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Abstract

In this paper we introduce a measure of closeness of partial rankings based on a metric on
permutations, and we analyze some of its properties. We consider two types of partial rankings:
ranking the k favorite items out of n and classification into several ordered categories.
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1. Introduction
In many situations, there are different methods for analyzing the same data. For example, several
methods exist for finding differentially expressed genes using RNA-seq data. They tend to produce
similar, but not identical significant genes and rankings of the gene list. When comparing different
methods applied to the same data, we are interested in how close are their outputs. The main idea is
to define appropriate distance on the sample space. Further, the interpretation of the rough distance
between two rankings should be made on the basis of its statistical significance. That means we need
to know the distribution of the distance under some common hypotheses about a sample of rankings.
In recent years, many new applications appear in different areas including bioinformatics pattern
recognition, information retrivial Jurman, Merler, Barla, Paoli, Galea, and Furlanello (2007), Jurman,
Riccadonna, Visintainer, and Furlanello (2009), Chan, Yan, Kittler, and Mikolajczyk (2015), Fagin,
Kumar, Mahdian, Sivakumar, and Vee (2006), Fagin, Kumar, and Sivakumar (2003), etc.

In this paper we define an appropriate mathematical framework that include special cases of partially
ranked lists of items. Any ranked list can be complete, which means all n items are ranked, or
incomplete, which means some items are not ranked. The incomplete ranking include the case where
the most significant k items are ranked, with group k + 1 consisting of the remaining items. Any
ranking of n items corresponds a permutation 〈α(1), . . . , α(n)〉 from the set of all permutations Sn.
We define appropriate distance measures on Sn in order to compare full or incomplete rankings or
rankings of different types. The distance can be thought of as a measure of the similarity of the two
rankings.

Let α and β be two permutations from Sn corresponding to two rankings and let d be a metric on
the permutation group Sn. Then d : Sn × Sn → [0,∞) satisfies the usual axioms: d(α, β) ≥
0 ∀α, β ∈ Sn, d(α, β) = 0⇔ α = β; d(α, β) = d(β, α) ∀α, β ∈ Sn; and the triangle inequality
d(α, β) ≤ d(α, γ) + d(γ, β) ∀α, β, γ ∈ Sn.
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Invariance is natural in many problems. Right-invariance means that the distance does not depend on
arbitrary labeling or reordering of the data:

d(α, β) = d(ατ, βτ).

Here ατ is the product of two permutations α and τ and defined by ατ(i) = α(τ(i)). Right-invariant
property allows to compute the distance between two permutations α and β through the the distance
of αβ−1 to the identity permutation.

For α and β ∈ Sn the following functions are commonly used as statistical measures of association:

F (α, β) =
∑
i

| α(i)− β(i) | Spearman’s footrule

R2(α, β) =
∑
i

(α(i)− β(i))2 Spearman’s rho

T (α, β) = number of pairs (i, j) such that

α(i) < α(j) and β(i) > β(j) Kendall’s tau

H(α, β) = #{i = 1, . . . , n : α(i) 6= β(i)} Hamming distance

L(α, β) =
∑
i

min (| α(i)− β(i) |, n− | α(i)− β(i) |) Lee distance

M(α, β) = max
1≤i≤n

| α(i)− β(i) | Chebyshev’s distance

All these measures are right-invariant metrics on Sn. By right-invariance of a distance it is sufficient
to study its statistical properties when one of the rankings is the identity permutation.

2. Complete or incomplete ranking

A ranking of n items is represented by an ordered n-tuple, which simply lists the items in their ranked
order. The most preferred item is listed first, and the least preferred item appears in the n-th position.
Any ranking corresponds to a permutation which is an element of the set Sn of permutations. Given
a set of rankings, the problem of their comparison reduced to a problem of choosing appropriate
measure of association on the set of all rankings. There are several usefull distance measures on
Sn thoroughly discussed in statistical literature like Kendall’s τ , Spearman’s ρ, Spearman’s footrule.
Therefore, for two permutations α, β ∈ Sn the distance d(α, β) can be thought of as a measure
of similarity of the two rankings. Excellent references on statistical analysis of rankings are the
monographs by Diaconis 1988, Critchlow 1985, and Marden 1995.

There are many situations, in which complete ranking of all n items is not compulsory. The goal might
be to rank only their favorite k out of n items or just to choose their k favorite items. In other cases
it is important to classify items into groups or categories according to some criterion of "goodness".
Further, we need appropriate distances to measure closeness of such rankings.

The general partitioning problem can be described as follows. Let {1, . . . , n} be n given items. We
wish to partition them into a fixed number of disjoint categories, such that each category contains a
certain preassigned number of items. The first category contains n1 favorite items, the second category
contains the n2 next preferred items, and so on; the final category contains the nr least favorite items,
where

∑
ni = n, ni ≥ 1. We do not state any preferences among members of the same category.

If we assign values to r and ni we obtain several special cases of interest.

(1) To choose the best single item (r = 2, n1 = 1, n2 = n− 1);

(2) To choose the best k items without regard to order (r = 2, n1 = k, n2 = n− k);

(3) To choose the best k items with regard to order (r = k+1, n1 = . . . = nk = 1, nk+1 = n−k);

(4) To order all items (r = n, n1 = . . . = nr = 1);
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(5) To partition the items into a fixed number of categories.

Many of the decision procedures that one might use within the scope of these ranking problems have
a corresponding structure which is invariant under a group of transformations. We consider suitable
models for analysis of such partially ranked data thoroughly described by Critchlow 1985.

The full ranking (goal 4) of n items is viewed as an element of the permutation group Sn. The
corresponding permutation α ∈ Sn is a bijection function from α : {1, . . . , n} → {1, . . . , n} onto
itself, where α(i) denotes the rank given to item i and α−1(i) denotes the item assigned to rank i.

With composition of permutations defined by (αβ)(i) = α(β(i)), the set Sn constitutes the permu-
tation group. The inverse permutation α−1 satisfies αα−1 = α−1α = e, where e is the identity
permutation e(i) = i.

2.1. The ranking of the k favorite items out of n

This is probably the most popular goal in ranking problems. Any such partial ranking is identified
with permutation from the subgroup Sn−k ⊂ Sn which leaves the first k integers fixed and permutes
the remaining n− k integers between themselves:

Sn−k = {α ∈ Sn : α(i) = i for all i = 1, . . . , k}.

Define an equivalence relation on Sn as follows: two permutations α and β are equivalent if and only
if there exists γ ∈ Sn−k so that α = γβ. For any α ∈ Sn, the equivalence class Sn−kα induced by
α consists of all permutations equivalent to α. Hence, each partial ranking of k out of n items can
be identified with the set of all full permutations which induce it. The set of all such partial rankings
can be identified with the set of all such right cosets. Clearly, there is a one-to-one correspondence
between the partial rankings of type "k out of n" and right cosets of Sn−k. This coset space is denoted
by Sn/Sn−k.

2.2. Classification into r ordered categories

Let n1, . . . , nr be an ordered sequence of r strictly positive numbers summing to n. Such an ordered
partition corresponds to a partial ranking with n1 items in the first group, n2 items in the second group
and so on. No further information is conveyed about orderings within each group. The special case of
ranking the top k items corresponds to n1 = · · · = nk = 1, nk+1 = k + 1.

Formally, denote N1, . . . , Nr are the following partition of {1, . . . , n}:

N1 = {1, . . . , n1}
N2 = {n1 + 1, . . . , n1 + n2}
. . . (1)

Nr = {n1 + · · ·+ nr−1 + 1, . . . , n}.

Let S denote the subgroup of all rankings which permute the first n1 items among the first n1 ranks,
and which permute the next n2 items among the next n2 ranks, and so on. The equivalence class
[α], that assigns the same set of ranks to the items from the each category as α, is the right coset
Sα. There is a one-to-one correspondence between the partitioning "of type n1, . . . , nr" and the right
cosets of S.

3. Distances on partial rankings
In the above algebraic structure the problem of comparing of partial rankings is reduced to a problem
of extending the metrics on the permutation group Sn to metrics on the corresponding coset space.
We discuss an extension of the above metrics for the cases of partial rankings. One natural way of
extending it is to construct the induced Hausdorff metrics. Its particular benefit is that it keeps the
metric properties of the original distance.
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Proposition 1. LetG be an arbitrary finite group,K be any subgroup ofG, and d be a right-invariant
metric on G. Then d induces a right-invariant metric on the coset space G/K defined by

d∗(Kα,Kβ) = max

{
max
σ∈Kβ

min
π∈Kα

d(π, σ), max
π∈Kα

min
σ∈Kβ

d(π, σ)

}
.

In this formula, the quantity min
π∈Kα

d(π, σ) is the distance between σ and the set Kα. Therefore, the

quantity max
σ∈Kβ

min
π∈Kα

d(π, σ) is the maximal distance of a member of Kβ to the set Kα. Similarly,

max
π∈Kα

min
σ∈Kβ

d(π, σ) is the maximal distance of a member of Kα to the set Kβ.

We focus on Chebyshev’s metric between partial rankings. These ere obtained by suitable generaliza-
tion the M distance on Sn to coset spaces of Sn. The Hausdorff versions of five other metrics are due
to Critchlow 1985.

4. Chebyshev’s metric for partial rankings

In this section we derive an extension of Chebyshev’s metric for partial rankings of type (3) and (5).
Theorems 1 and 2 below state the extensions of Chebyshev’s metric to the metric on the coset spaces
Sn/Sn−k and Sn/S. The extensions preserve the invariant properties of the metric. The construction
is based on the Hausdorff distance between cosets.

The Hausdorff metrics on Sn/Sn−k induced by Chebyshev’s metric is defined by taking G = Sn and
K = Sn−k in Proposition 1.

Theorem 1. Let A,B,D,E be the following partition of {1, . . . , n}:

A = {i = 1, . . . , n; α(i) ≤ k, β(i) ≤ k}
B = {i = 1, . . . , n; α(i) ≤ k, β(i) > k}
D = {i = 1, . . . , n; α(i) > k, β(i) ≤ k}
E = {i = 1, . . . , n; α(i) > k, β(i) > k}.

Then the Hausdorff metrics metrics on Sn/Sn−k induced by Chebyshev metric are

M∗(Sn−kα, Sn−kβ) = max

{
δ(k − h) max

m∈A
|α(m)− β(m)|,

δ(h)(n− p1), δ(h)(n− s1), δ(n− k − h)h} .

Here p1 < . . . < ph is an ordering of the set ∪i∈B{α(i)}, s1 < . . . < sh is an ordering of the set
∪i∈D{β(i)} and h is the number of elements in B (or D), and δ(x) = 1 for x > 0 and 0 for x ≤ 0.

The proof is in the Appendix.

The Hausdorff metric on Sn/S induced by Chebyshev’s metric is defined by taking G = Sn and
K = S, in the Proposition 1.

Theorem 2. Let nij be the number of elements in the set {α−1(Ni) ∩ β−1(Nj)}. Then

M∗(α, β) = max
1<i,j<r

[
δ(nij) max

{
|
i−1∑
k=1

nk +

j−1∑
k=1

nik −
i−1∑
k=1

nk −
r∑

k=i+1

nkj |,

|
i−1∑
k=1

nk +
r∑

k=j+1

nik −
j−1∑
k=1

nk −
i−1∑
k=1

nkj |
}]

is right-invariant metric on Sn/S.
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The proofs of these theorems are based of the fact that Chebyshev’s metric on Sn satisfies the trans-
position property.

Definition 1. (Transposition property ) Let α, β, γ ∈ Sn be permutations such that α and β differ by
a single transposition; that is there exist integers p, q ∈ {1, . . . , n} such that

α(p) = β(q)

α(q) = β(p)

α(i) = β(i) ∀i 6= p, q.

If α(p) ≤ α(q) and γ(p) ≤ γ(q), then M(α, γ) ≤M(β, γ).

Proposition 2. Chebyshev’s metric satisfies the transposition property.

The proof can be found in Stoimenova (2000). For metrics possessing the transposition property, the
permutations βmax, αmin(βmax), αmax and βmin(αmax) have a simple special form.

5. Distributional properties of the metrics
Suppose that two partial rankings α∗ and β∗ are generated independently from a uniform distribution
on all possible partial rankings and calculate the distance d∗(α∗, β∗). Thus the distance is a random
variable and one might study its distribution on the set of permutations. Figure 1 (left) shows the
distribution of Chebyshev’s metric for full rankings based on 10000 choices of σ from a uniform
distribution. Since the metric is right invariant we calculate the distribution of the distance from the
identity permutation.

Figure 1: Distribution of Chebyshev distance and Spearman’s rho between 2 random permutations

It is evident in the figure that the distribution of the Chebyshev’s metric is left skewed and it has
similar form on partial rankings as well. We suggest a chi-square approximation of the distribution.
The other metrics discussed in Section 1 have symmetrical distributions and for large n they exhibit
normality. The distribution of Spearman’s rho for full rankings is presented on Figure 1 (right).
Normal approximation is in the following sense.

Definition 2. The metric d∗ on Sn/S is asymptotically normally distributed if for partial rankings α∗

and β∗ the following limit distribution is valid

lim
n→∞

P

(
d∗(α∗, β∗)− E d∗(α∗, β∗)√

var(d∗(α∗, β∗))
≤ x

)
= Φ(x)

for all real numbers x, where Φ, is the standard normal cumulative distribution function.
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By using the exact or the approximate distribution of a distance on permutations, one can calculate
the probability that d∗ is less than or equal to the observed value d∗(α∗, β∗). This probability is the
p-value for α∗ and β∗. Smaller values of p indicate stronger evidence that α∗ and β∗ are “similar”.

To compute the p-value, Critchlow finds the probability distribution of some popular metrics on per-
mutations under the appropriate uniformity assumption. The critical values of the distribution of
Chebyshev’s metric under uniformity assumptions can be calculated for different choices of the sizes
of the categories. The R code for Chebyshev’s metric is available by the author on request. Therefore,
the significance of the distance can be used to estimate the similarity between the two partial rankings.
The interpretation is very much like as the significance of a correlation coefficient.

Chan et al. 2015 computes the distributions of several metrics between ranking descriptors in a
texture image from a real dataset and applies them to image intensities and to filter responses. The
distributions of Chebyshev’s metric and Spearman’s rho have the same features we see on Figure 1.

Acknowledgments. The author acknowledge funding by the Bulgarian fund for scientific investiga-
tions Project I02/19.
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Appendix: Proofs of Theorems

Proof of Theorem 1. The result for Sn/Sn−k is a special case of Theorem 2 with r = k + 1, n1 =
. . . = nk = 1. We derive it separately because of its simpler form.

Since the Chebyshev’s distance is right invariant the induced Hausdorff metric on Sn/Sn−k is repre-
sented as:
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M∗(Sn−kα, Sn−kβ) = max
[

max
σ∈Sn−kβ

min
π∈Sn−kα

d(π, σ), max
π∈Sn−kα

min
σ∈Sn−kβ

d(π, σ)
]

= max
[

max
σ∈Sn−kβ

d(αmin(σ), σ), max
π∈Sn−kα

d(π, βmin(π))
]

= max
[
M(αmin(βmax), βmax),M(βmin(αmax), αmax)

]
,

where for any β ∈ Sn, αmin(β) = minM(., β), βmax = maxM(αmin(.), .), and for any α ∈ Sn,
βmin(α) = minM(α, .), αmax = maxM(., βmin(.)).

Since the Chebyshev’s distance satisfies the Transposition property 1 then βmax, αmin(βmax), αmax

and βmin(αmax) have the forms:

βmax = < β−1(1), . . . , β−1(k), Nk+1,k+1, α
−1(ph), . . . , α−1(p1) >

αmin(βmax) = < α−1(1), . . . , α−1(k), β−1(s1), . . . , β
−1(sh), Nk+1,k+1 >

αmax = < α−1(1), . . . , α−1(k), Nk+1,k+1, β
−1(sh), . . . , β−1(s1) >

βmin(αmax) = < β−1(1), . . . , β−1(k), α−1(p1), . . . , α
−1(ph), Nk+1,k+1 >,

where Nk+1,k+1 are the elements of the set E in ascending order (or arbitrary fixed order.)

The sets A,B and D are as follows:

A = {α−1(1), . . . , α−1(k)} ∩ {β−1(1), . . . , β−1(k)}
B = {α−1(ph), . . . , α−1(p1)}
D = {β−1(sh), . . . , β−1(s1)}.

Thus

max
m∈A

| αmin(βmax)(m)− βmax(m) | = max
m∈A

| α(m)− β(m) |;

max
m∈B

| αmin(βmax)(m)− βmax(m) | = max
1≤m≤h

| n+ 1−m− pm |

= max{n− p1, ph + h− n− 1} = n− p1;
max
m∈D

|αmin(βmax)(m)− βmax(m)| = max
1≤m≤h

| k +m− sm |

= max{k + 1− s1, sh − h− k} = k + 1− s1;
max
m∈E

| αmin(βmax)(m)− βmax(m) | = h.

Hence

M(αmin(βmax), βmax) = max
1≤m≤n

| βmin(αmax)(m)− αmax(m) |

= max
[
δ(k − h) max

m∈A
| α(m)− β(m) |, δ(h)(n− p1), δ(h)(k + 1− s1),

δ(h)(sh − h− k), δ(n− k − h)h
]
.

Similarly

max
m∈A

| βmin(αmax)(m)− αmax(m) | = max
m∈A

| α(m)− β(m) |;

max
m∈B

| βmin(αmax)(m)− αmax(m) | = max{k + 1− p1, ph − h− k} = k + 1− p1

max
m∈D

| βmin(αmax)(m)− αmax(m) | = max{n− s1, sh + h− n− 1} = n− s1

max
m∈E

| βmin(αmax)(m)− αmax(m) | = h.
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and hence

M(βmin(αmax), αmax) = max
1≤m≤n

| βmin(αmax)(m)− αmax(m) |

= max
[
δ(k − h) max

m∈A
| α(m)− β(m) |, δ(h)(k + 1− p1), δ(h)(ph − h− k), δ(h)h

]
.

Proof of Theorem 2. Note that nij is the number of items placed in the i-th category by the first judge
and in the j-th category by the second. From Lemma 3 (Critchlow (1985), p.53) and Proposition 2 it
follows that βmax, αmin(βmax), αmax and βmin(αmax) have the forms:

βmax = < Nr1, . . . , N11, Nr2, .., N12, . . . , Nrj , . . . , N1j , . . . , Nrr, . . . , N1r >

αmin(βmax) = < N11, . . . , N1r, . . . , Ni1, . . . , Nir, . . . , Nr1, . . . , Nrr >

αmax = < N1r, . . . , N11, .., Nir, . . . , Ni1, . . . , Nrr, . . . , Nr1 >

βmin(αmax) = < N11, . . . , Nr1, .., N1j , . . . , Nrj , . . . , N1r, . . . , Nrr > .

where Ni,j are the elements of the set {α−1(Ni) ∩ β−1(Nj)}.
Let mij be the smallest number in Nij . There are

i−1∑
k=1

nk +

j−1∑
k=1

nik

numbers occurring to the left of mij in the bracket representation of αmin(βmax), and

i−1∑
k=1

nk +

r∑
k=i+1

nkj

numbers occurring to the left of mij in the bracket representation of βmax. Hence

αmin(βmax)(mij)− βmax(mij) =
i−1∑
k=1

nk +

j−1∑
k=1

nik −
i−1∑
k=1

nk −
r∑

k=i+1

nkj .

Therefore

M∗(αmin(βmax), βmax) = max
1≤m≤n

|αmin(βmax)(m)− βmax(m)|

= max
1≤i,j≤r

[
δ(nij) max

m∈Nij

|αmin(βmax)(m)− βmax(m)|
]

= max
1≤i,j≤r

[
δ(nij) |

i−1∑
k=1

nk +

j−1∑
k=1

nik −
j−1∑
k=1

nk −
r∑

k=i+1

nkj |
]
.

Similarly there are
i−1∑
k=1

nk +
r∑

k=j+1

nik

numbers occurring to the left of mij in the bracket representation of αmax , and

i−1∑
k=1

nk +
i−1∑
k=1

nkj

numbers occurring to the left of mij in the bracket representation of βmin(αmax). Hence

βmin(αmax)(mij)− αmax(mij) =

i−1∑
k=1

nk +

r∑
k=j+1

nik −
j−1∑
k=1

nk −
i−1∑
k=1

nkj .



Austrian Journal of Statistics 115

Note βmin(αmax)(m)− αmax(m) is a constant for m ∈ Nij , so

M(βmin(αmax), αmax) = max
1≤i,j≤r

[
δ(nij)m max

m∈Nij

| βmin(αmax)(m)− αmax(m)) |
]

= max
1≤i,j≤r

[
δ(nij)m |

1−1∑
k=1

nk +

r∑
k=j+1

nik −
j−1∑
k=1

nk −
i−1∑
k=1

nkj |
]
.
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