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Abstract

We consider configuration graphs the vertex degrees of which are independent and
follow the power-law distribution. Random graphs dynamics takes place in a random
environment with the parameter of vertex degree distribution following uniform distri-
butions on finite fixed intervals. As the number of vertices tends to infinity the limit
distributions of the maximum vertex degree and the number of vertices with a given de-
gree were obtained. By computer simulations we study the robustness of those graphs
from the viewpoints of link saving and node survival in the two cases of the destruction
process: the “targeted attack” and the “random breakdown”. We obtained and compared
the results under the conditions that the vertex degree distribution was averaged with
respect to the distribution of the power-law parameter or that the values of the parameter
were drawn from the uniform distribution separately for each vertex.

Keywords: random graphs, random environment, power-law distribution, robustness, simula-
tion modeling, forest fire model.

1. Introduction

Recently, random graphs have been widely used for modeling complex networks such as the
Internet, social, transport or telecommunication networks (see, e.g., Durrett 2007). One of
the random graph models showing its best fit is a so called configuration graph (Bollobas
1980). Real data observations showed (Faloutsos, Faloutsos, and Faloutsos 1999; Durrett
2007) that their topology can be adequately represented by configuration graphs with vertex
degrees being independent identically distributed (i.i.d.) random variables possessing natural
values. Let ξ be a random variable equal to the degree of any vertex. In (Reittu and Norros
2004) the authors showed that in modeling of huge networks it is more appropriate to use the
following vertex degree distribution of the random variable ξ:

P{ξ = k} = k−τ − (k + 1)−τ , (1)

where k = 1, 2, . . . , τ > 0. This distribution is known as a power-law vertex degree distri-
bution, and, moreover, many authors note that in real networks the value of the parameter
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τ usually lies in the interval (1, 2) (see, e.g., Faloutsos et al. 1999; Reittu and Norros 2004;
Durrett 2007). However other values of the parameter τ are not without interest. Thus, for
example, it turned out that configuration graphs with vertex degree distribution (1) could be
used for modeling forest fires, where τ > 2 is even more important (see, Leri and Pavlov 2014,
2016).

Each vertex degree equals the number of stubs or semiedges coming from it, i.e. the number of
edges for which connected vertices are not yet found. All stubs are numbered in an arbitrary
order. The sum of vertex degrees has to be even, so if it turns out to be odd, one extra stub is
added to an equiprobably chosen vertex. The graph is constructed by joining all stubs one to
another pairwise and equiprobably to form edges. Obviously, such graph may contain loops,
cycles and multiple edges.

In (Leri and Pavlov 2014, 2016) we studied the robustness of configuration graphs to targeted
and random destruction influences. In the case of a random breakdown equiprobably chosen
vertices are removed from the graph sequentially with all the incident edges. In the case of a
targeted destruction vertices with the highest degrees are removed. We proposed a criterion
of graph destruction and found estimates of graph breakdown probability depending on the
fraction of removed vertices.

Recently, there appeared some works where the authors note that with growing network size
vertex degree distributions of corresponding random graphs may change and even become
random variables (see, e.g., Bianconi and Barabasi 2001). Therefore, it was natural to start
studying random graphs in random environment, where the vertex degree distribution is not
fixed, as in Equation (1), but has a random behaviour.

In (Pavlov 2016) we considered configuration graphs where vertex degrees follow the distribu-
tion (1) under the condition that the parameter τ is a random variable uniformly distributed
on the interval [a, b], where 0 < a < b < ∞. Then, the random variable ξ has the following
distribution:

p1 = P{ξ = 1} = 1 − 1

(b− a) ln 2

(
1

2a
− 1

2b

)
,

pk = P{ξ = k} =
1

(b− a) ln k

(
1

ka
− 1

kb

)
− 1

(b− a) ln(k + 1)

(
1

(k + 1)a
− 1

(k + 1)b

)
,

(2)

where k = 2, 3, . . . . For such graphs we studied the limit distribution of degree structure for
all zones where the number of vertices and the number of edges tends to infinity. New results
on the asymptotical behaviour of the vertex degrees are given below.

In this paper we consider the robustness of configuration graphs with random vertex degree
distribution. Distribution (2), as well as (1), is the same for all vertices, thus it is not
yet a random environment. It is more natural to suppose that vertex degrees are defined
by Equation (1), where the value of τ is chosen from the interval [a, b] equiprobably for
each vertex (see, Leri 2016). This work includes the results on robustness of both models.
Comparison of the results showed their similarity. It means that the study of the graphs’
behaviour in the considered random environment can be replaced by the study of the model
with an averaged vertex degree distribution (2).

In the next section limit theorems of the maximum vertex degree and the number of vertices
of the given degree are proved. Section 3 contains the description of the process of modeling
graphs with vertex degree distribution (2). In section 4 we consider graphs in random environ-
ment. In section 5 we discuss the results of comparing the negative outcomes of destruction
on these two models.

2. Degree structure

Let N be the number of vertices. We denote by ξ(N) and µr the random variables equal to the
maximum vertex degree and the number of vertices with degree r, respectively. In (Reittu
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and Norros 2004) the authors showed that if vertex degrees follow the distribution (1), ξ(N)

is proportional to N1/τ as N → ∞, and µr for large r is proportional to Nr−(τ+1). Let us
consider the limit behaviour of these characteristics in the case of vertex degree distribution
(2).

Theorem 1. Let N →∞. Then for any fixed x

P{a ln ξ(N) − lnN + ln lnN + ln(b− a)− ln a ≤ x} → e−e
−x
.

Proof. Let us denote by ξ1, . . . , ξN the degrees of vertices 1, . . . , N . It is clear that

P{ξ(N) ≤ y} = P{ξ1 ≤ y, . . . , ξN ≤ y} = PN{ξ1 ≤ y}.

From this and (2) we obtain that

P{ξ(N) ≤ y} =

(
1− 1

(b− a) ln([y] + 1)

(
1

([y] + 1)a
− 1

([y] + 1)b

))N
, (3)

where [y] is the integer part of y. It is easy to see that as y →∞

1

(b− a) ln([y] + 1)
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∼ 1

(b− a)ya ln y
. (4)

The theorem assertion follows from (3) and (4) if

y =

(
a

(b− a)
ex

N

lnN

)1/a

. (5)

Remark 1. From Theorem 1 and (5) we can see that the maximal vertex degree is propor-
tional to (N/ lnN)1/a.

Theorem 2. Let N →∞ and k is a natural number. The following assertions are true.

1. If Npr → ∞ then uniformly in k such that ur = (k − Npr)/
√
Npr(1− pr) lies in any

fixed finite interval

P{µr = k} = (2πNpr(1− pr))−1/2 e−u
2
r/2(1 + o(1)).

2. If r →∞ then uniformly in k such that (k−Npr)/
√
Npr lies in any fixed finite interval

P{µr = k} =
(Npr)

k

k!
e−Npr(1 + o(1)).

Proof. Random variables ξ1, . . . , ξN are independent, therefore

P{µr = k} =

(
N

k

)
pkr (1− pr)N−k. (6)

Under the first condition of the theorem Npr(1 − pr) → ∞ and in (6) we can use the nor-
mal approximation of binomial probabilities. Under the second condition pr → 0 and these
probabilities allow Poisson approximation. Straight from here follow assertions of Theorem 2.

Remark 2. Let r →∞. From (2) we can find that

pr ∼
a

(b− a)ra+1 ln r
.

From here and Theorem 2 it follows that µr is proportional to N/(ra+1 ln r).



92 Random Graphs’ Robustness

Remark 3. Let pr → 0. By Theorem 2 normal and Poisson approximations of µr distribution
are possible at the same time.

3. Robustness of graphs with given degree distribution

The problem of robustness and vulnerability of present-day huge complex networks to various
types of breakdowns remains rather pressing (see, e.g., Bollobas and Riordan 2004; Durrett
2007; Norros and Reittu 2008). Therefore, along with the studies of random graph’s struc-
ture, we consider the process of its destruction aiming to look at how the main structural
characteristics would change with the removal of graph vertices. In this Section we study
configuration random graphs with vertex degrees following the distribution (2) on a prede-
fined interval [a, b]. We consider two types of the destruction process. During the first one
(link saving) we remove graph vertices sequentially with all the incident edges. The aim is
to consider changes of the graph structure with vertex removal. The second process (node
survival = forest fire model) takes the similarity with the process of fire spreading (it could
also be any other destructive influence (Arinaminparthy, Kapadia, and May 2012; Bertoin
2011, 2012; Drossel and Schwabl 1992)), where the destruction starts from a chosen vertex
and then spreads over the graph through its edges in some certain way. For each type of
destruction process we consider two cases: “targeted attack” means the removal of vertices
with the highest degrees (link saving) or “targeted lightning-up” of a vertex with the highest
degree (node survival) on the one hand, and “random breakdown” – the removal of equiproba-
bly chosen vertices (link saving) or “random ignition” of an equiprobably chosen vertex (node
survival) on the other. The main method of studies described below is simulation modeling
followed by statistical analysis of the obtained data.

3.1. Link saving: preserving graph connectivity

The first considered graph destruction process – link saving – was done on simulation models
of graphs sized from 1000 to 10000 vertices and three intervals [a, b]: (1, 2), (1, 3] and [2, 3].
Power-law configuration graphs with the parameter τ ∈ (1, 2) are known to be a good repre-
sentation of the AS-level topology, where AS means autonomous systems (see, e.g., Faloutsos
et al. 1999; Mahadevan, Krioukov, Fomenkov, Huffaker, Dimitropoulos, Claffy, and Vahdat
2006; Reittu and Norros 2004). Power-law graphs with the parameter τ ∈ [2, 3] are useful for
the studies of forest fire models (Leri and Pavlov 2014, 2016; Leri 2016). The interval (1, 3]
is chosen as a generalization. The purpose is to estimate the graph breakdown probability
depending on the percentage of removed vertices.

Let random variables η1, η2, . . . , ηs be equal to the percentages of vertices in the graph com-
ponents in decreasing order. Thus η1 is the percentage of vertices in the largest component,
η2 – the percentage of vertices in the second-sized component, etc., where s is the number of
graph components. In (Leri and Pavlov 2014) we proposed the criterion of graph destruction
to be the occurrence of the following event A : {η1 ≤ 2η2}, which means that the percentage
of vertices in the largest component becomes less than or equal to the two values of the per-
centage of vertices in the second largest component. This criterion is suggested because the
largest components of the considered graphs are far larger than their second components. The
average initial ratios of the sizes of the first two largest components of the considered graphs
depend on the graph size N as follows: η1/η2 = 0.15N+81 for (1, 2); η1/η2 = 0.002N+7.7 for
[2, 3]; η1/η2 = 0.08N +50 for (1, 3], where determination coefficients R2 of all these regression
models are equal to 0.99. This means that, for example, when [a, b] = (1, 2) the ratio η1/η2
is more than 200 for N = 1000 and more than 1600 for N = 10000.

In Figures 1 and 2 we plot the following regression relations between the probabilities P{A} of
graph destruction, the percentage of vertices removed from the graph r and the initial graph
size N . For the process of targeted attack on vertices with the highest degrees we obtained
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the following regression models:

P{A} = −0.47 + 0.054r1.9 + 0.046 lnN, (1, 2), (R2 = 0.96)

P{A} = 0.26 + 0.31 ln r + 0.1 lnN, [2, 3], (R2 = 0.99)

P{A} = −0.63 + 0.27r1.3 + 0.06 lnN, (1, 3], (R2 = 0.95)

where the value of r is limited as follows: 4.21− 0.354 lnN ≤ r ≤ 5.75− 0.108 lnN for (1, 2),
0.115− 0.01 lnN ≤ r ≤ 2.89− 0.256 lnN for [2, 3] and 2.24− 0.2 lnN ≤ r ≤ 4.03− 0.122 lnN
for (1, 3]. In practice, it is clear that for the out-of-limits values of r the probability P{A} = 0
when r is less than the lower limit and P{A} = 1 when r is larger than the upper limit. The
same is true for the models given below. In the case of random breakdowns the relations are
as follows:

P{A} = −0.4 + 0.00035r2 − 0.04 lnN, (1, 2), (R2 = 0.92)

P{A} = 0.51 + 0.02r − 0.07 lnN, [2, 3], (R2 = 0.99)

P{A} = −0.45 + 0.00041r2 − 0.04 lnN, (1, 3], (R2 = 0.92)

with the following limits for r: 35.32 + 1.25 lnN ≤ r ≤ 63.59 + 0.81 lnN for (1, 2), 0.056 +
0.00074N ≤ r ≤ 24.5 + 3.5 lnN for [2, 3] and 34.36 + 1.12 lnN ≤ r ≤ 59.77 + 0.74 lnN for
(1, 3].
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Figure 1: Probability of graph destruction in the case of targeted attacks on graphs with
[a, b] = (1, 2), [2, 3] and (1, 3], respectively.
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Figure 2: Probability of graph destruction in the case of random breakdowns of graphs with
[a, b] = (1, 2), [2, 3] and (1, 3], respectively.

The dependencies for 1000 < N < 10000 fall within shaded regions. Simulation results show
that configuration graphs with vertex degree distribution (2) are more robust to random
breakdowns than to targeted attacks on the vertices with the highest degrees. To destroy
such a graph by removing vertices with high degrees it is enough to take away 1 − 5% of
them. However, in the case of random vertex removal, the graph will be ruined by the
destruction of 50− 70% of its vertices. Thus, in the case when [a, b] = [2, 3] graphs are more
vulnerable to both targeted and random breakdowns than in the cases when [a, b] = (1, 2)
and [a, b] = (1, 3].

3.2. Node survival: forest fire model

The study of a destruction process which is called a forest fire model imposes some constraints
on the graphs being considered. Since we view graph vertices as trees growing in a limited area
of a real forest, their number as well as the number of vertices in a corresponding graph has to
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be limited. Thus, we propose to use an auxiliary square lattice graph of the size 100×100 (Leri
2016; Leri and Pavlov 2016). Two vertices of the graph are connected if on the corresponding
tree topology a fire can move from one tree to another. We consider 15 different relative
allocations of edges and vertices on our lattice graphs. Let m be an averaged inner vertex
degree. For a fully packed square lattice m = 8. Then for each lattice graph topology we
calculated corresponding values of m and N . Let the size of our power-law configuration
graph be equal to the size of the auxiliary lattice graph. Knowing that m = ζ(τ) (where
ζ(x) is the Riemann zeta function), we obtained a regression relation between the power-law
configuration graph size N ≤ 10000 and the parameter τ of vertex degree distribution (1)
(see Figure 3):

N = [9256τ−1.05], R2 = 0.97. (7)

æ
æ

ææ
æ

æ
æ

æ

æ

æ

æ

æ
æ
æ

æ

1.0 1.5 2.0 2.5 3.0
Τ

2000

4000

6000

8000

10 000

N

Figure 3: Regression relation between N and τ .

Let τ = (a+ b)/2, then the relation (7) confines the number of vertices N in a corresponding
power-law graph. Here, as in Subsection 3.1, we consider the same three intervals [a, b]: (1, 2),
[2, 3], (1, 3] with the N values obtained from (7) being equal to 6046, 3536 and 4470, respec-
tively. As it was mentioned above, we analyse two cases of starting a fire propagation process:
targeted lightning-up and random ignition. When the fire starts it spreads through the in-
cident edges to connected vertices with the probability of fire transition p. This probability
could be either a predefined value p ∈ (0, 1] fixed for all the graph edges or a random variable
following the standard uniform distribution. Here we study both cases. The purpose is to
find the optimal interval [a, b] of the distribution (2) that would ensure maximum survival
of graph vertices in case of a fire. For all the three intervals we found relations between the
average number of vertices surviving in a fire n and the probability of fire transition p. Plots
on Figure 4 show how the number of remaining vertices n depends on the probability p in the
two fire-start cases: targeted lightning-up (left plot) and random ignition (right plot).

It is clear that with the increase of the probability p the number of remaining vertices n
will be decreasing. Furthermore, at lower values of p graphs with [a, b] = (1, 2) prove to be
more resilient to the fire destruction process in both cases of fire start. But as the value of p
increases the topology with [a, b] = [2, 3] will ensure a better survival of graphs vertices. As
for graphs with [a, b] = (1, 3], they are the most vulnerable to this kind of destruction in both
fire-start cases.

Further we consider the probability of fire transition p to be a random variable drawn from the
standard uniform distribution. Table 1 shows an average number of vertices having remained
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Figure 4: Relation between the number of surviving vertices n and the probability of fire
transition.

in the fire for the three considered intervals and the two fire-start cases.

Table 1: Average number of nodes surviving in a fire n.

[a, b] targeted lightning-up random ignition
(1, 2) 3122 4605
[2, 3] 3471 3531
(1, 3] 2950 3959

Thus, when the fire starts from a vertex with the highest degree more vertices will survive on
the graph topology with the vertex degree distribution (2) with [a, b] = [2, 3]. But in the case
of random ignition graphs with [a, b] = (1, 2) will be more resilient to the fire.

4. Graphs’ robustness in random environment

In this Section, as distinct from Section 3, vertex degrees of the considered configuration
graphs follow the distribution (1), where τ ∼ U[a, b], which means that the parameter τ is
uniformly distributed on a predefined interval [a, b] and the values of τ are chosen separately
for each vertex. Here we follow the same study scheme as in Section 3, considering the
two types of the destruction process: link saving and node survival with the two cases of
destruction spreading: targeted and random.

4.1. Link saving: preserving graph connectivity

As before, we consider graphs of the sizes N ∈ [1000, 10000] and the three intervals [a, b]:
(1, 2), (1, 3] and [2, 3]. Having obtained statistical data from computer simulations we derived
regression relations between the probabilities P{A} of graph destruction, the percentage of
vertices removed from the graph r and the initial graph size N . The following regression
models were obtained in the case of a targeted attack (see Figure 5):

P{A} = −0.44 + 0.04r2.1 + 0.05 lnN, (1, 2), (R2 = 0.96)

P{A} = 0.72 + 0.3 ln r + 0.04 lnN, [2, 3], (R2 = 0.99)

P{A} = −0.65 + 0.3r1.2 + 0.06 lnN, (1, 3], (R2 = 0.95)

and in the case of random breakdowns (see Figure 6):

P{A} = −0.53 + 0.00033r2 − 0.016 lnN, (1, 2), (R2 = 0.93)

P{A} = 0.42 + 0.019r − 0.056 lnN, [2, 3], (R2 = 0.99)

P{A} = −0.17 + 0.0004r2 − 0.064 lnN, (1, 3], (R2 = 0.93)

with the following limits for r in the case of a targeted attack: 6.91 − 0.745 lnN ≤ r ≤
5.59− 0.108 lnN for (1, 2), 0.064− 0.00408 lnN ≤ r ≤ 1.79− 0.114 lnN for [2, 3] and 2.11−
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0.186 lnN ≤ r ≤ 4.17− 0.133 lnN for (1, 3]. and in the case of random breakdowns: 40.32 +
0.54 lnN ≤ r ≤ 68.15 + 0.34 lnN for (1, 2), −0.28 + 0.0006N ≤ r ≤ 30.5 + 3 lnN for [2, 3] and
25.88 + 1.92 lnN ≤ r ≤ 55 + 1.23 lnN for (1, 3]. It is easy to see that the obtained models
are similar in function forms and only slightly differ in regression models’ coefficients.
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Figure 5: Probability of graph destruction in the case of targeted attacks on graphs with
τ ∼ U(1, 2), τ ∼ U[2, 3] and τ ∼ U(1, 3], respectively.
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Figure 6: Probability of graph destruction in the case of random breakdowns of graphs with
τ ∼ U(1, 2), τ ∼ U[2, 3] and τ ∼ U(1, 3], respectively.

Again, similarly to the graphs with the distribution (2), average initial ratios between the
sizes of the first two largest components depend on the graph size N in the following way:
η1/η2 = 0.14N + 100 for (1, 2); η1/η2 = 0.002N + 7.1 for [2, 3]; η1/η2 = 0.08N + 68 for (1, 3],
where R2 = 0.99 for all the three models.

Thus, the considered graphs also proved to be more robust to random breakdowns than
to targeted attacks on vertices with the highest degrees. In the case of targeted attack it is
enough to remove 1−5% of vertices to destroy a graph, and in the case of random breakdowns
it takes 50 − 70%. Here, like in Section 3, the same notes concerning the smallest values of
the removed vertices are true (see Figures 5 and 6). Similarly to the results described in
Section 3, in the case when τ ∼ U[2, 3] graphs are more vulnerable to both targeted and
random breakdowns than in the cases where τ ∼ U(1, 2) and τ ∼ U(1, 3].

4.2. Node survival: forest fire model

Here we discuss the results of studying forest fire modeling on configuration graphs with the
vertex degree distribution (1) and τ ∼ U[a, b]. As in Section 3, we use an auxiliary square
lattice graph of the size 100 × 100 to confine the number of vertices N through the relation
(7) with τ = (a+b)/2. We consider the same three intervals [a, b]: (1, 2), [2, 3], (1, 3] on which
the parameter τ is uniformly distributed. The values of N obtained from (7) were the same as
in Section 3.2. Again we consider the two fire-start cases: targeted lightning-up and random
ignition. The probability of fire transition p is either a predefined value p ∈ (0, 1] fixed for
all graph edges or a random variable following the standard uniform distribution. The aim
is to find the optimal interval of the parameter τ that would ensure maximum survival of
graph vertices in case of a fire. Plots in Figure 7 show relations between the average number
of vertices surviving in a fire n and the probability of fire transition p for the two fire-start
cases.

It is quite clear that the obtained results are rather similar to those in Section 3. So are the
results for the case where the probability of fire transition p is a random variable uniformly
distributed on (0, 1] (see Table 2).
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Figure 7: Relation between the number of surviving vertices n and the probability of fire
transition.

Table 2: An average number of nodes surviving in a fire n.

τ ∼ U[a, b] targeted lightning-up random ignition
(1, 2) 3146 4933
[2, 3] 3464 3533
(1, 3] 2917 3927

5. Conclusions

The simulation model of the graph destruction process in random environment used in Sec-
tion 4 is more complicated and requires far more computations than the model with fixed
vertex degree distribution (2) in Section 3. At the same time, it is easy to see that the results
obtained in Sections 3 and 4 are quite close to each other. This means that we can study the
dynamics of random graphs in random environment using averaged degree distributions. But
the problem of finding the conditions when such an interchange is incorrect is still open.
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