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Abstract

In the present paper, two normal distributions with parameters µi and σ2
i where there

is an order restriction on the means when the variances are unknown and unequal are
considered. Under the squared error loss function, a necessary and sufficient condition for
the plug-in estimators to improve upon the unrestricted maximum likelihood estimators
uniformly is given. Also under the modified Pitman nearness criterion; a class of estima-
tors is considered that reduce to the estimators of a common mean when the unbiased
estimators violate the order restriction. It is shown that the most critical case for uniform
improvement with regard to the unbiased estimators is the one when two means are equal.
To illustrate the results, two numerical examples are presented.

Keywords: maximum likelihood estimator, order restriction, Pitman nearness, squared error
loss function.

1. Introduction

Let Xij be the j th observation of the i th population and be mutually independently dis-
tributed as N(µi, σ

2
i ) , i = 1, 2, · · · , k , j = 1, 2, · · · , ni, where the order restriction on the

unknown parameters µi, i = 1, 2, · · · , k is defined as

µ1 ≤ µ2 ≤ · · · ≤ µk. (1)

We consider the following squared error loss function of the estimators of µi, i = 1, 2, · · · , k,

L(µi, µ̂i) = (µ̂i − µi)2. (2)

Then the risk is given by
R(µi, µ̂i) = E[L(µi, µ̂i)]. (3)

The estimator µ̂∗i uniformly improves upon the estimator µ̂∗∗i , i = 1, 2, · · · , k, under the
squared error loss function (2) if and only if

R(µi, µ̂
∗
i ) ≤ R(µi, µ̂

∗∗
i ),

for all µ1 ≤ µ2 ≤ · · · ≤ µk. Note that X̄i =
∑ni

j=1Xij/ni is the unrestricted maximum

likelihood estimator of µi and is distributed as N(µi, σ
2
i /ni).
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Later, many authors, including Brown and Cohen (1974), Khatri and Shah (1974) and Bhat-
tacharya et al. (1980) have given a class of improved estimators of the form

µ̂(γ) = γX̄1 + (1− γ)X̄2,

where γ is a function of s2
1 and s2

2 .
Under the order restriction (1), the maximum likelihood estimator of µi is given by

min
t≥i

max
s≤i

∑t
j=s njX̄j/σ

2
j∑t

j=s nj/σ
2
j

. (4)

A possible alternative criterion to evaluate the goodness of estimators, mean squared error
(MSE), is Pitmam nearness.
For comparing two estimators Ti, (i = 1, 2) of a single parameter θ, Pitman (1937) proposed
the following criterion: T1 is said to be closer (better) than T2 if

PNθ(T1, T2) = P{|T2 − θ| > |T1 − θ|} >
1

2
, (5)

for all θ. The probability PNθ(T1, T2) in (5) is usually called the Pitman nearness of T1

relative to T2.
Lee (1981) showed that the estimator (4) uniformly improves upon X̄i. Rao (1980) discussed
the similarities and differences of MSE and PMN. Kelly (1989) strengthened Lee (1981)’s
result and showed that (4) universally dominates X̄i.
Nayak (1990) defined modified Pitman nearness of an estimator T1 of θ relative to the other
estimator T2 by

MPNθ(T1, T2) = P{|T1 − θ| < |T2 − θ||T1 6= T2}. (6)

If MPNθ(T1, T2) ≥ 1/2 for any parameter value, then T1 is said to be closer to θ than T2.
Gupta and Singh (1992) have applied modified Pitman nearness to the estimation of ordered
means of two normal population with common variance and have shown that MLE is closer
than the unbiased estimator.
Hwang and Peddada (1994) showed that under arbitary order restriction on µi’s, (4) univer-
sally dominates X̄i to estimate µi if µi is a node and proposed estimation procedure also for
nonnodal means. (µi is said to be a node if, for any j, it is known that either µj ≤ µi or
µi ≤ µj).

In this paper, we consider the estimation of two normal means when they are subject to
the order restriction

µ1 ≤ µ2, (7)

and σ2
i , i = 1, 2 are unknown and possibly unequal. If σ2

i ’s are known, from (7) the restricted
maximum likelihood estimators of µi’s are given by

µ̂∗1 = min

(
X̄1,

n1

σ2
1
X̄1 + n2

σ2
2
X̄2

n1

σ2
1

+ n2

σ2
2

)
, (8)

and

µ̂∗2 = max

(
X̄2,

n1

σ2
1
X̄1 + n2

σ2
2
X̄2

n1

σ2
1

+ n2

σ2
2

)
. (9)

But, if we suppose that σ2
i ’s are unknown, so we estimate σ2

i by s2
i =

∑ni
j=1(Xij−X̄i)

2/(ni−1)

and replace σ2
i with s2

i in (8) and (9) and obtain the plug-in estimators as follows

µ̂1 = min

(
X̄1,

n1

s21
X̄1 + n2

s22
X̄2

n1

s21
+ n2

s22

)
, (10)
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and

µ̂2 = max

(
X̄2,

n1

s21
X̄1 + n2

s22
X̄2

n1

s21
+ n2

s22

)
. (11)

? proposed another type of plug-in estimators µ̃′i obtained by replacing s2
i with

∑ni
j=1(Xij −

X̄i)
2/ni given in (10) and (11) and proposed results when µ1 = µ2. Chang and Shinozaki

(2012) have considered a class of estimators of µi, i = 1, 2 of the form

µ̂1(γ) = min{X̄1, γX̄1 + (1− γ)X̄2}, (12)

and
µ̂2(γ) = max{X̄2, γX̄1 + (1− γ)X̄2}. (13)

Bazyari (2015) considered the estimators of the monotonic mean vectors for two dimensional
normal distributions and compare those with the unrestricted maximum likelihood estimators
under two different cases. One case is that covariance matrices are known, the other one is
that covariance matrices are completely unknown and unequal.
To illustrate the usefulness of order restriction we have taken the following examples.
Example 1. An experiment was conducted to evaluate the effect of exercise on the age at
which a child starts to walk. Let Y denote the age (in months) at which a child starts to walk,
the data on Y are given in Tabel 1. (The original experiment consisted of another treatment,
however, here we consider only two treatments for simplicity.)

Table 1: The age at which a child first walks.

Treatment (i) Age (in months) ni ȳi µi
1 9.00 9.50 9.75 10.00 13.00 9.50 6 10.125 µ1

2 11.00 10.00 10.00 11.75 10.50 15.00 6 11.375 µ2

The first treatment group received a special walking exercise for 12 minutes per day beginning
at age 1 week and lasting 7 weeks. The second group received daily exercises but not the
special walking exercises. For treatment i (i=1, 2), let µi be the mean age (in months) at
which a child starts to walk. However, suppose that the researcher was prepared to assume
that the walking exercises would not have negative effect of increasing the mean age at which
a child starts to walk, and it was desired that this additional information be incorporated to
improve on the statistical analysis. In this case, we have that µ1 ≤ µ2.
Example 2. An experiment was done to evaluate the discrimination of men from women.
Four psychological test scores, pictorial absurdities, paper form board, tool recognition and
vocabulary were given to two different groups of 32 men and 32 women. The data on men and
women are for 32 applicants for a professional position requiring 10 or more years of successful
schooling (the completion of second-year high school in Ontario, up to a University degree).
The 4 tests were each scored according to the number of questions answered successfully. The
mean vectors of the two samples are

X̄1 = (15.7, 15.91, 27.19, 22.75)′, X̄2 = (12.34, 13.91, 16.66, 21.94)′.

Let µi = (µi1, µi2, µi3, µi4)′ for i = 1, 2, denotes the mean variable for ith group, where µij ,
j = 1, 2, 3, 4, denotes the jth element of mean vector µi. Suppose that the researcher is
prepared to assume that the elements of mean vectors of two populations are subject to the
order restriction

µ21 < µ11, µ22 < µ12, µ23 < µ13, µ24 < µ14 .

The rest of this paper is organized as follows. In section 2, we show that the plug-in estimator
µi uniformly improves upon X̄i if and only if for all σ2

i ’s the risk difference X̄i and µ̂i is
nonnegative when µ1 = µ2. In section 3, with respect to modified Pitman nearness, we
show that the estimator µ̂i(γ) improves upon X̄i uniformly imporoves upon the X̄i if and
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only if MPNµi(µ̂i(γ), X̄i) ≥ 1
2 when µ1 = µ2, which is the most critical case for uniform

improvement. Further, it is shown that µ̂i(γ) improves upon X̄i if and only if µ̂(γ) improves
upon X̄i for the same γ in estimating a common mean. To illustrate the results two numerical
examples are presented in section 4. Concluding remarks are given in section 5.

2. Uniformly improved estimator of each of two ordered normal means

We show that the most critical case for µ̂i to improve upon X̄i if and only uniformly is the
one when µ1 = µ2.

Theorem 2.1. The plug-in estimator µ̂1 uniformly improves upon the unrestricted maximum
likelihood estimator X̄1 if and only if for all σ2

i ’s the risk of µ̂1 is not larger than that of X̄1

when µ1 = µ2.

Proof. Putting γ =
(
n1
s21

)

(
n1
s21

+
n2
s22

)
, µ̂1 is expressed as

µ̂1 = min(X̄1, γX̄1 + (1− γ)X̄2), (14)

and we calculate the risk difference of X̄1 and µ̂1 as

R(µ1, X̄1)−R(µ1, µ̂1)

= E[(X̄1 − µ1)2 − {γ(X̄1 − µ1) + (1− γ)(X̄2 − µ1)}2]IX̄1≥X̄2
, (15)

where Id denotes the indicator function of the set satisfying the condition d. Making the
transformations

Z1 = X̄1 − µ1 , Z2 = X̄2 − µ1, (16)

Z1 and Z1 are mutually independently distributed as N(0, τ2
1 ) and N(µ, τ2

2 ), respectively,
where µ = µ2 − µ1 ≥ 0, τ2

1 = σ2
1/n1 and τ2

2 = σ2
2/n2. Noting that Z1, Z2 and γ are mutually

independent, we have from (16)

R(µ1, X̄1)−R(µ1, µ̂1) = E[Z2
1 − {γZ1 + (1− γ)Z2}2]IZ1≥Z2

= 2E[γ(1− γ)]E[(Z1 − Z2)Z1IZ1≥Z2 ]

+ E[(1− γ)2]E[(Z2
1 − Z2

2 )IZ1≥Z2 ]. (17)

Making the further transformations

Y1 = Z1 − Z2 , Y2 = Z1 + (
τ2

1

τ2
2

)Z2, (18)

note that Y1 and Y2 are mutually independently distributed asN(−µ, τ2
1 +τ2

2 ) andN
(

(
τ21
τ22

)µ, τ2
1 + (

τ41
τ22

)
)

,

respectively, and

Z1 =
Y1(

τ21
τ22

) + Y2

1 +
τ21
τ22

, Z2 =
Y2 − Y1

1 + (
τ21
τ22

)
.
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Then, we have

E[(Z1 − Z2)Z1IZ1≥Z2 ]

= E

τ2
2Y1

(
Y1(

τ21
τ22

) + Y2

)
τ2

1 + τ2
2

IY1≥0


= E

τ2
2

(
Y 2

1 (
τ21
τ22

) + Y1E[E[Y2]]
)

τ2
1 + τ2

2

IY1≥0


= E

[
τ2

1 (Y 2
1 + µY1)

τ2
1 + τ2

2

IY1≥0

]
≥ τ2

1

τ2
1 + τ2

2

E[Y 2
1 IY1≥0], (19)

and

E[(Z2
1 − Z2

2 )IZ1≥Z2 ]

= E

[(
τ2

2

τ2
1 + τ2

2

)2 [
Y 2

1

(
(τ2

1 )2 − (τ2
2 )2

(τ2
2 )2

)
+ 2Y1Y2

(
τ2

1 + τ2
2

τ2
2

)]
IY1≥0

]

= E

[(
τ2

2

τ2
1 + τ2

2

)2 [
Y 2

1

(
(τ2

1 )2 − (τ2
2 )2

(τ2
2 )2

)
+ 2Y1E[E[Y2]]

(
τ2

1 + τ2
2

τ2
2

)]
IY1≥0

]

= E

[
(τ2

1 − τ2
2 )Y 2

1 + 2τ2
1µY1

τ2
1 + τ2

2

IY1≥0

]
≥ τ2

1 − τ2
2

τ2
1 + τ2

2

E[Y 2
1 IY1≥0], (20)

with equalities for µ = 0 and strict inequalities for µ > 0. Thus we have from (17), (19) and
(20)

R(µ1, X̄1)−R(µ1, µ̂1)

≥
E[Y 2

1 IY1≥0
]

τ2
1 + τ2

2

{2τ2
1E[γ(1− γ)] + (τ2

1 − τ2
2 )E[(1− γ)2]}

=
E[Y 2

1 IY1≥0]

τ2
1 + τ2

2

[τ2
1 − {τ2

1E[γ2] + τ2
2E[(1− γ)2]}]

=
E[Y 2

1 IY1≥0]

Eµ1=µ2 [Y 2
1 IY1≥0]

{Rµ1=µ2(µ1, X̄1)−Rµ1=µ2(µ1, µ̂1)}, (21)

with equality for µ = 0 and strict inequality for µ > 0. Thus, we have shown that µ̂1

unifrormly improves upon X̄1 if and only if for all σ2
i ’s the risk difference is not positive

when µ1 = µ2, which is the most critical case for uniform improvement. This completes the
proof.

Regarding the improved estimation of µ2, we have a similar result as follows.

Corollary 2.2. The plug-in estimator µ̂2 uniformly improves upon the unrestricted maximum
likelihood estimator X̄2 if and only if for all σ2

i ’s the risk of µ̂2 is not larger than that of X̄2

when µ1 = µ2.

Proof. Since µ1 ≤ µ2 can be written as −µ2 ≤ −µ1, the result follows directly from theorem
(2.1).
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3. Pitman dominates of new plug-in estimators

In this section, we consider estimators of µi of the form (12) and (13) and compare them with
unbiased estimator X̄i. We first show that for the case when γ is a function of s2

1 and s2
2 the

most critical case for µ̂i(γ) to be closer to µi than X̄i is the one when µ1 = µ2 . Further,
it is shown that µ̂i(γ) improves upon X̄i if and only if µ̂(γ) dominates X̄i in the estimation
problem of a common mean.

Theorem 3.1. Suppose that 0 ≤ γ ≤ 1 is a function of s2
1 and s2

2. Then

a)MPNµi(µ̂i(γ), X̄i) ≥ 1
2 for all µ1 ≤ µ2 and for all σ2

1 and σ2
2 if and only if for all σ2

1

and σ2
2, MPNµi(µ̂i(γ), X̄i) ≥ 1

2 when µ1 = µ2.

b)MPNµi(µ̂i(γ), X̄i) ≥ 1
2 for all µ1 ≤ µ2 and for all σ2

1 and σ2
2 if and only if for all σ2

1

and σ2
2, PNµ(µ̂i(γ), X̄i) ≥ 1/2 to estimate µ when µ1 = µ2 = µ.

Proof. We need only to give a proof for the case of µ1.
a) Since µ̂1(γ) 6= X̄1 if and only if X̄2 < X̄1 and γ < 1, we have

MPNµ1(µ̂1(γ), X̄1)

= P{|µ̂1(γ)− µ1| < |X̄1 − µ1||µ̂1(γ) 6= X̄1}
= P{|γX̄1 + (1− γ)X̄2 − µ1| < |X̄1 − µ1||X̄2 < X̄1, γ < 1}
= P{−(γX̄1 + (1− γ)X̄2 − µ1) < (X̄1 − µ1)|X̄2 < X̄1, γ < 1}
= P{X̄1 − µ1 + γX̄1 + X̄2 − γX̄2 − µ2 > 0|X̄2 < X̄1, γ < 1}
= P{X̄1 − µ1 + γX̄1 − γµ1 + X̄2 − µ1 − γX̄2 + γµ1 > 0|X̄2 − µ1 < X̄1 − µ1, γ < 1}
= P{(1 + γ)Z1 + (1− γ)Z2 > 0|Z2 < Z1, γ < 1}, (22)

where Z1 = X̄1 − µ1 and Z2 = X̄2 − µ1 are distributed as N(0, τ2
1 ) and N(µ, τ2

2 ) respectively,
µ = µ1 − µ2 and τ2

i = σ2
i /ni. Now, we consider the conditional probability

P{0 < (1 + γ)Z1 + (1− γ)Z2|Z2 < Z1, s
2
1, s

2
2} ≡ f(µ),

as a function of µ. We need only to show that f(0) ≤ f(µ). Putting d = (1 + γ)/(1− γ)), we
define the sets

A = {(z1, z2)|z2 ≤ z1,−dz1 ≤ z2}, B = {(z1, z2)|z2 ≤ z1,−dz1 > z2},
A1 = {(z1, z2)|z2 ≤ z1, z2 ≥ 0}, and A2 = {(z1, z2)| − dz1 ≤ z2, z2 < 0}.

Since A1 and A2 are disjoint and A = A1 ∪A2, we have

f(µ)− f(0) =
Pµ(A)

Pµ(A) + Pµ(B)
− P0(A)

P0(A) + P0(B)

=
{Pµ(A1)P0(B)− P0(A1)Pµ(B)}+ {Pµ(A2)P0(B)− P0(A2)Pµ(B)}

{Pµ(A) + Pµ(B)} × {P0(A) + P0(B)}
.

We first show that {Pµ(A1)P0(B)− P0(A1)Pµ(B)} > 0 for µ > 0. For that purpose, we note
that

Pµ(B) =

∫ 0

−∞

1√
2πτ2

2

exp{−(z2 − µ)2

2τ2
2

}
∫ −z2/d
z2

1

τ1
φ(z1/τ1)dz1dz2

< exp{− µ2

2τ2
2

}
∫ 0

−∞

1√
2πτ2

2

exp{− z2
2

2τ2
2

}
∫ −z2/d
z2

1

τ1
φ(z1/τ1)dz1dz2

= exp{− µ2

2τ2
2

}P0(B). (23)
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Similarly, we have

Pµ(A1) =

∫ ∞
0

1√
2πτ2

2

exp{−(z2 − µ)2

2τ2
2

}
∫ ∞
z2

1

τ1
φ(z1/τ1)dz1dz2

> exp{− µ2

2τ2
2

}P0(A1). (24)

From (23) and (24), we see that {Pµ(A1)P0(B)− P0(A1)Pµ(B)} > 0.
Next, we show that {Pµ(A2)P0(B)− P0(A2)Pµ(B)} > 0 for µ > 0. We express Pµ(A2) as

Pµ(A2) =

∫ 0

−∞

1√
2πτ2

2

exp{−(z2 − µ)2

2τ2
2

}
∫ ∞
−z2/d

1

τ1
φ(z1/τ1)dz1dz2

= Pµ{Z2 < 0}Eµ[g(Z2)|Z2 < 0],

where g(z2) =
∫∞
−z2/d φ(z1/τ1)/τ1dz1. Since g(z2) is an increasing function and the conditional

distribution of Z2 < 0 is stochastically smallest when µ = 0, we have for µ > 0

Pµ(A2) > Pµ{Z2 < 0}E0[g(Z2)|Z2 < 0] = P0{A2}Pµ{Z2 < 0}/P0{Z2}. (25)

Similarly, since h(z2) =
∫ −z2/d
z2

φ(z1/τ1)/τ1dz1 is a decreasing function, we have

Pµ(B) =

∫ 0

−∞

1√
2πτ2

2

exp{−(z2 − µ)2

2τ2
2

}
∫ −z2/d
z2

1

τ1
φ(z1/τ1)dz1dz2

< Pµ{Z2 < 0}Eµ[h(Z2)|Z2 < 0]

= P0(B)Pµ{Z2 < 0}/P0{Z2 < 0}. (26)

From (25) and (26), we have {Pµ(A2)P0(B) − P0(A2)Pµ(B)} > 0 and we have shown that
f(µ) > f(0) for µ > 0.

b)In the estimation problem of a common mean, as is stated in Kubokawa (1989) and accord-
ing to the formula (26), µ̂(γ) is closer to µ than X̄1 if and only if

P{(1− γ)(U2 − U1)2 + 2U1(U2 − U1) ≤ 0} ≥ 1

2
, (27)

where Ui = X̄i − µ, i = 1, 2. Since

(1− γ)(U2 − U1)2 + 2U1(U2 − U1) = (U2 − U1){(1 + γ)U1 + (1− γ)U2}, (28)

the left-hand side of (27) is expressed as

P{(1− γ)(U2 − U1)2 + 2U1(U2 − U1) ≤ 0}
= P{U2 ≥ U1}P{(1 + γ)U1 + (1− γ)U2 < 0|U2 ≥ U1}
+ P{U2 < U1}P{(1 + γ)U1 + (1− γ)U2 > 0|U2 < U1}.

We notice that

P{(1 + γ)U1 + (1− γ)U2 < 0|U2 ≥ U1}
= P{(1 + γ)U1 + (1− γ)U2 > 0|U2 < U1}.

Since U1 and U2 are symmetrically distributed about the origin, thus

P{U2 ≥ U1} = P{U2 < U1} =
1

2
. (29)

We see that the left-hand side of (26) is equal to

P{(1 + γ)U1 + (1− γ)U2 > 0|U2 < U1},

which is MPNµ1(µ̂1(γ), X̄1) given by (22) for the case µ1 = µ2. Therefore, we see from
(a) that MPNµ1(µ̂1(γ), X̄1)) ≥ 1

2 for all µ1 ≤ µ2 and for all σ2
i , i = 1, 2 if and only if

PNµ(µ̂(γ), X̄i) ≥ 1
2 for all µ and for all σ2

i , i = 1, 2. We complete the proof.
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Remark 3.2. In the estimation problem of a common mean, Kubokawa (1989) has given a
sufficient condition on sample sizes n1 and n2 for µ̂(γ) to be closer to µ than X̄i for some
specified class of γ .

Remark 3.3. We should mention about the general case when γ is a function of s2
i , i = 1, 2

and (X̄1 − X̄2)2. We first consider the case when we estimate µ1 and suppose that µ̂1(γ0)
is closer to µ1 than X̄1 , where γ0 is a function of s2

i and possibly (X̄1 − X̄2)2 . For any γ
satisfying γ0 ≤ γ < 1 if γ0 < 1, µ̂1(γ) is closer to µ1 than X̄1. This is seen from (22), since
(22) is true even when γ depends on (X̄1 − X̄2)2 and (22) is an increasing function of γ.

4. Examples

In this section, to illustrate the results the following numerical examples are presented.
Example 3. Consider two univariate normal distributions, when they are subject to the
order restriction µ1 ≤ µ2. Six different cases are considered here. We simulate the values
of random samples X11, X12, · · · , X1n1 , from the univariate distributions N(µ1r, s1r) with
means µ1r, r = a, b, c, and known variances s1r respectively. Also the values of random
samples X21, X22, · · · , X2n2 , from the univariate normal distributions N(µ2r, s2r) with means
µ2r, r = a, b, c, and known variances s2r, respectively. In each simulation, the process of
computation is repeated 10000 times to get an estimate of sample means X̄1 and X̄2, isotonic
estimators of means, i.e. µ̂1 and µ̂1 by (12) and (13), and the risk difference RDX̄1,µ̂1 =
R(µ1, X̄1)−R(µ1, µ̂1) and RDX̄2,µ̂2 = R(µ2, X̄2)−R(µ2, µ̂2). For differente values of sample
sizes and r = a, b, c the results are given in Table 2. From the Table 2, it is completely clear
that µ1a ≤ µ2a, µ1b ≤ µ2b and µ1c ≤ µ2c and in case 2 (r=b)[n1 = 10, n2 = 15, µ1 = 4µ2 =
4, s1 = 2, s2 = 3] and in case 1 (r=a) [n1 = 20, n2 = 25, µ1 = 4µ2 = 4, s1 = 5, s2 = 6],
the isotonic regression µ̂1 uniformly has the smaller risk than the unrestricted maximum
likelihood estimator, X̄1 and the isotonic regression µ̂2 uniformly has the smaller risk than
the unrestricted maximum likelihood estimator, X̄2, respectively. But in other cases the
isotonic regression estimator µ̂1 uniformly has not the smaller risk than the unrestricted
maximum likelihood estimator, X̄1 and the isotonic regression estimator µ̂2 uniformly has not
the smaller risk than the unrestricted maximum likelihood estimator, X̄2, since RDX̄1,µ̂1 < 0
and RDX̄2,µ̂2 < 0, respectively. Figure 1 shows the risk deifference RDX̄1,µ̂1 = R(µ1, X̄1) −
R(µ1, µ̂1) as a function of µ1 = µ2, where µ = µ2r − µ1r, for different values of r. Also, figure
2 shows the risk deifference RDX̄2,µ̂2 = R(µ2, X̄2)−R(µ2, µ̂2) as a function of µ1 = µ2, where
µ = µ2r − µ1r, for different values of r.

Table 2: Simulation from two univariate normal distributions: the values of risks difference
µ̂1 and µ̂2.

Sample sizes N(µ1r, s1r) N(µ2r, s2r) RDX̄1,µ̂1
RDX̄2,µ̂2

case1(r = a) n1 = 10 µ1a = 3 µ2a = 4 1.179 -0.235
n2 = 15 s1a = 4 s2a = 5

case2(r = b) n1 = 10 µ1b = 4 µ2b = 4 0.011 0.127
n2 = 15 s1b = 2 s2b = 3

case3(r = c) n1 = 10 µ1c = 3 µ2c = 3 -0.139 -0.110
n2 = 10 s1c = 5 s2c = 6

case1(r = a) n1 = 20 µ1a = 4 µ2a = 4 0.048 0.013
n2 = 25 s1a = 5 s2a = 6

case2(r = b) n1 = 20 µ1b = 5 µ2b = 5 -0.019 -0.067
n2 = 25 s1b = 4 s2b = 6

case3(r = c) n1 = 20 µ1c = 7 µ2c = 7 -0.037 -0.068
n2 = 20 s1c = 6 s2c = 7
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Figure 1: Risk difference RDX̄1,µ̂1 = R(µ1, X̄1)−R(µ1, µ̂1).
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Figure 2: Risk difference RDX̄2,µ̂2 = R(µ2, X̄2)−R(µ2, µ̂2).
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Example 4. Consider two univariate normal distributions, when they are subject to the
order restriction µ1 ≤ µ2. Six different cases are considered here. We simulate the values
of random samples X11, X12, · · · , X1n1 , from the univariate distributions N(µ1r, s1r) with
means µ1r, r = a, b, c, and known variances s1r respectively. Also the values of random
samples X21, X22, · · · , X2n2 , from the univariate normal distributions N(µ2r, s2r) with means
µ2r, r = a, b, c, and known variances s2r, respectively. In each simulation, the process of
computation is repeated 10000 times to get an estimate of sample means X̄1 and X̄2, isotonic
estimators of means, i.e. µ̂1 and µ̂1 by (12) and (13), and MPNµi(µ̂i(γ), X̄i) ≥ 1

2 . For
differente values of sample sizes and r = a, b, c the results are given in Table 3. From the
Table 3, it is completely clear that µ1a ≤ µ2a, µ1b ≤ µ2b and µ1c ≤ µ2c, and modified Pitman
nearness of (X̄1, µ1) is greater than 1

2 for all of cases. Also, the modified Pitman nearness of
(X̄2, µ2) is greater than 1

2 in cases 1,2,3 and 5. But in cases 4 and 6, the modified Pitman
nearness of (X̄2, µ2) is not greater than 1

2 . Figure 3 shows MPNµ1 = MPNµ1(µ̂1(γ), X̄1) as
a function of µ1 = µ2, where µ = µ2r − µ1r, for different values of r. Also, figure 4 shows
MPNµ2 = MPNµ2(µ̂2(γ), X̄2) as a function of µ1 = µ2, where µ = µ2r − µ1r, for different
values of r.

Table 3: Simulation from two univariate normal distributions: the values of MPNµ1 =
MPNµ1(µ̂1(γ), X̄1) and MPNµ2 = MPNµ2(µ̂2(γ), X̄2).

Sample sizes N(µ1r, s1r) N(µ2r, s2r) MPNµ1 MPNµ2

case1(r = a) n1 = 15 µ1a = 6 µ2a = 7 0.208 0.568
n2 = 15 s1a = 4 s2a = 5

case2(r = b) n1 = 10 µ1b = 4 µ2b = 5 0.252 0.580
n2 = 20 s1b = 5 s2b = 7

case3(r = c) n1 = 15 µ1c = 3 µ2c = 3 0.303 0.618
n2 = 20 s1c = 5 s2c = 7

case1(r = a) n1 = 20 µ1a = 9 µ2a = 9 0.428 0.379
n2 = 25 s1a = 7 s2a = 4

case2(r = b) n1 = 20 µ1b = 6 µ2b = 7 0.188 0.549
n2 = 20 s1b = 4 s2b = 5

case3(r = c) n1 = 15 µ1c = 5 µ2c = 7 0.074 0.372
n2 = 20 s1c = 3 s2c = 6
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Figure 3: MPNµ1 = MPNµ1(µ̂1(γ), X̄1).
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Figure 4: MPNµ2 = MPNµ2(µ̂2(γ), X̄2).
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5. Conclusion

In this paper, we have deal with the problem of estimating two ordered normal means under
the squared error loss function when the variances are unknown and unequal. We showed
that the plug-in estimator µ̂1 uniformly improves upon the unrestricted maximum likelihood
estimator X̄1 if and only if for all σ2

i , the risk of µ̂1 is not larger than that of X̄1 when µ1 = µ2,
and showed that the plug-in estimator µ̂2 uniformly improves upon the unrestricted maximum
likelihood estimator X̄2 if and only if for all σ2

i , the risk of µ̂2 is not larger than that of X̄2

when µ1 = µ2. Also, under modified Pitman nearness criterion when the order restriction on
variances is not present, it is shown that the most critical case for µ̂i(γ) to improve upon X̄i

is the one when µ1 = µ2 and that the problem of improving upon X̄i reduces to the one of a
common mean. Also, two numerical examples presented to illustrate the results. In example
1, the data simulated from different bivariate normal distributions. We showed that, in two
cases, the isotonic regression estimators uniformly have the smaller risk than the unrestricted
maximum likelihood estimator since the risk differences are positive and in the other cases, the
isotonic regression estimators uniformly have the smaller risk than the unrestricted maximum
likelihood estimator since the risk differences are negative. In example 2, the data simulated
from different bivariate normal distributions. We showed that the modified Pitman nearness
of (X̄1, µ1) is greater than 1

2 for all of cases. But, the modified Pitman nearness of (X̄2, µ2)
is greater than 1

2 for some cases.
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