark of
the theoretical part of the exam (rows) vs. mark of the practical part (columns). The equivalence between
marks A, B, C, D and traditional Spanish scores is indicated in the first column.

mark (theory)\ mark (prob) A [8.5,10] B [7,8.5) C [5,7) D [0,5)

A [8.5,10] 1 0 4 4
B [7,8.5) 2 4 6 13
C [5,7) 0 3 11 25
D [0,5) 1 1 5 24

have been observed as a result of a multinomial sampling with probabilities pij . A Bayesian
framewok is chosen for the estimation of the table parameters pij . For simplicity, a joint
Dirichlet distribution has been assumed for these probabilities.

A Dirichlet prior has been set for the multinomial probabilities. Then, the posterior distribu-
tion of these parameters corresponds again to a Dirichlet distribution (Equation 7). A large
sample of the posterior distribution has been drawn. This sample is used to describe the
uncertainty of parameter estimates and other quantities of interest derived from them. For
this data set, a sample of the posterior of length 10,000 has been obtained (e.g. Table 2).

Table 2: Example of a sample PT drawn from the posterior Dirichlet distribution

t\p A B C D

A 0.01 0.00 0.06 0.08
B 0.01 0.03 0.04 0.17
C 0.00 0.04 0.10 0.24
D 0.02 0.02 0.02 0.16

The tables sampled PT’s from the posterior Dirichlet distribution should be properly treated,
due to their compositional character. The clr coordinates of the cells for each table have been
computed (e.g. Table 3). The row and column geometric marginals of the clr coordinates
have also been obtained for each of the tables of the posterior sample. Also, each of these
tables has been decomposed in its independent (e.g. Table 4) and interaction table (e.g.
Table 5) following Equation 1. That is, a sample of independent and interaction tables has
been obtained from the sample of posterior tables. This allows to describe the uncertainty of
quantities of interest derived from them, such as deviance, ∆2(P), relative deviance, R2

∆(P),
among others.

Table 3: Example of clr-coordinates of a sample PT drawn from the posterior Dirichlet distribution. Row and
column geometric marginals.

t\p A B C D rmarg

A -1.36 -5.39 1.02 1.30 -1.105
B -0.57 0.35 0.68 2.06 0.631
C -4.19 0.52 1.48 2.38 0.048
D -0.26 0.05 -0.08 2.00 0.426

cmarg -1.594 -1.117 0.776 1.936

The departure from independence for the two sets of marks of interest may be measured
observing the simplicial deviance (squared Aitchison norm) of the interaction component of
drawn posterior tables (Equation 5). Figure 1 shows the histogram of simplicial deviances
corresponding to the obtained sample of interaction tables. As the deviance is a measure of
dependence, 0 ≤ ∆2(P) < +∞, a visual comparison with the zero value (red line) is included.
For the marks in the example, although the median value (blue line) is low, the amount of
variability in the deviance values points to lack of independence between the theoretical and
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Table 4: Example of clr-coordinates of the independent component of a sample PT drawn from the posterior
Dirichlet distribution

t\p A B C D

A -2.70 -2.22 -0.33 0.83
B -0.96 -0.49 1.41 2.57
C -1.55 -1.07 0.82 1.98
D -1.17 -0.69 1.20 2.36

Table 5: Example of clr-coordinates of the interaction component of a sample PT drawn from the posterior
Dirichlet distribution

t\p A B C D

A 1.34 -3.17 1.35 0.47
B 0.39 0.83 -0.72 -0.50
C -2.64 1.59 0.65 0.40
D 0.90 0.74 -1.28 -0.36

practical marks.
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Figure 1: Histogram of posterior simplicial deviance (square norm of the clr-interaction) for final marks. Red
line (solid): null value. Blue line (dashed): median.

The relative simplicial deviance R2
M(P) may seem easier to interpret than the deviance, as

0 ≤ R2
M(P) ≤ 1, but this interpretation should be taken with caution as this parameter is

not marginal invariant. Figure 2 shows the histogram corresponding to the relative simplicial
deviance of the posterior sample. A zero-line is also included for a visual comparison. In this
case, the majority of the relative deviance values are around 0.3, being near to its median
value, reassuring the interpretation of lack of independence.

The simplicial deviance is an overall measure of dependence, but often more detail is needed.
The cell values of the interaction table (e.g. Table 6) provide this detail, but the direct
interpretation of the values may be confusing due to its compositional character. In order to
obtain a detailed description of interaction using the appropriate scale, the clr-coordinates of
interaction PT in the posterior sample have been computed. Figure 3 shows the histograms
of the cell interactions as a summary of the obtained results. For visual comparison, a zero
line has been added to each histogram. Visually, a zero line near the median of the histogram
indicates no interaction added by that cell (e.g. histogram corresponding to cell 4). If the
zero line is far from the center of the histogram (e.g. histogram corresponding to cell 1), that
cell may be adding interaction to the deviance (Equation 6), and should be studied.

However, for an easier understanding of the importance of each cell, the interaction array of
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Figure 2: Histogram of relative simplicial deviance (square norm of clr-interac / total) corresponding to the
posterior sample. Final marks. Red line (solid): null value. Blue line (dashed): median.

the cells has also been computed (e.g. Table 6), measuring the percentage of interaction added
to the deviance by each cell, and including the sign of this interaction. The histogram of the
signed interaction array of the posterior sample is shown in Figure 4. Visually, cells with
interaction arrays clearly different from zero should be studied, as they are the influential
ones. It seems that the most influential cells for the departure of independence are cells
number 1, namely ’A in theory’ vs ’A in practical’ marks and number 3, ’A in theory’ vs
’C in practical’ marks, with more or less the same weight and opposite signs (see Figure
4, first row). The positive sign of the interaction array for cell number 1 means that the
predicted probability for the cell is larger than the predicted by the independent table, while
the predicted probabilities for cell 3 (negative sign) are lower than the probabilities predicted
by the independent table. Other cells, as cell 5, are also influential, but with a lower weight.
The hypothesis of null interaction has also been assessed by means of a Bayesian p-value based
on a discrepancy (posterior probability of vij ≤ 0 across the sample) (Table 7). If the zero
value is central in the sample, i.e. the proportion of vij ≤ 0 is near 0.5, the hypothesis is not
rejected. Otherwise, small or large proportions, lead to the rejection of the null interaction
hypothesis. For instance, for cell number 3, the Bayesian p-value is 0.956, and therefore the
null hypothesis is clearly rejected. For cell number 1, the p-value is 0.101 and, although the
value is low, the decision of rejection of null cell interaction is not so straightforward.

Table 6: Example of interaction array from the sample

t\p A B C D

A 6.27 0.54 -24.25 2.84
B -34.89 2.42 8.79 1.92
C 6.37 -1.82 1.49 -5.74
D 0.77 -0.89 0.55 -0.46

Table 7: Assessment of null interaction hypothesis. Bayesian p-value based on discrepancy (posterior proba-
bility of vij ≤ 0 across the sample)

t\p A B C D

A 0.101 0.297 0.956 0.455
B 0.773 0.131 0.223 0.697
C 0.261 0.873 0.175 0.746
D 0.880 0.914 0.115 0.052
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Figure 3: Histograms of clr-cell interactions for the posterior sample. Red lines (solid): null interaction

4.2. An independence test

Simplicial deviance, relative deviance and the interaction array are useful quantities to study
dependence in a contingency table. However, it is usual to discuss independence in contingency
tables by means of a test (e.g. Equation 8). In our example, are the marks for theory
and practice in the exam independent? In the established theoretical context, that can be
rephrased as, does the contingency table of marks, T , belong to the subspace of independent
tables?

H0 : T = Pind ∈ SDind ; H1 : T = P /∈ SDind

The selected likelihood ratio test statistic (Equation 9), is based on the sample of estimates
of the independent component Pind, P̂ind. For each table of the sample of the posterior
distribution, its decomposition into independent and interaction component has been obtained
in section 4.1. The proposed test statistic and its corresponding predictive p-value have been
computed for each of these decompositions. This sample of p-values can be used to measure
the uncertainty of the decision of the independence test. Figure 5 shows the histogram of
these predictive p-values for the posterior sample of tables. It can be observed that there is
variability in the sample of p-values, with a majority of small values, leading to the rejection
of the independence hypothesis. However, the lack of uniformity of p-values and their relative
scale are problematic for their interpretation (Robins et al. 2000). Therefore, the predictive
p-values of the sample have been suitably transformed and combined, in order to obtain
a summary p-value, α, with asymptotic uniform distribution. In this case, α is nearly 0,
and the independence hypothesis has been rejected, as already pointed out by the deviance
values. That is, it cannot be considered that the theory and practical marks of this exam are
independent.
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Figure 4: Histogram of the interaction array for each cell. Red line (solid): null value. Blue line (dashed):
median

5. Conclusions

Contingency tables have been broadly studied, although only recently they have been treated
from the compositional point of view. The orthogonal decomposition of multinomial con-
tingency tables has been presented. Also, a Bayesian framework for the estimation of the
parameters of contingency tables has been introduced as a novelty in the compositional treat-
ment of these tables.

A two-way contingency table containing marks from an exam of a college-level statistics course
has been studied as an example. Results show that theory and practical exam marks cannot
be considered as independent as suggested by the table decomposition and their summary
statistics. The Bayesian point of view allows considering uncertainty of estimators and sum-
mary statistics. Moreover, the Bayesian approach deals with small or null counts in the
original table very efficiently. The multinomial probabilities of the table are assumed compo-
sitional. Contrarily, counts in the original contingency table are not reduced to frequencies
thus avoiding zero replacements or imputations. This latter fact makes Bayesian estimation
very useful in the context of compositional analysis of probability parameters.
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Abstract

The term compositional data analysis is historically associated to the approach based
on the logratio transformations introduced in the eighties. Two main principles of this
methodology are scale invariance and subcompositional coherence. New developments and
concepts emerged in the last decade revealed the need to clarify the concepts of composi-
tions, compositional sample space and subcomposition. In this work the mathematics of
compositional analysis based on equivalence relation is presented. A logarithmic isomor-
phism between quotient spaces induces a metric space structure for compositions. The
logratio compositional analysis is the statistical analysis of compositions based on this
structure, consisting of analysing logratio coordinates.

Keywords: composition, compositional analysis, equivalence class, logratio, quotient space,
simplex.

1. Introduction

The term compositional data (CoDa) was first introduced by Aitchison (1982) and later
developed in Aitchison (1986). In these publications CoDa is identified with vectors of strictly
positive components whose sum is always equal to one; that is, vectors of the unit simplex

SD = {(w1, . . . , wD)′ : w1> 0, . . . , wD> 0;w1 + . . .+ wD = 1}.

The term compositional data analysis (CoDA) has been implicitly associated with the metho-
dology proposed by Aitchison (1986), which is based on applying the logratio transformations
to the CoDa and describing, analysing and modelling them statistically from the logratios
of their components. The main aim of this methodology is to free the CoDa from the con-
straints of the constant sum in order to be able to use the standard distributions in the real
space to model the CoDa, e.g., the multivariate normal distribution. This strategy has two
fundamental concepts in the so-called principles of CoDA (Aitchison 1986), namely, ‘scale in-
variance’ and ‘subcompositional coherence’. From Aitchison (1986), “scale invariance merely
reinforces the intuitive idea that a composition provides information only about relative val-
ues not about absolute values and therefore ratios of componentes are the relevant entities to
study”; and “subcompositional coherence demands that two scientist, one using full composi-
tion and the other using subcompositions of these full compositions, should make the same
inference about relations within the common parts”. Later it was seen that the methodology
initiated by Aitchison is more than a simple transformation of the CoDa, because it is in

http://www.ajs.or.at
http://www.ajs.or.at/
http://dx.doi.org/10.17713/ajs.v45i4.142
www.osg.or.at
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fact a way to provide the simplex with a structure of Euclidean space. The interested reader
can refer to Egozcue, Barceló-Vidal, Mart́ın-Fernández, Jarauta-Bragulat, Dı́az-Barrero, and
Mateu-Figueras (2011) for further information.

The identification of the term CoDA with the methodology based on the logratio transfor-
mations developed by Aitchison has meant that other possible methods for analysing CoDa
have made little impact. Watson and Philip (1989), Wang, Liu, Mok, Fu, and Tse (2007) or
Scealy and Welsh (2011), for example, prefer to apply the techniques characteristic of direc-
tional data, given that they take the positive orthant of the unit hypersphere centred at the
origin as the sample space of the CoDa. At that time this alternative method for analysing
CoDa was cause for intense epistolary exchanges between D. F. Watson (and G. M. Philip)
and J. Aitchison (see Aitchison 1990; Watson 1990; Aitchison 1991; Watson 1991). Recently,
Scealy and Welsh (2014), have returned to the controversial questioning of the principles of
CoDa, which they consider to be made to specifically exclude any methodology other than
the one developed by Aitchison. As Scealy and Welsh (2014) recognise, the crux of the con-
troversy lies in the definitions of composition and sample space in CoDA, both of which were
introduced by Aitchison (1986) and based on constant sum vectors. The lack of clarity in
the presentation of the properties scale invariance and subcompositional coherence is also a
matter for discussion.

The main aim of this paper is to provide a precise and unequivocal definition of the concepts
of composition, CoDa sample space and subcomposition, on which compositional analysis
(CoAn) is based. Contrary to Scealy and Welsh (2014), we turn to mathematics to introduce
these concepts with maximum precision. Thus, in Section 2 we define the quotient space of the
compositions and we provide a precise definition of the concept of subcomposition. We also
define what we understand by CoAn, distinguishing it from the traditional concept CoDA. In
Section 3 we show how the logarithmic and exponential functions allow us to structure the
sample space as a Euclidean space and to operate with the logratio coordinates of the data
as if we were doing so in the real space. In the last section we compile the advantages and
limitations of CoAn based on logratio coordinates and of the analysis based on transformations
that take the positive orthant of the unit hypersphere as the sample space. Finally, we present
the main conclusions.

2. The sample space in a compositional analysis

2.1. A composition is an equivalence class

We assume that our data and observations materialise in vectors w = (w1, . . . , wD)′ with
strictly positive components, that is vectors from real space IRD

+ , the positive orthant of IRD.
Note that we are eluding to the case of zero values in the data. We consider the zero as a
special value that deserves a particular analysis according to its nature (Palarea-Albaladejo
and Mart́ın-Fernández 2015); that is, the reason why a zero value is present in a CoDa set
is informative and determines the approach to be applied. The interested reader is referred
to Mart́ın-Fernández, Palarea-Albaladejo, and Olea (2011) for further information. In the
discussion we outline some of the approaches and discuss some kinds of zero.

Sometimes the observational vectors w are constant sum vectors. Typical examples are the
data from time-use surveys where the sum equals to 24 in hours, 1440 in minutes or 100 in
percentages. This case of CoDa is known as ‘closed data’. In other situations, the components
of the observational vectors are themselves meaningful, that is, they represent absolute mag-
nitudes. However, in spite of that, we can decide to take only the relative information into
account for our analysis. For example, in the analysis of household expenditure on D com-
modity groups, we can decide to analyze the distribution of the expenditure regardless of the
total. In both scenarios we are implicitly assuming that the vectors w and kw, with k ∈ IR+,
are providing us with the same compositional information, that is, the information given



Austrian Journal of Statistics 59

by the ratios between the components. For example, the vectors (0.3, 0.5, 0.2), (30, 50, 20),
(7.2, 12, 4.8), and (3/2, 5/2, 1) provide the same compositional information. In both cases we
are assuming that our data are CoDa and our analysis will be a CoAn. Moreover, from a
strictly mathematical point of view this implies that in a CoAn the sample space is not IRD

+ .

Definition 2.1. Two D-observational vectors w and w∗ are compositionally equivalent,
written w ∼ w∗, if there is a positive constant k such that w = kw∗. This equivalence
relation on IRD

+ splits the space into equivalence classes, called D-compositions or, simply,
compositions. The composition generated by an observational vector w, i.e. the equivalence
class of w, is symbolized by w:

w = {kw : k ∈ IR+} .

Following Aitchison (1986), it is clear that a D-part composition can be geometrically inter-
preted as a ray from the origin in the positive orthant of IRD (Figure 1). Therefore, from a
strictly mathematical point of view, the term CoAn is the equivalent of assuming that the
sample space is the set of all D-compositions.

Definition 2.2. The set of all D-compositions, that is, the quotient space IRD
+/∼ is called

the D-compositional space or, in brief, compositional space, and is symbolized by CD. We
symbolize by ccl (from compositional class) the mapping from IRD

+ to CD which assigns each
D-observational vector w to the composition w, i.e.,

ccl : IRD
+ −→ CD

w 7−→ w = {kw : k ∈ IR+} . (1)

Property 2.1. Two D-observational vectors w = (w1, . . . , wD)′ and w∗ = (w∗1, . . . , w
∗
D)′

are compositionally equivalent when the information provided by their ratios is the same, that
is

wi
wj

=
w∗i
w∗j

for each i, j = 1, . . . , D .

Any D-composition w is completely determined by its ratios wi/wj of their components.
Therefore, in a CoAn the relevant information provided by the observational vector w is
found not in its components wi, but rather in its ratios wi/wj . This is what we mean when
we say that a composition only contains ‘relative information’ about its components. Note
that all the observational vectors in the same ray (Figure 1) have the same ratios, providing
the same relative information. That is, any point in the ray can be selected as representative
of the equivalence class, and any statistical analysis has to provide the same information
regardless of the representative selected. Importantly, if one applies a statistical method that
does not take into account this essential attribute of the compositions, the application of
different criteria to select the representatives will give different results and, likely, one will
extract different conclusions.

To conclude, when we decide to do a CoAn we are assuming that the sample space of our data
is the compositional space CD, which means in fact an acceptance of the ‘scale invariance’
principle.

2.2. Representatives of compositions

Any composition w is determined by any observational vector w that belongs to the equiva-
lence class. Thus, many different criteria can be used to select a representative of a composi-
tion. Each criterion gives rise to a different reference frame where projecting the compositions
of CD. Here we present the most commonly-used criteria that facilitate the interpretation and
have relevant mathematical properties.
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Definition 2.3. The linear criterion selects the unit-sum vector w/
∑D
j=1wj to represent

the composition w. We symbolize by rl the mapping from CD to the subset SD of IRD
+ , that

is
rl : CD −→ SD ⊂ IRD

+

w 7−→ w/
∑D
j=1wj ,

(2)

where SD is the well-known unit simplex, historically considered as the sample space of CoDa.

The mapping rl corresponds to the constraining operator or closure operator C introduced
by Aitchison (1986). Geometrically, rl (w) is the intersection of the ray going from the origin
through w and the hyperplane of IRD defined by the equation w1 + . . . + wD = 1 (Figure
1). This criterion can be generalized to representatives with a sum equal to 100 or any other
positive value.

Definition 2.4. We symbolize by rs the mapping from CD to the subset SphD+ of IRD
+

which assigns to composition w the intersection of the ray going from the origin through w
and the unit hypersphere of IRD centred in the origin, i.e.,

rs : CD −→ SphD+ ⊂ IRD
+

w 7−→ w/‖w‖ , (3)

where SphD+ is the strictly positive orthant of the unit hypersphere of IRD centred in the origin.
We call this selection criterion the spherical criterion (Figure 1) because the representatives are
unit-norm vectors using the classical Euclidean norm. This selection criterion was proposed
by Watson and Philip (1989).

Definition 2.5. The hyperbolic criterion, rh , assigns to composition w the intersection of
the ray going from the origin through w and the hyperbolic surface HipD+ in IRD

+ implicitly
defined by the equation

∏D
i=1wi = 1:

rh : CD −→ HipD+ ⊂ IRD
+

w 7−→ w/g(w) ,
(4)

where g(w) = (
∏D
j=1wj)

1/D is the geometric mean of the components of vector w (Fig. 1).

Note that the function composition log ◦ rh is equivalent to the centred logratio transformation
(clr) introduced by Aitchison (1986): clr (w) = log(w/g(w)).

The mappings rl , rs and rh can also be viewed as scale-invariant functions from IRD
+ to CD.

Recall that a function f(·) from IRD
+ is said to be ‘scale invariant’ if for any positive constant

k and for any observational vector w, the function verifies f(kw) = f(w).

These criteria to select a representative of a composition can be extended to any surface
defined in IRD

+ using a bijective function. Indeed, making each composition correlate with the
intersection of the corresponding ray with the surface is sufficient.

2.3. Subcompositions

In a CoAn, attention is usually focused on a determinate subset of the components of our
observations of IRD

+ . For example, in time-use surveys we might only be interested in those
activities that are different from the sleeping hours. If the analysis to be carried out on the
components selected from our observations must also be compositional, then the sample space
also needs to interpret it as a quotient space. This brings us to the need to introduce the
concept of subcomposition.

Definition 2.6. Given a composition w ∈ CD, any composition obtained from the selection
of two or more components of the D-observational vector w is termed a subcomposition of
w. More precisely, let s be the number of selected components, with 2 ≤ s < D, and
i1 < . . . < is the sub indexes of these components (we implicity assume that the sub indexes
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Figure 1: Linear, spherical and hyperbolic selection criteria (case D = 2).

of the D-observational vectors are 1, . . . , D). Let S be the s × D matrix with the ones in
the positions (1, i1), . . . , (s, is) of the matrix and zeros in the remaining positions. Making a
subcomposition can be viewed as the transformation subS from CD to Cs given by

subS : CD → Cs
w → Sw .

(5)

The symbol wS indicates the observational subvector Sw = (wi1 , . . . , wis)
′, and wS repre-

sents the final subcomposition which belongs to the compositional space Cs. The transfor-
mation subS is compatible with the equivalence relation ∼, that is, equivalent observational
vectors are transformed into equivalent subvectors. Importantly, the selected components
(wi1 , . . . , wis)

′ provide the same relative information regardless they belong to w or they
form the subcomposition wS . This ‘subcompositional coherence’ is an inherent attribute of
the compositions rather a required principle. The formation of a subcomposition wS from
a D-composition w can be geometrically interpreted as the orthogonal projection of the ray
associated to w onto the subspace of IRD

+ generated by the positive coordinate axes associated
to the components in the subcomposition. Figure 2 shows the subcompositions for the case
D = 3 and the relationship with the corresponding representatives.

3. The Euclidean compositional space

Any statistical analysis with data from the sample space CD needs this space to have an
algebraic and metric structures. Remember that such basic concepts as the mean and the
variance of a set of data are based on the algebraic and metric structure of the sample space of
the data. The strategy that we develop is to define an isomorphism between CD and another
Euclidean space using the logarithmic function. Despite this isomorphism may not be the
unique feasible isomorphism, the rest of the possibilities are still unknown to us.

3.1. A quotient Euclidean space in the real space

The well known classical Euclidean space IRD is based on the addition and subtraction ope-
rations. Because we need to connect the relative information provided by the ratios of com-
ponents with an existing Euclidean space, the logarithmic function becomes a useful option.
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Figure 2: Geometrical interpretation in IR3
+ of a subcomposition w12 of a composition w ∈ C3. Filled circles

are the observational vectors. Empty circles their corresponding linear representatives.

Indeed, the logarithmic transformation from IRD
+ to IRD suggests defining in IRD an equiv-

alence relation in correspondence with the compositional equivalence relation ∼ defined in
IRD

+ . Note that if w ∼ w∗, then logw − logw∗ of IRD is a multiple of the vector of unities
1D = (1, . . . , 1)′ ∈ IRD.

Definition 3.1. Two vectors z and z∗ in IRD are equivalent, written z ≡ z∗, if a constant
λ exists such that z∗ − z = λ1D. The equivalence class {z + λ1D : λ ∈ IR} generated by the
vector z in IRD is denoted by z. The set of all these classes is the quotient space IRD/ ≡,

denoted by LD. We denote by ocl (from ones class) the mapping from IRD to LD which
assigns each vector z ∈ IRD to the class z

ocl : IRD → LD
z → z .

(6)

Figure 3 shows that the classes z can be geometrically interpreted by straight lines parallel to
1D. A simple criterion for selecting a representative of an equivalence class z is to assign the
intersection point of the straight line associated to this class and the orthogonal hyperplane
by the origin

VD = {z ∈ IRD : z′1D = 0} . (7)

Definition 3.2. We denote by rVD
the one-to-one mapping which assigns each class z to

this representative

rVD
: LD → VD

z → z−
∑D

j=1
zj

D 1D = HDz ,
(8)

where HD is the D×D centering matrix, that is HD = ID−D−1JD (ID is the identity matrix
of order D ×D, and JD = 1D1D

′).

Definition 3.3. The sum of two classes z and z∗ in LD is defined as z + z∗ = z + z∗, and
the product of an equivalence class z by a constant α ∈ IR is defined by αz = αz.
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Figure 3: Selection of the representative rVD z (empty circle) for an equivalence class z in L2 = IR2/ ≡.
Dashed line is the orthogonal hyperplane to vector 1D.

With these definitions, the quotient space LD becomes a real vector space. The class of 0D is
the neutral element and the opposite of z is the class −z. Moreover, the mapping rVD

is an

isomorphism between the vector space (LD,+, ·) and the subspace VD of IRD (Equation 7).
Since the dimension of VD is D − 1, the dimension of the vector space LD will be also equal
to D − 1.

The vector space structure defined in LD is coherent with a subcompositional analysis because
one can define subvectors in the space VD and reproduce them in LD using the inverse mapping
rVD

−1. More precisely, the mapping subS (Equation 5) corresponds to orthogonal projection
of the hyperplane VD (Equation 7) onto the subspace of IRD defined implicitly by

{z ∈ IRD : z′1D = 0; zj1 = 0; . . . , zj(D−s)
= 0} ,

where j1, . . . , j(D−s) are the sub indexes of the no-selected components in the subvector.

Given that the elements of LD can be interpreted as straight lines parallel to vector 1D, one
can define the distance between the two classes z and z∗ of LD as the Euclidean distance

between these two straight lines in IRD. This distance is equal to the length of the difference
vector rVD

(z)− rVD
(z∗) (Figure 4).

Following this strategy, it is possible to reproduce the Euclidean structure defined on VD ⊂ IRD

on LD .

Definition 3.4. For each z, z∗ ∈ LD, we define the L-inner product <z, z∗>L as the usual

inner product <rVD
z, rVD

z∗> in IRD.

It follows that < z, z∗ >L= z′HDz
∗. Then it is possible to define a norm and a distance in

LD from the L-inner product.

Definition 3.5. The L-norm of an equivalence class z ∈ LD is given by

‖z‖L = (<z, z>L)1/2 = (z′HDz)1/2, (9)
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Figure 4: Two equivalence classes z and z∗ of LD, its corresponding representatives rVD z and rVD z∗, and
the distance between them (case D=3).

and the L-distance between two classes z and z∗ in LD is given by

dL(z, z∗) = ‖z− z∗‖L =
[
(z− z∗)′HD(z− z∗)

]1/2
. (10)

Since dL(z, z∗) = d(rVD
z, rVD

z∗), the following property holds.

Property 3.1. From the definitions (9) and (10), the quotient space LD becomes an
Euclidean space isometric to the subspace VD of IRD.

3.2. The logarithmic isomorphism between the quotient spaces

The logarithmic and exponential transformations from IRD
+ to IRD are compatible with the

equivalence relations ∼ and ≡ defined in IRD
+ and IRD, respectively, i.e.,

w ∼ w∗ in IRD
+ ⇐⇒ logw ≡ logw∗ in IRD ,

and

z ≡ z∗ in IRD ⇐⇒ exp z ∼ exp z∗ in IRD
+ .

Therefore, these transformations can be extended to the quotient spaces CD and LD.

Definition 3.6. We will symbolize by logc the transformation from CD to LD, i.e.,

logc : CD −→ LD
w 7−→ logw ,

(11)

and by expc the inverse transformation from LD to CD, i.e.,

expc : LD −→ CD
z 7−→ exp z .

(12)
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The representative in VD of the equivalence class logw is

rVD
(logw) = HD logw = log

w

g(w)
,

where g(w) is the geometric mean of the vector w.

Importantly, the function composition rVD
◦ logc is equivalent to the transformation clr

(Aitchison 1986). This one-to-one correspondence between CD and LD allows a real vec-
tor space isomorphic to LD to be defined in CD.

Definition 3.7. In correspondence with the sum in LD, the inner operation ⊗ in CD is
defined as

w ⊗w∗ = expc
(
logw + logw∗

)
= expc

(
logw + logw∗

)
= (w1w

∗
1, . . . , wDw

∗
D)′ ,

for any w,w∗ ∈ CD.

Similarly, in correspondence with the product by a constant in LD, the external operation �
in CD is defined as

α�w = expc
(
α logw

)
= expc

(
α logw

)
= (wα1 , . . . , w

α
D)′ (w ∈ CD) (α ∈ IR) .

The operations ⊗ and � are respectively the perturbation and power operations introduced
by Aitchison (1986).

Therefore, (CD,⊗,�) becomes a real vector space of dimension D − 1, isomorphic to the
quotient space LD and to the subspace VD of IRD. In the commutative group (CD,⊗), the
composition 1D = (1, . . . , 1)′ is the neutral element, and the inverse composition w−1 of w is

the composition w−1 = (1/w1, . . . , 1/wD)′.

Moreover, the structure of real vector space of (CD,⊗,�) is compatible with the concept of
subcomposition.

Property 3.2. The mapping subS defined in Equation 5 is a linear function between the
vector spaces (CD,⊗,�) and (Cs,⊗,�). Therefore, it holds that

subS(w ⊗w∗) = wS ⊗w∗S and subS(α�w) = α�wS , (13)

for any w,w∗ ∈ CD and α ∈ IR.

3.3. The compositional space as an affine Euclidean space

Because (CD,⊗,�) is a real vector space, it can be viewed as an affine space when the group
(CD,⊗) operates on CD as a group of transformations.

Definition 3.8. Given a composition p ∈ CD, the perturbation associated to p is the
transformation from CD to CD defined by

w→ p⊗w (w ∈ CD) .

Then we say that p⊗w is the composition which results when the perturbation p is applied
to the composition w.

Perturbations in the compositional space play the same role as translations play in the real
space. Like them, the set of all perturbations in CD is a commutative group isomorphic to
(CD,⊗). Thus, the composition of two perturbations p

1
and p

2
is the perturbation associated

to p
1
⊗p

2
. Furthermore, the perturbation associated to 1D is the identity perturbation which

does not produce any change when applied to a composition. Also, for any given perturbation
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p there is the inverse perturbation p−1 which undoes the changes produced by p. Finally,
given two compositions w′ and w∗ ∈ CD, a unique perturbation p exists which transforms w
on w∗. This perturbation is

p = w∗ ⊗w−1 =

(
w∗1
w1
, . . . ,

w∗D
wD

)′
,

the perturbation difference between w and w∗. Thus, the measurement of the ‘difference’
between two compositions is defined from the ratios between the components of compositions.

The one-to-one transformations logc (Equation 11) and expc (Equation 12) between CD and
LD allow the real Euclidean structure defined on LD to be transfered to CD.

Definition 3.9. The compositional inner product of two compositions w and w∗ will be
equal to

<w,w∗>C=< logw, logw∗>L= (logw)′HD logw∗.

Importantly, < w,w∗ >C=< clrw, clrw∗ >, i.e., the standard inner product of the clr-
transformed vectors.

From this inner product in CD we can define a norm and a distance in the compositional
space.

Definition 3.10. The compositional norm of a composition w ∈ CD will be given by

‖w‖C = (<w,w>C)
1/2 =

[
(logw)′HD logw

]1/2
,

and the compositional distance between two compositions w and w∗ of CD is given by

dC(w,w∗) =
[
(logw∗ − logw)′HD(logw∗ − logw)

]1/2
.

The distance dC(w,w∗) defined on CD is equivalent to the Aitchison distance (Aitchison,
Barceló-Vidal, Mart́ın-Fernández, and Pawlowsky-Glahn 2000) that can be expressed as the
typical Euclidean distance between the corresponding clr -transformed vectors.

Property 3.3. In relation to subcompositions, the distance dC satisfies what is known as
subcompositional dominance, according to which

dC(wS ,w
∗
S) ≤ dC(w,w∗) ,

for any w,w∗ ∈ CD and for any subcomposition S.

Proof. It is sufficient to demonstrate that the compositional norm of a composition w
is greater or equal to the compositional norm of a subcomposition wS obtained by removing
one of its components. If, without lack of generality, we assume that wS = (w1, . . . , wD−1)′,
then it holds that

‖w‖2C = ‖wS‖2C +
1

D(D − 1)
(logw1 + . . .+ logwD−1 − (D − 1) logwD)2 ,

and ‖w‖C ≥ ‖wS‖C .

The subcompositional dominance property of the Euclidean space CD correlates with the
traditional property at the real space IRD, according to which the distance between the
orthogonal projections of two points on any subspace is never greater than the original distance
between the points. In practical terms, this property also admits the following interpretation:
given two observational vectors wS and w∗S , if one adds supplementary components to both
vectors to form, respectively, the vectors w and w∗, then the difference between the new
vectors must be at least equal to the difference between the initial vectors.
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Palarea-Albaladejo, Mart́ın-Fernández, and Soto (2012) present examples to illustrate that
other usual distances, like the typical Euclidean or the angular distances, do not verify this
property. As a consequence, when one applies these distances or one calculates related statis-
tics (e.g., correlation coefficient), some misleading results can be obtained.

Since CD is a real vector space of dimension D − 1, any composition w could be identified
with its D − 1 coordinates relative to a basis of CD. In practice, we can obtain a basis of
CD from a basis of the subspace VD of IRD. Indeed, if v1, . . . ,vD−1 is a basis of VD then
expc(r−1VD

v1), . . . , expc(r−1VD
vD−1) is a basis of CD, and the coordinates of a composition w

relative to this basis coincide with the coordinates of rVD
(logw) relative to v1, . . . ,vD−1.

Definition 3.11. Let v1, . . . ,vD−1 be a basis of VD, and let V be the D × (D − 1)
matrix [v1 : . . . : vD−1]. Then the coordinates of the composition w relative to the basis
expc(r−1VD

v1), . . . , expc(r−1VD
vD−1) are the components of the vector (FV)−1F logw, where

F = [ID−1 : −1D−1].

Note the expression of the coordinates of w will depend on the matrix V we selected. These
coordinates are usually known as logratio coordinates because they are always expressed in
terms of logarithms of ratios of components. For example, for

V =




1− 1/D −1/D −1/D . . . −1/D
−1/D 1− 1/D −1/D . . . −1/D
−1/D −1/D 1− 1/D . . . −1/D

...
...

...
. . .

...
−1/D −1/D −1/D . . . 1− 1/D
−1/D −1/D −1/D . . . −1/D




, (14)

the coordinates of w relative to V are equal to (log(w1/wD), . . . , log(wD−1/wD))′. In this case,
the logratio coordinates coincide with the additive logratio transformation (alr) introduced
by Aitchison (1986).

When one is making a statistical analysis it is recommendable to select orthonormal basis in
CD because the metrics properties are preserved under a change of basis. This fact guarantees
the invariance of the results under a change of basis. To select an orthonormal basis it suffices
that the matrix V verifies the two identities V

′
V = ID−1 and VV

′
= HD. In this case,

the mapping that assigns composition w to its logratio coordinates is the isometric logratio
transformation ilrV relative to matrix V (Egozcue, Pawlowsky-Glahn, Mateu-Figueras, and
Barceló-Vidal 2003), that is

ilrV : CD −→ IRd−1

w 7−→ ilrV w = (FV)−1F logw .

In practice, it is very useful to select a basis that facilitates the interpretation of the logratio
coordinates. Egozcue and Pawlowsky-Glahn (2005) describe a stepwise procedure to make an
orthonormal basis of CD from sequential binary partitions of components of the observational
vectors of IRD

+ .

4. Final remarks and conclusions

Because all Euclidean spaces of the same dimension are isometric, the sample space of CoDa
CD is isometric to IRD−1. This fact allows all the statistical procedures that we naturally apply
on the real space IRD−1 to be applied to CoDa. The isomorphism presented in this article is
based on the logaritmic function. From a theoretical point of view, other approaches could
be possible but are unknown to us. With our approach, the compositional quotient space CD
has an algebraic and a metric structure induced by the isomorphism. Consequently, it suffices
to work with the logratio coordinates of the compositions with respect to an orthonormal
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basis on CD (Mateu-Figueras, Pawlowsky-Glahn, and Egozcue 2011). That is, our CoAn is in
essence a logratio CoAn, that is an analysis of CoDa based on the logarithm of the information
provided by the ratios.

The fact that our analysis focuses on ratios means that it can be applied directly to the ori-
ginal data of IRD

+ , to the simplex SD, to the strictly positive orthant of the unit hypersphere
SphD+ , to the hyperbolic surface HipD+ or to any other representative. Moreover, when work-
ing with logratio coordinates all of the statistical procedures that are defined in IRD−1, both
descriptive and inferential, are transferred to the space CD. The application of CoAn leads to
the assumption that the group of perturbations is the operating group on the compositional
space, in the same manner as we assume that the translations is the operating group in the
real space. This is the keystone of the methodology introduced by Aitchison (1986). In fact,
it means accepting that the ‘difference’ between two compositions w = (w1, . . . , wD)′ and
w∗ = (w∗1, . . . , w

∗
D)′ is based on the ratios w∗j/wj between parts instead of on the arithmetic

differences w∗j −wj , according to the ‘relative scale’ property. Therefore, for example, the dif-

ference between the compositions (0.980, 0.010, 0.010)
′

and (0.970, 0.002, 0.028)
′

is more than

three times greater than the distance between (0.300, 0.200, 0.500)
′

and (0.200, 0.300, 0.500)
′
.

The relative scale property of CoAn justifies the choice of the logarithm transformation to
measure the difference between two compositions.

The CoAn applies only in the open orthant IRD
+ . That is, the components of the observational

vectors must be strictly positive. This limitation is certainly a difficulty because often the
observations contain zeros. However, when the zeros are rounded zeros or are count zeros
they can be preprocessed using techniques inspired by techniques for missing data (Palarea-
Albaladejo and Mart́ın-Fernández 2015) that make a replacement by a small value. When the
zero is an essential zero, that is, the zero value is a true value, it makes no sense to replace
the zero by a small value. In this case, the analysis should take into account the presence
and absence of zeros, that is, the pattern of zeros. Both descriptive and inferential analysis
should be performed among the groups defined by the pattern of zeros.

Some researchers, for example Watson and Philip (1989), consider that the appropriate group
to operate on compositions is the rotations on the sphere and not the perturbations on which
the logratio CoAn is based. Watson and Philip (1989) represent a composition w from the
components of the unitary vector w/||w||, that is, from the cosine of the different angles that
w forms with the axes of coordinates. Then, the angle formed by two observation vectors w
and w∗ is taken as the appropriate measure from which to define the distance between the
two compositions. Others, for example Wang et al. (2007) and Scealy and Welsh (2011), also
apply the methodology of Watson and Philip (1989) after applying the scale-invariant trans-
formation w → (w/

∑D
j=1wj)

1/2 to the observations. Thus, they work with the components

of the unitary vector (w/
∑D
j=1wj)

1/2 rather than the coordinates of the vector w/||w||. From
these approaches, which are based on the representation of the compositions on the positive
orthant of the unit hypersphere centred at the origin, the authors apply the statistical analysis
(characteristic) of directional statistics, based on the von Mises-Fisher distribution. As stated
in Aitchison (1982)’s final discussion, the problems of this approach derives from the fact that
the von Mises-Fisher distribution is defined on the whole unit hypersphere and not only on
the positive orthant. This leads to problems when the components of w are too close to 0.
Aitchison (1982) also points out the difficulties that CoAn based on the spherical represen-
tation of the compositions encounters when dealing with problems related to independence
and regression. Neither is it possible from this representation to easily relate the statistics
that describe a set of compositions w1, . . . ,wn of CD to the statistics of the subcompositions
wS,1, . . . ,wS,n.

To conclude, the most relevant results shown in this article are:

• A composition is an equivalence class and its sample space is the quotient space CD. Ge-
ometrically, the compositions are semi-straight lines by the origin of the positive orthant
of the space IRD

+ . We refer any analysis of these equivalence classes as compositional
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analysis (CoAn). Regardless the use of the logarithm function or a transformation,
when an analyst decides to do a CoAn he or she is assuming that the sample space of
the data is the compositional space CD, which means in fact an acceptance of the ‘scale
invariance’ principle of CoDA.

• The logarithmic and exponential transformations provide the space CD with an Eu-
clidean space structure. We denominate logratio CoAn the compositional analysis
developed from this structure of CD. It agrees with the methodology introduced by
Aitchison (1982), based on a logratio relative scale of measurement of the difference
between two compositions.

• The logratio CoAn allows us to carry out the standard statistical analyses on the logratio
coordinates.

• The logratio CoAn allows us to apply the subcompositional analysis in a natural and
intuitive way, giving results which are coherent with those obtained from the whole
compositions.

• The logratio CoAn has the drawback of being unable to operate directly with composi-
tions with zero values. Applying preprocessing techniques to replace rounded and count
zeros is then recommended. A statistical analysis in the presence of essential zeros must
take into account the groups defined by the pattern of zeros.

• When the techniques for analysing directional data are restricted to compositions, they
must be considered to be a CoAn. Even though these analyses do not have the problem
of the zeros it is still impossible to guarantee that coherent results will always be ob-
tained in inferential studies (e.g., confidence regions), that is, strictly contained within
the positive orthant, because the sample space of these analyses is the whole sphere.
Moreover, this approach does not guarantee that a subcompositional analysis will pro-
duce results that concur with the results of the analysis of the whole composition.
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Abstract

High throughput sequencing generates sparse compositional data, yes these datasets
are rarely analyzed using a compositional approach. In addition, the variation inherent
in these datasets is rarely acknowledged, but ignoring it can result in many false positive
inferences. We demonstrate that examination of point estimates of the data can result
in false positive results, even with appropriate zero replacement approaches, using an
in vitro selection dataset with an outside standard of truth. The variation inherent in
real high-throughput sequencing datasets is demonstrated, and we show that this varia-
tion can be approximated, and hence accounted for, by Monte-Carlo sampling from the
Dirichlet distribution. This approximation when used by itself is itself problematic, but
becomes useful when coupled with a log-ratio approach commonly used in compositional
data analysis. Thus, the approach illustrated here that merges Bayesian estimation with
principles of compositional data analysis should be generally useful for high-dimensional
count compositional data of the type generated by high throughput sequencing.

Keywords: Bayesian estimation, centred log-ratio, transcriptome, metagenome, 16S rRNA
gene sequencing, ALDEx2, R.

1. Introduction

High throughput sequencing studies, that generate as outputs thousands to billions of se-
quence tags, are becoming the norm in the life sciences. That these experiments generate
compositional data can be understood with two statements. First, the total number of se-
quence tags obtained in an experiment are of no importance. Second, the sequence tags
are binned into features where the difference between features is exponential and best ex-
plained by log ratios. These features can represent genes as in 16S rRNA gene sequencing,
transcriptomics and metagenomics or single-nucleotide variant abundances after differential
growth experiments. The experimentalist is interested in knowing which features, if any, are
differentially abundant between two or more distinct groups. Furthermore, all experiments
of this type explicitly or implicitly examine sub-compositions. Finally, each individual ex-
perimental design is analyzed using different sets of underlying assumptions that are derived
from historical dogma, despite having the same underlying data structure. Fernandes, Reid,

http://www.ajs.or.at
http://www.ajs.or.at/
http://dx.doi.org/10.17713/ajs.v45i4.122
www.osg.or.at


74 Compositional Uncertainty in High-throughput Sequencing Datasets

Macklaim, McMurrough, Edgell, and Gloor (2014) demonstrated that tools developed for one
experimental design (e.g. RNA-Seq) do not translate well to other experimental designs (e.g.
16S RNA gene sequencing).

These data are necessarily sparse and complex. There are often hundreds or thousands of
features, and the high cost of these experiments prevents the collection of sufficient sequence
tags to ensure that all features are covered by at least one sequence tag. Thus, the treatment
of features with zero counts is a pervasive problem when treating these data as composi-
tions (Lovell, Müller, Taylor, Zwart, Helliwell, Pawlowsky-Glahn, and Buccianti 2011). It
is assumed that features with zero counts across all samples are removed because they are
uninformative. For the remainder where one approach is to delete features where one or more
samples have zero counts (Lovell et al. 2011; Lovell, Pawlowsky-Glahn, Egozcue, Marguerat,
and Bähler 2015). This removes the problem of zero count features at the expense of po-
tentially excluding the most important features from consideration. Another approach, is to
replace the zero counts with an expected value calculated in some way. Several approaches
with differing underlying assumptions are in use, and Mart́ın-Fernández, Hron, Templ, Filz-
moser, and Palarea-Albaladejo (2014) suggested that a Bayesian-Laplace approach to be the
most reasonable. Regardless of the method used to treat zero count features, these analyses
use maximum-likelihood approaches to determine feature abundance prior to analyses.

We have found that the variation due to sampling alone (technical variation) in compositional
datasets derived from high-throughput sequencing is large and inversely related to the number
of reads mapping to a fragment, in agreement with theory (Fernandes, Macklaim, Linn,
Reid, and Gloor 2013). Ignoring this technical variation can lead to false positive inferences
regarding differential abundance if the data are not treated as compositions. We have found
that a two-step procedure incorporating a Bayesian estimate of feature abundance along with
analyses conducted after a centred-log-ratio transformation markedly improves specificity with
no loss of sensitivity, and that the increase in specificity derived almost entirely from the
exclusion of low-count (including zero count) features (Fernandes et al. 2014).

Our paper explores how the analyses differ when the value of zero is assigned using different
approaches with, and without Bayesian estimation of the technical variation. Our initial
work showed that a uniform prior added to all values was able to encompass the estimated
technical variation in a sparse dataset (Fernandes et al. 2013). However, we observed that
this approach slightly overestimated technical variation of low count and zero count features,
suggesting that this approach had less than optimum power.

We will compare uniform priors that replace 0, uniform priors added to all values, and the
prior estimation methods from the zCompositions package (Palarea-Albaladejo and Mart́ın-
Fernández 2015) that produce non-uniform estimates of the actual zero value. We will examine
a real differential growth experimental dataset for which an objective standard of truth is
known. We argue that these results are generalizable across other datasets including RNA-
seq datasets and 16S rRNA gene sequencing experiments.

2. Statement of the problem
High throughput sequencing is a technology that delivers thousands to millions of reads that
correspond uniquely to genes or other features in a genome, or to bins that represent sequence
variants. Figure 1A shows several different study designs that are common in the literature.
Regardless of design a very large number of molecules, shown in the orange box in Figure 1A
are randomly sampled to produce a library that is then sequenced. The sequencing instru-
ment delivers a much smaller random sample of the actual input and the act of sequencing
converts the data from unconstrained to constrained proportional data because the instru-
ment delivers a fixed number of sequence reads. This hard upper bound means that all such
analyses generate compositional data regardless of the actual study design. In general, these
experiments aim to ask the question, ”what gene or feature has a different abundance between
groups A and B?”
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Figure 1: High-throughput sequencing affects the shape of the data. Panel A illustrates the
workflow by which high throughput sequencing samples the DNA or RNA from an environ-
ment. There are many more molecules that are sampled than can be incorporated into the
library, or that can be sequenced on the instrument. The capacity of the instrument itself
determines the number of reads observed. The orange box shows the number of molecules
in typical initial samples, and the blue box shows the maximum number of reads that are
obtained from the instrument. These reads are assigned to features such as genes or opera-
tional taxonomic units or other bins, and a table of the reads per feature is output. Panel
B illustrates how the data is distorted during the process. The input DNA or RNA usually
has no fixed sum and is randomly sampled sequentially during the library preparation and
sequencing steps. The output from the instrument is compositional because the instrument
can deliver only a fixed upper limit of reads, regardless of the number of molecules in the
input. Panel B.1 shows the number of reads in the input tube for 15 steps where the open
square and circular features are held at a constant number and the black feature is increasing
in abundance by 2-fold each step. Panel B.2 shows the output in proportions (or ppm) after
random sampling to a constant sum, as occurs on the sequencer. Panel B.3 shows the shape
of the data following centre log-ratio transformation. Note that panels B.1 and B.2 have the y
axis on a logarithmic scale, and that the natural scale for centred log-ratio data is logarithmic.

Figure 1B shows how sequencing distorts the data. Many processes examined by high through-
put sequencing can be thought of as linear compositional processes. Consider a mixture of
many distinctive molecules in vector x = [x1, x2, ...xn] over time or space increments i. For
each increment we can determine the abundance of each molecule using Equation 1:

xi = x0 × 2(λi) (1)

where λ is the incremental rate. If λ = 0 for all but one of the members of vector x and
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λ = 1 for one member, then one member will double in abundance at each increment and all
remaining members will be unchanged. Figure 1B.1 shows such a thought experiment where
the values are plotted as counts of molecules. Producing and sequencing a library generates
a set of counts per gene that are scaled by the maximum number of reads delivered by the
machine. In other words, the counts for gene xi are per-gene probabilities pi and are formally
equivalent to a random multivariate Poisson sample of the original group of DNA molecules.
We can model this process by multimomial (fixed effect) or negative binomial (random effects),
implying that the posterior of the model parameters is approximately Dirichlet according to
Equation 2:

[p1, p2, ...pn] ∼ Dirichlet[x1, x2, ...xn]. (2)

A single Dirichlet instance generates a single Bayesian estimate of the underlying posterior
probabilities for each feature, and multiple samples generate a full posterior distribution
(Holmes, Harris, and Quince 2012; La Rosa, Brooks, Deych, Boone, Edwards, Wang, Soder-
gren, Weinstock, and Shannon 2012; Fernandes et al. 2013). Figure and panel 1B.2 shows the
posterior values for a single Dirichlet instance from the counts in Panel 1B.1. Here we can
see that the constant sum constraint resulting from the finite read limit of the instrument
severely distorts the underlying shape of the data. Figure 1B.3 demonstrates that applying
the centred log-ratio transform of Aitchison (1986) to the vector of probabilities p in Panel
1B.1

clr(p) = [log2
p1
g(p)

, log2
p2
g(p)

, ...log2
pn
g(p)

] (3)

reconstitutes the essential shape of the data, with the actual data points now showing some
variability because of random sampling. In Equation 3, g(p) denotes the geometric mean of
the vector p. This transformation is convenient because it reconstitutes the essential shape of
the original data, and because there is a one to one mapping between the values in the original
and in the transformed dataset. Furthermore, this transformation can easily be interpreted
for the experimentalist because it is simply a ratio between the abundance of a gene or feature
in the sample and the average abundance of all genes or features in the sample. Of particular
note is that g(p) cannot be calculated when 0 values are present, and it is the influence of
different means of estimating 0 values that are the primary focus of this report. It needs to be
emphasized that an the biological underpinnings of these experiments rarely supports a true
observation of 0 samples because the background gene expression level or bacterial abundance
can easily fall below the limit of detection.

2.1. Data from high-throughput sequencing are highly variable

Data from high throughput sequencing experiments are often thought of as point estimates
despite being random samples of the input molecules, and despite several experiments showing
that sequencing the same DNA library will produce somewhat different count tables at the
same sequencing depth (Marioni, Mason, Mane, Stephens, and Gilad 2008; Bottomly, Walter,
Hunter, Darakjian, Kawane, Buck, Searles, Mooney, McWeeney, and Hitzemann 2011; Gier-
liński, Cole, Schofield, Schurch, Sherstnev, Singh, Wrobel, Gharbi, Simpson, Owen-Hughes,
Blaxter, and Barton 2015). Figure 2 shows an example of this variability. Marioni et al. 2008
did an experiment where two aliquots of the same RNA-seq library were run in duplicate, and
the resulting reads were mapped to the > 20000 genes in the human genome. Replicate runs
did not return exactly the same number of reads per gene: for example, when the genes in one
replicate contained zero counts, the same genes in the other replicate often had non-0 reads.
This imprecision extends across the range of per-gene counts as shown for a few replicate
read values in Figure 2. This imprecision is proportionally larger for small count values, and
smaller for large count values. For example, the range of counts observed in replicate B when
genes in replicate A contain one count span the range of 0-14 in this example: a difference of
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over 10-fold. By comparison, when genes in replicate A contain 64 counts the corresponding
genes in replicate B span counts from 38-91: a difference of less than 50%. See Figure 1 of
Fernandes et al. (2013) for a demonstration that the proportional error does indeed span the
entire range of expression values in this dataset.
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Figure 2: Technical replicate variation, and density plots of the estimation of that variation
for an RNA-seq experiment. The black dotted lines show the density of the technical variation
of features from one replicate of an RNA-seq dataset when compared to another as a function
of the counts in the first replicate. The count value of the first replicate is give above each
plot, and the location of this value is shown as the dotted grey vertical line. The red lines
show density plots of the inferred technical generated through 25 random instances drawn
from a Dirichlet distribution. Data are from the Marioni et al. (2008) dataset.

The imprecision can be modelled by Monte-Carlo sampling from a Dirichlet distibution (Fer-
nandes et al. 2013, 2014) as in Equation 2. Figure 2 shows density plots comparing the
distribution of true technical variation to the distribution of the estimated technical variation
obtained by drawing instances from the Dirichlet distribution. That is for a vector of counts
x, xDir = Dirichlet[x]×∑x. Sampling multiple Dirichlet instances thus returns a distribution
of the posterior probabilities of each feature in the vector x, and conserves probability. These
plots show that the Dirichlet instances slightly over-estimate the tails of the distributions, al-
though these conclusions need to be tempered by the lack of datapoint for technical replicates
containing double-digit counts. We conclude that drawing Dirichlet instances is an acceptable
method to model posterior probabilities in these datasets.

2.2. False positive results because of unaccounted variation
One problem when analyzing such data is that the available datasets – whether derived from
16S rRNA gene sequencing, transcriptomics, or other experiments – are exploratory and so
generally lack a standard of truth. This makes it difficult to develop and test tools without
modelling a dataset. While modelled datasets have some allure because the parameters can
be closely controlled, we prefer to examine the behaviour of real biological datasets because
they often have unanticipated error and less predictable behaviour than modelled datasets.
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McMurrough, Dickson, Thibert, Gloor, and Edgell (2014) generated a selective growth dataset,
hereafter called the ‘selex’ dataset, for which a standard of truth for many variables is known,
and that can be inferred for many others. This dataset compares the growth of a set of
1600 sequence variants in the I-LtrI endonuclease under two conditions. The first condition
is a non-restrictive condition where the growth of all variants is unconstrained. The second
condition is restrictive for growth, unless the I-LtrI endonuclease is active and can cleave and
inactivate the gene encoding Ccdb, a DNA gyrase toxin. The gyrase toxin is dose-dependent
so cleavage of a fraction of the plasmids containing the gene confers slower growth (Smith and
Maxwell 2006), and under the conditions of the assay, the toxin would be bacteriostatic if no
cleavage occurred. Thus in this experimental design the difference between inactive variants
between the two conditions would be one of dilution alone, and no variant should become less
abundant during the experiment. Variants that cleave the toxin gene would confer a growth
advantage, and would become more abundant over the time of the assay. Furthermore, Mc-
Murrough et al. (2014) showed that the in vitro enzymatic activity of the endonuclease is
strongly correlated with the output of the selective growth experiment.

The abundance of each variant in the mixture can be modelled by Equation 1. At time
zero if each variant is contained in vector n0 = [n1, n2, n3...n1600], over time increments, the
change in abundance in the non-selected growth conditions can be modelled with λ = 1
and the variation in λ being small. The experimental conditions allowed for approximately
16 doublings, or time increments. Therefore at the last increment of the non-selected time
series, we anticipate that the initial relationships between the abundances of each of the 1600
variants will be essentially unchanged. In contrast, the selected variants are under strongly
differential selection. Here the most active variants will have λ ≈ 1, that is, these variants
grow at the same rate in the selected and unselected conditions. The least active variants will
have λ = 0, that is, these variants will not change in actual abundance during selection, but
will become relatively less abundant when compared to their active counterparts. Inactive
variants are known to be by far the most prevalent in the samples. Intermediate positive values
of λ are expected, and no negative values are expected. Finally, it is possible for individual
samples to demonstrate differences in apparent λ under selection. This can occur if a variant
is partially active, and cleaves different proportions of the toxin genes in a particular cell by
chance. This event is heritable and so would allow cells carrying the same variant to grow
at slightly different rates. Thus, the sample in which this occurred would have an apparent
increase in λ for that variant in that sample.

The question we wish to address with this dataset is: can we identify from the growth exper-
iment alone which variants are likely to be active? Active variants will have had a maximum
of 16 cell doublings becoming much more abundant, inactive variants will stay at the same
abundance and variants with partial activity will become only somewhat more abundant. In
addition, we wanted to know the effect on our inference of the different approaches to esti-
mating the zero values. We first examined the dataset using a biplot to show the relationship
between the samples and the variants.

Figure 3 shows the density and distributions of 0 values in this dataset as summarized by the
zCompositions R package (Palarea-Albaladejo and Mart́ın-Fernández 2015). We can see that
this dataset will be very challenging to analyze because the control samples do not contain
any 0 values, but most of the variants in the experimental samples contain 0 values in several
samples. This high density of 0 values comes about because the number of sequence reads
was insufficient, and not because we expected a 0 value in any of the variants. Thus, we must
impute the most likely value of 0 in each sample before analysis.

A compositional biplot generated with the compositions R package (van den Boogaart and
Tolosana-Delgado 2008) following zero replacement using the CZM approach from the zCom-
positions R package (Palarea-Albaladejo and Mart́ın-Fernández 2015) is shown in Figure 4.
The first two components of this biplot explained 52.4% and 10.4% of the variance in the
data, indicating that this is a good summary of such a complex dataset. The selected and
non-selected samples separate clearly on the first component, and this separation is associated
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Figure 3: Characteristics of the McMurrough et al. (2014) dataset summarized by the zCom-
positions package. The top panel shows that all parts contain 0 values, and the bottom panel
shows that there are 8 patterns in the data. Seven of the samples contain no 0 values, these
are the control samples grown in the absence of selection. The samples derived from the
selective growth display individual seven different patterns for 0 values likely due to random
sampling.

with the variants on the right side, such as A:E:G:E, G:E:G:E, G:E:G:E, etc. McMurrough
et al. (2014) demonstrated these to be the highly active variants. However, it is difficult to
quantitate the magnitude of the abundance change of the variants from this analysis. This
figure also shows that the non-selected samples, which cluster on the left side, are essentially
redundant since the links between them are exceedingly short. The selected samples on the
right side are much more diverse. The differences between the selected samples is largely
on component 2, and appears to be driven by the abundance of a small number of variants
that also exhibit variation from the bulk on component 2. Inspection of the data finds that
this diversity is found in only a few variables such as I:E:V:E, P:D:M:E, A:E:M:E etc, and
that these variables separate the X1 and X2 sample sets: interestingly, these sets are from
identical experiments performed with different batches of the same cell type. Examination
of the underlying count table shows that these variants are indeed different in abundance
between the X1 and X2 sets. For example the I:E:V:E variable has 17933 reads in sample
X2 DS but has zero reads in sample X1 DS. This is an example of a single stochastic event
that conferred a growth advantage to this variant in this sample. It is important to note that
this large stochastic variation has important consequences when examining datasets because
such variation is not unusual in real biological datasets.

Not accounting for sampling results in many false positive identifications
The selex dataset is unique because we have a validated truth for some of the features that
differentiate the conditions (McMurrough et al. 2014). In this dataset we have unambiguously
biochemically identified variants that are active and those that are not. Based on this prior
information, we expect that approximately 60 variants would exhibit substantial activity in
this assay, and so substantial deviation from this number would indicate many false positive
results.

One approach that is widely used in the literature is to reduce the values from the count
table to proportions or normalized counts through Maximum Likelihood approaches, then to
conduct univariate statistical tests for each variant, and (sometimes) to correct for multiple
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Figure 4: Biplot showing the relationship between samples and variables in the selex dataset.
Zero values were adjusted using the count zero multiplicative approach using the zComposi-
tions R package, data were clr-transformed with a base 2 logarithm, and the plot was generated
using standard functions from the R statistical programming language. Samples ending with
‘NS’ are the control non-selected growth samples and form a group at the left side, and sam-
ples ending in ‘S’ are from the selected growth samples and are on the right side. The vast
majority of the variables cluster around the centre of the dataset. The selected replicates on
the right exhibit some variability. The differences between samples are driven by variation in
a small number of variables.

testing (see for example the 16S rRNA analysis methods in Hsiao, McBride, Hsien, Sharon,
Hyde, McCue, Codelli, Chow, Reisman, Petrosino, Patterson, and Mazmanian (2013) and
this review Di Bella, Bao, Gloor, Burton, and Reid (2013)). These approaches often treat
zero values as actual zeros, making no adjustments. Applying this simple method using an
unpaired Wilcoxon test, and applying the Benjamini-Hochberg correction (Benjamini and
Hochberg 1995) to the resulting P values reveals that 1593 of 1600 variants are identified
as having a differential abundance between the selected and non-selected conditions with
an adjusted P value cutoff of 0.05. This is clearly at odds with the known biology of the
underlying dataset.

A potentially more rigorous, yet still simple approach is to replace the zero values in this
dataset using one of the available methods that are implemented in the zCompositions R
package (Palarea-Albaladejo and Mart́ın-Fernández 2015) and then to treat the data as com-
positions by applying Equation 3 before performing univariate statistical tests. Recall from
Figure 1 that this transformation recapitulates the essential shape of the data, and there is
a one to one mapping of variant counts to centred log-ratio values. The range of values for
zero replacement by different methods are given in the ‘Zero assignment’ column of Table 1.
Interestingly, three of these zero replacement methods returned values greater than 1 for some
of the zero values, this likely was a result of the very large difference between the selected and
non-selected count values in the two groups. In addition, we applied two other approaches
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to deal with zero values. The first, labeled uniform replacement, replaces all zero values with
0.5 but does not adjust other values in the dataset. This is akin to adding a pseudo count
to the zero values. The second labelled uniform prior, applies a uniform prior adjustment to
all values in the dataset. For this we use the minimally informative Jeffrey’s prior for the D
parts of Dirichlet[0.5D]. The Comp 1 and Comp 2 columns in Table 1 show the percentage
variation explained by a compositional biplot using each of these zero adjustments in the first
two principle components. Only the biplot that used the square-root Bayesian multiplicative
method appears to result in a transformation that explains substantially less of the variation
in the dataset.

Table 1: Numbers of distinguishing features identified in the selective growth experiment
observed with different approaches to assign prior expectations to zero count features.

Zero assignment Prior Comp 1 Comp 2 Point Dir

Count zero 0.325452 - 0.325910 0.524 0.104 874 91
Geometric Bayesian 0.061279 - 4.890273 0.504 0.108 355 82
Square root 0.006854 - 3.102299 0.452 0.118 1008 DNR
Bayes-Laplace 0.030497 - 4.883747 0.480 0.108 435 133
Uniform replacement 0.5 0.556 0.098 958 74
Uniform Prior 0.5 0.528 0.102 868 84

The utility of these zero replacement approaches to detect univariate differences in this exper-
iment was tested by closing the vectors after prior assignment, applying the centred log-ratio
transform to each sample and then subjecting the features to unpaired Wilcoxon tests. Again
P values were adjusted using the Benjamini-Hochberg method and an adjusted P value of
0.05 was used as the threshold for significance. Table 1 ‘Point’ shows the results of this ap-
proach. Here we see that all of the methods substantially improve upon the naive approach,
with between one-quarter and two-thirds of the variables being identified as differential. In
this dataset, the square root Bayesian multiplicative method provides the largest number
of positive identifications, and the Geometric Bayesian multiplicative correction provides the
smallest number of positive identifications, although no method is able to strongly distinguish
the known small number of true positives from a much larger number of false positives.

Accounting for sampling reduces false positive identifications

One substantial shortcoming of these approaches is that the inherent technical variation in
the dataset is not taken into account. It is becoming an accepted practice to account for
the sampling using Dirichlet multinomial mixture models, where each sample is represented
by a vector of probabilities, rather than point estimates (Holmes et al. 2012). For example,
Ding and Schloss (2014) recently used this approach to partition microbiomes into different
community states in a robust manner. This approach thus generates a Bayesian posterior
estimate of the probabilities associated with each count prior to analysis.

This approach was tested by generating 128 Dir instances of the selex dataset using Equation
2 with Jeffrey’s prior, and then conducted per-variant Wilcoxon tests on each instance. The
mean Benjamini-Hochberg adjusted P value for each variant was tabulated, and again the
cutoff used was an adjusted P value of 0.05. Surprisingly, this approach, which takes into
account the inferred technical variation, again resulted in 1593 of the 1600 variants as being
differentially abundant between the selected and non-selected groups. This is more than the
868 variants detected when variation was not taken into account but the centred log-ratio
transform was applied, and equivalent to the naive method accounting for neither variation
nor the compositional nature of the data. Thus, simple averaging across inferred the technical
variates is not sufficient to screen out false positive variants in this dataset.

Finally, we combined the Bayesian posterior estimated from 128 Dirichlet instances of the
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data and the centred log-ratio transformation of the posterior and used this as the input to
significance tests. This method is implemented in the ALDEx2 R package for the analysis
of high throughput sequencing datasets (Fernandes et al. 2013, 2014), and is available at
Bioconductor.

As implemented, the ALDEx2 package uses the uniform zero replacement value of 0.5. One
purpose of this investigation was to determine if using one of the more rigorous zero replace-
ment models from the zCompositions package would increase our selectivity because, as shown
in Table 1, these adjustments output non-uniform estimates of the underlying value of zero
based on abundances of the same feature in different samples.

We applied the same seven methods to adjust the value of zero in the selex dataset, and an
overview of the results are shown in the ‘Dir’ column of Table 1. We again used Wilcoxon
tests on the two groups and corrected the resulting P values using the Benjamini-Hochberg
approach. Significance was assumed if the mean adjusted P value across all 128 instances
was less than 0.05. In this analysis the substituted values of zero in the adjusted datasets
serve as prior estimates of the range of values that zero could assume in each of the Monte-
Carlo Dirichlet instances. The square root Bayesian multiplicative approach was incompatible
this approach because many of the values that replaced zero generated Dirichlet posterior
estimates that were not distinguishable from zero. Modelling uniform priors indicated that
this occurred when the prior was less than approximately 0.05. The remaining six approaches
were compatible with the approach, and resulted in substantially smaller numbers of variants
being identified as significantly different between the selected and non-selected groups. In
this analysis, the Geometric Bayesian multiplicative, uniform replacement and uniform prior
approaches were approximately similar, the count zero multiplicative approaches was nearly
as selective, and the Bayes-Laplace approach was least selective.

Figure 5 shows a variance-variance plot of the output from an analysis using the uniform prior
replacement with a value of 0.5. Note that in this plot the vast majority of variants have
an estimated between group difference of approximately zero, that only a small number have
a positive between group difference, and no variants have a strong negative between group
difference. This fits with the experimental design where variants could increase in abundance
if the endonuclease was active, but not decrease in abundance if it was not. In this plot
the variants with a mean Benjamini-Hochberg adjusted P value determined by an unpaired
Wilcoxon test are indicated by the large grey dots. Variants that were tested for enzymatic
activity in vitro are indicated by coloured central dots. Variants that had near wild type
enzymatic activity in vitro are in the sector marked as > 8. There were four variants that
had partial enzymatic activity in vitro. Many variants were tested for growth in pure culture.
Variants AEAE, SEGE, ADGD and GDAD exhibited variable, partial growth under these
conditions, with the GDAD variant exhibiting the weakest growth. Thus, there is a strong
relationship between the observed results in this experiment, and the results observed in vitro.

There is remarkable concordance between the data viewed in this way, and the same data
viewed as a point estimate in the compositional biplot. The biplot shows that the most
distinguishing variants between the selected and non-selected groups, i.e., the variants that
drive the separation on principle component 1, are those in the upper left quadrant of Figure
5. In addition, the variants that drive the separation on principle component 2, are those
that exhibit the largest within-condition difference. For example, the GEME, AEME, PDME,
IEVE, PEQD, and DEAD variants that were strongly separated on component 2 on the biplot,
are among those with the largest within group difference on the variance-variance plot.

Finally, we examined the effect of the different zero replacement methods on the shape of
the variance-variance plot to determine why these different approaches deliver slightly differ-
ent results after Dirichlet sampling log-ratio transformation. As shown in Figure 6 all the
prior estimation methods delivered similar differences between conditions for the true positive
variants. These all exhibited an increase in abundance of about 216 relative to their mean
abundance in the unselected group. In particular, the CZM plot was remarkably similar to the
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Figure 5: Variance-variance plot showing the median maximum centred log-ratio scaled differ-
ence within each group plotted vs. median between group difference for each variant. Dotted
lines represent the approximate location of effect sizes, which is calculated as the median
between to within group difference. Variants are coloured if their activity was validated in
vitro, have a star if they failed to grow reliably in individual culture in vitro. Variants that
exhibit a significant increase in abundance using the Wilcoxon test with a mean Benjamini-
Hochberg adjusted P value of > 0.05 are shown as large grey dots. The analysis was done
with a uniform prior of 0.5 applied to the dataset. Also shown are the six variants that were
outliers on component 2 of the clr biplot in Figure 4.

plot that used a uniform prior of 0.5, with the major difference between the two approaches
being a slight broadening of the within-group difference. This is perhaps not surprising since
the prior values of zero using this approach are non-uniform in a narrow range of near 0.325.
In contrast the non-uniform prior values for zero count variants from both the GBM and
BL ranged over much larger values. The vast majority of values were between zero and one,
but the GBM method had an average of 197.4 zero replacements that were greater than one,
and the BL had an average of 55 replacements that were greater than one. Examination of
the variance-variance plots of these two approaches showed that between-group difference for
many variants was not significant, but tended to be strongly negative. This result is incom-
patible with the known biology of the experiment, where no variant is expected to become
less abundant than average in the selected dataset. Therefore, in this dataset, the geometric
Bayesian multiplicative and the Bayes-Laplace substitution methods are distorting the un-
derlying data. This distortion likely contributes to the greater number of variants identified
as significantly different between the selected and non-selected groups.
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Figure 6: Variance-variance plots showing how the prior values for zero determined by
the count zero multiplicative (CZM), geometric Bayesian multiplicative (GBM) and Bayes-
Laplace (BL) methods alter the variation of the data. Red dots represent those that are called
differential, black dots are not differential and the lines represent effect sizes of 1 and -1. The
cutoff used was a Benjamini-Hochberg adjusted P value of 0.05 from an unpaired Wilcoxon
test.

3. Discussion

High throughput sequencing datasets are different from other types of datasets to which com-
positional approaches are often applied, but fall into the general class of ‘count compositional’
data. However, it is useful to remember that high throughput sequencing datasets result from
random sampling of a large number of DNA fragments, and that the act of sequencing these
DNA fragments on the instrument results in data that has the constant sum constraint. The
estimation of the true abundance of genes or features with low counts exhibits a very large
proportional error.

It is tempting to imagine that the large number of counts observed for a given sample, ranging
from the thousands to billions, provides great precision in estimating the true values of the
genes or OTUs (parts) being examined. This is an erroneous assumption because there are
hundreds to thousands of parts in each sample, and many of the parts will be represented by
zero reads in some samples. Thus, it is more useful to think of these data as one instance of
the data observed from a single random sample. When thinking about the data in this way,
the reads per part in each sample can be represented as prior values for a Bayesian estimation
of their posteriors. The posterior distribution of the underlying abundance of each feature
can be estimated by generating multiple instances of the data by sampling from a Dirichlet
distribution.

As noted above, these datasets are necessarily very sparse, but in many cases the sparsity
is informative. For example, in 16S rRNA gene sequencing it is difficult to argue that a
particular taxonomic group would never be observed if we generated sufficient sequencing
reads. As another example, gene expression is stochastic, and the number of transcripts for
a given gene is observed not to be zero when large populations of cells are sampled, even if
the gene in question is ‘not expressed’ (Munsky, Neuert, and van Oudenaarden 2012).

The centred log-ratio approach is intrinsically attractive in a biological context for two reasons.
First, it can be intuitively explained to biologists as being similar to quantitative PCR, a
familiar technique where the ratio between the gene of interest and a gene assumed to be at
a constant level is determined. The centred log-ratio approach merely extends this analogy
to the ratio between the gene of interest and all other genes in the system. Second, biologists
understand that many of the processes that they study, cell growth, enzyme kinetics, etc, are
exponential processes. Less well understood is that the underlying data is not ‘set in stone’
but actually represents a snapshot of what would have been observed had the experiment
been done again.
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A common criticism of using log-ratio approaches when analyzing such sparse data is the
problem of zero observed counts. Structural zeros, those features that contain zero in every
sample, are always excluded, and do not cause problems. However, count zeros that occur
in one condition but not the other are problematic because log-ratio transformations cannot
be performed when the underlying data contains one or more features with a zero value
(Aitchison 1986). Much work has been put into this problem because of the prevalence of
features with values of zero are common in many kinds of datasets. Several approaches have
been developed to determine the best point estimate of the actual underlying value of zero
in these datasets (Pawlowsky-Glahn, Egozcue, and Tolosana-Delgado 2015), and they are
implemented in zCompositons R package (Palarea-Albaladejo and Mart́ın-Fernández 2015).
Less work has been done modelling this in a Bayesian framework where the distribution of
probable values for each variable are taken into account.

Here we have examined the effect of using various approaches to estimating the value of zero on
both point estimates and Bayesian distributions derived from Dirichlet multinomial sampling.
We have found that point estimates, whether modelled as proportions or centre log-ratio
transformed values, cannot distinguish features that differ between conditions in a problematic
dataset. We found that estimating the technical variation alone is also unsuitable. However,
the combination of estimating technical variation and the centre log-ratio transformation
provides a large increase in selectivity. We further observe that methods that generate priors
in a narrow range give outputs that closely mimic a dataset derived from a differential growth
experiment, and that methods that generate priors with broad ranges generate posterior
distributions that are different from the known underlying distribution.

The selex dataset is an extreme example of the type of data that is analyzed by high through-
put sequencing. It has a small number of features that exhibit a marked difference in abun-
dance between conditions, and is very sparse. Other experimental designs will have much
smaller difference in abundance of features. For example, in the case of RNA-seq it is more
common to examine differential abundance of a small number of genes that are themselves
relatively rare in the cell, and from carefully controlled experiments where the total number
of input molecules is similar between conditions. This would be akin to comparing steps 1
and 2 in Figure 1B.1, where no gene or set of genes perturbs the system signfificantly. In
this simple case, any approach would likely give reasonable answers. However, comparing
gene expression between cells from different tissues, or gene expression in RNA from envi-
ronmental samples, would introduce extreme distortions in the underlying data and could
give false positive and false negative results (Fernandes et al. 2013; Macklaim, Fernandes,
Di Bella, Hammond, Reid, and Gloor 2013; Fernandes et al. 2014). In the case of 16S rRNA
gene sequencing experiments, it is likely that many conditions would have wildly divergent
underlying abundances because bacterial growth is an exponential process, and such samples
are more difficult to analyze.
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