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Abstract

This paper derives Bayes shrinkage estimator of Rayleigh parameter and its associated
risk function based on conjugate prior under the assumption of general entropy loss func-
tion for progressive Type-II censored data. Risk function of maximum likelihood estimate,
Bayes estimate and Bayes shrinkage estimate have also been derived and compared. An
empirical Bayes estimate procedure has been suggested to include a guess value in case
of the Bayes shrinkage estimation. Risk function of empirical Bayes estimate and empir-
ical Bayes shrinkage estimate have also been derived and compared. In conclusion, an
illustrative example is presented to assess how the Rayleigh distribution fits a real data
set.

Keywords: Bayes estimate, conjugate prior, empirical Bayes estimate, Rayleigh distribution,
risk function.

1. Introduction

Rayleigh distribution first introduced in the literature by Lord Rayleigh (1980) has been
widely used in reliability theory and survival analysis because of it’s flexibility and simplicity.
An important characteristic of the Rayleigh distribution is that its failure rate is a linear
function of time. The reliability function of Rayleigh distribution decreases at a much higher
rate than the reliability function of exponential distribution. The probability density function
of one parameter Rayleigh distribution has the form:

f(x | θ) =
x

θ
exp

(
−x

2

2θ

)
; x > 0, θ > 0. (1)

and the cumulative density function (cdf) has the form:

F (x | θ) = 1− exp
(
−x

2

2θ

)
; x > 0, θ > 0. (2)

In recent years, several authors have carried out extensive studies in relation to the estimation,
prediction and other inferences with respect to Rayleigh distribution. Sinha and Howlader
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4 On Rayleigh Distribution

(1983) obtained credible and highest posterior density (HPD) intervals of the parameter and
reliability of Rayleigh distribution. Ariyawansa and Templeton (1984) have also discussed
some of its applications. Howlader (1985) obtained HPD prediction intervals for the Rayleigh
distribution. Howlader and Hossain (1995) obtained Bayes estimators for the scale parameter
and the reliability function in the case of Type-II censored sampling. Abd Elfattah, Hassan,
and Ziedan (2006) studied the efficiency of the maximum likelihood estimates of the param-
eter under three cases, namely, Type-I, Type-II and progressive Type-II censored sampling
schemes. Wu, Chen, and Chen (2006) obtained Bayes estimators and highest posterior den-
sity credible intervals for parameter and reliability function of the Rayleigh distribution, as
well as the Bayes predictive estimator and prediction interval for future observations based
on progressively Type-II censored samples. Hendi, Abu-Youssef, and Alraddadi (2007) ob-
tained Bayes estimators of the scale parameter, reliability function and failure rate by using
non-informative prior and Hartigan prior based on upper record values. Dey and Das (2007)
obtained Bayesian predictive intervals of the parameter of Rayleigh distribution. Dey (2009)
also obtained Bayes estimators for the parameter and reliability function of the Rayleigh
distribution under different loss function. Dey (2009) also studied the Bayes estimators for
the parameter and reliability function of Rayleigh distribution based on complete as well as
Type-II censored samples, also compared relative risk functions.

Our key role is to obtain Bayes shrinkage estimator for the parameter of Rayleigh distribu-
tion, which is different than the approaches referenced above. The shrinkage estimator are
valuable as in many practical situations, the experimenter has some prior information about
the parameter value in the form of a point guess value and that value can be used to make
inference of the parameter. In this condition, our parameter of interest is θ and thereby the
guess value θ0 can be used to make inference for θ. In this article, we use an empirical Bayes
estimation procedure for θ0 based on sample observation.

Several authors have considered the use of the point guess value for inferences with regard
to the parameter. For instance; Prakash and Singh (2006) studied shrinkage estimators for
the inverse dispersion for inverse Gaussian distribution under LINEX loss function. Singh,
Prakash, and Singh (2007) studied shrinkage estimators for the shape parameter of Pareto
distribution using the LINEX loss function. Singh, Singh, Singh, and Upadhyay (2008) studied
the Bayes estimators of the failure rate and reliability function for a one-parameter exponential
distribution by utilizing a point guess estimate of the parameter. Prakash (2009) obtained
some shrinkage estimators and the Bayes estimators for the shape parameter of a Pareto
distribution under the general entropy loss function. Al-Hemyari and Al-Dabag (2012) studied
a class of shrinkage estimators for the shape parameter of the Weibull lifetime model. Salman
and Shareef (2014) studied preliminary test single stage Bayesian shrinkage estimator for the
scale parameter of an exponential distribution under the improper prior distribution using
the quadratic loss function.

Perhaps the most popular technique that utilizes the point guess value is the shrinkage tech-
nique, originally suggested by Thompson (1968). The shrinkage estimator performs better
than the usual estimator when a guess value is approximately the true value of the parameter
given the sample size is small. Thompson (1968) considered the problem of shrinking an
unbiased estimator ζ̂ of the parameter ζ toward a natural origin ζ0 and suggested a shrinkage
type estimator kζ̂ + (1− k)ζ0, where k (0 < k < 1)is a constant.

The shrinkage technique has been utilized in numerous studies namely; mean survival time
in epidemiological studies (Harris and Shakarki 1979), projecting the money supply (Tso
1990), estimating mortality rates (Marshall 1991) and improving estimation in sample surveys
(Wooff 1985). In life-testing and reliability experiments, units that are subject to test are
sometimes lost or removed from the experiment before failure. Such units are usually called
the censored units.The most common censoring schemes are Type-I censoring and Type-II
censoring but one of the drawbacks of the conventional Type-I and Type-II censoring schemes
is that they are inflexible in removing units at that point of execution but rather at the end
of the experiment. One censoring scheme known as progressive Type-II censoring scheme
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overcomes this shortcoming and this has led to its popularity in recent years.

1.1. Review of progressive Type-II sampling

Progressive censoring is useful in both industrial life testing applications and clinical settings;
it allows the removal of surviving experimental units before the termination of the test.
Balakrishnan and Aggarwala (2000) provided a comprehensive reference on the subject of
progressive censoring and its applications. For further reading, the readers are referred to
Kundu (2008), Kundu and Pradhan (2009), Ng, Kundu, and Chan (2009) and the references
cited therein. A schematic representation of progressively Type-II right censored sample is
depicted in Figure 1.1 (Cramer and Iliopoulos 2010).

Under this censoring scheme, n units are placed on a test at time zero and m failures are to be
observed. When the first failure is observed, r1 of surviving units are randomly selected and
removed from the experiment. At the time of second failure, r2 of the remaining n − r1 − 1
units are randomly selected and removed from the experiment. Finally, at the mth failure
all the remaining surviving units rm = n−m− r1 − r2 − . . . − rm−1 are removed from the
experiment. In this censoring scheme, r1, r2, . . . , rm are all prefixed.
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Figure 1: Schematic representation of a progressively Type-II right censored sample where
x1:m:n, x2:m:n, . . . , xm:m:n denote the observed failure times and r1, r2, . . . , rm denote the cor-
responding numbers of items removed (withdrawn) from the test.

The key goal of our article is to obtain Bayes estimator and Bayes shrinkage estimator for the
parameter of Rayleigh distribution with conjugate prior distribution based on progressively
Type-II censored samples. Since we have no idea about the true value of the parameter θ
and thus the guess value θ0, so we propose to obtain the empirical Bayes estimate of θ0 on
the basis of sample observation to approximate the guess value θ0. Unlike the publications
cited above where the focus is on obtaining shrinkage estimator based on complete or Type-
II censored samples using exponential, Pareto or Weibull distribution, we have considered
Rayleigh distribution with progressive Type-II censoring schemes. Moreover, an empirical
Bayes estimate has been taken as guess value for obtaining Bayes shrinkage estimates. Also,
risk function of empirical Bayes estimate and empirical Bayes shrinkage estimate have been
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obtained for comparison.

The rest of the paper is organized as follows. Section 2 discusses prior and loss function used
in our Bayesian estimation. In Section 3, we obtained the Bayes’ estimators of θ and risk
function of maximum likelihood estimator, Bayes estimator and Bayes shrinkage estimator.
A simulation study is performed in Section 4, and a real life data is used in Section 5 for the
evaluation of classical Bayes estimate and Bayes shrinkage estimate and their estimated risks.
We conclude the paper in Section 6.

2. Prior and loss function

In the Bayesian approach, θ is considered a random variable with some specified distribution.
In this paper, we consider conjugate prior distribution of the form

g(θ | α, β) ∝ θ−(α+1)exp

(
−β
θ

)
, θ > 0, (3)

where α > 0 and β > 0. The advantage of using natural conjugate prior is that the resulting
posterior distribution will also belong to the same family. Furthermore, Jeffreys’ prior can
be obtained as a special case of (3) by substituting α = β = 0 and Hartigan’s prior can be
obtained by substituting α = 2, β = 0.

In many practical situations it is more realistic to express the loss in terms of ratio θ̂/θ. In this
case, Calabria and Pulcini (1996) proposed a loss function, the general entropy loss function
of the form:

L(θ̂, θ) ∝

[(
θ̂

θ

)p
− p ln

(
θ̂

θ

)
− 1

]
; p 6= 0, (4)

whose minimum occurs at θ̂ = θ. This loss is a generalization of the entropy loss used
by several authors [see, for example, Dey, Ghosh, and Srinivasan (1987) and Dey and Liu

(1992)], where the shape parameter p is taken to be equal to 1. If we assume, ln
(
θ̂
θ

)
=

θ̂ − θ i.e.,
(
θ̂
θ

)
= e(θ̂−θ), we get the linear exponential (LINEX) loss function of the form,[

ep(θ̂−θ) − p(θ̂ − θ)− 1
]

which is proposed by Zellner (1986). Following Calabria and Pulcini

(1996), the Bayes estimators for the parameter θ given data x under general entropy loss
function (GELF) may be defined as

θ̂GB =
[
E
(
θ−p | x

)]− 1
p .

3. Estimation

Let X = (X1:m:n, X2:m:n, . . . , Xm:m:n) be a progressively Type-II right censored sample from
a life test of effective sample size m from a sample of size n, where the ordered lifetimes have a
Rayleigh distribution with pdf and cdf as given by (1) and (2) with a pre-determined number
of removal of units from the test, say R1 = r1, R2 = r2, . . . , Rm = rm. For convenience, we
write Xi:m:n as X(i), the ith ordered lifetime. Here the likelihood function of θ is given by

l(θ) = A.

m∏
i=1

f(x(i) | θ)[1− F (x(i) | θ)]ri , where A = n(n− r1 − 1)...(n−
m−1∑
j=1

rj −m+ 1)

= A.θ−me
− 1

2θ

∑m
i=1(1+ri)x

2
(i)

m∏
i=1

x(i)

= A.θ−me−
T
2θ

m∏
i=1

x(i), (5)
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where T =
∑m

i=1(1 + ri)x
2
(i), and x(i) is the observation of X(i); i = 1, 2, ...m. Here the

maximum likelihood estimate of θ is θ̂MLE = T
2m . It is to be noted that θ̂MLE is an unbiased

estimator of θ.

Lemma 3.1 Under progressive Type-II censoring, T
θ follows a chi-square distribution with

degrees of freedom 2m.

Proof: Let Zi =
X2

(i)

2θ ; i = 1, . . . ,m, then Z1 < Z2 < . . . < Zm is a progressive Type-II
censored sample from the standard exponential distribution. Considering the following trans-
formations
W1 = nZ1

W2 = (n− r1 − 1)(Z2 − Z1)
W3 = (n− r1 − r2 − 2)(Z3 − Z2)
.................
Wm = (n− r1 − r2 − . . .− rm−1 −m+ 1)(Zm − Zm−1)
Hence W1,W2, . . . ,Wm are all independent and identically distributed as standard exponen-
tial. Then we have
2
∑m

i=1Wi ∼ χ2
2m, that is

2
∑m

i=1Wi = 2
∑m

i=1(1 + ri)Zi = 2
∑m

i=1(1 + ri)
X2

(i)

2θ = T
θ ∼ χ

2
2m. �

Combining the prior density (3) with the likelihood function (5) and by using Bayes theorem
the joint posterior distribution is derived as follows:

π(θ | T ) =

(
β + T

2

)m+α
θ−(m+α+1)e−

1
θ (β+T

2 )

Γ(m+ α)
.

The posterior distribution of θ is inverse gamma with parameters (m+α) and
(
β + T

2

)
. Under

the general entropy loss function, the Bayes estimator of θ is the posterior expectation

θ̂GB =
[
E
(
θ−p | T

)]− 1
p

=

[∫ ∞
0

θ−pπ(θ | T )dθ

]− 1
p

.

On simplification we get,

θ̂GB =

[
Γ(m+ α)

Γ(m+ α+ p)

] 1
p
(
β +

T

2

)
. (6)

We choose the parameters of the prior distribution g(θ) such that E(θ̂GB) = θ0, where θ0 is
the point guess value of θ. This gives

E(θ̂GB) = θ0 ⇒ β =

(
1

c
−m

)
θ0,

where c =
[

Γ(m+α)
Γ(m+α+p)

] 1
p
.

Substituting this value of β in θ̂GB, we obtain the Bayes shrinkage estimator for θ under
GELF as

θ̂SGB = c.m.T1 + (1− c.m)θ0 = k1.T1 + (1− k1)θ0, (7)

where, k1 = c.m =
[

Γ(m+α)
Γ(m+α+p)

] 1
p
m and T1 = T

2m(= θ̂MLE).
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The pdf of W = θ̂GB
θ = a(θ) + b.Tθ is given by

fW (w) =

 1
b.2mΓ(m)e

− 1
2

(
w−a(θ)

b

) (
w−a(θ)

b

)m−1
, w > a(θ),

0, elsewhere,

where a(θ) = c.β
θ and b = c

2 .

The pdf of V =
θ̂SGB
θ = e(θ) + d.Tθ is given by

fV (v) =

 1
d.2mΓ(m)e

− 1
2

(
v−e(θ)
d

) (
v−e(θ)
d

)m−1
, v > e(θ)

0, elsewhere,

where, e(θ) = (1−k1)θ0
θ and d = k1

2m .

The risk function of θ̂GB under GELF is given by

RGB(θ) = E[L(θ̂GB, θ)]

= E

[(
θ̂GB
θ

)p
− p ln

(
θ̂GB
θ

)
− 1

]

= E

[(
a(θ) + b.

T

θ

)p
− p ln

(
a(θ) + b.

T

θ

)
− 1

]
=

p∑
j=0

p(p− 1) . . . (p− j + 1)

j!
a(θ)j(2b)p−j

Γ(m+ j)

Γ(m)

−p
∫ ∞

0
ln(a(θ) + b.w).

1

2mΓ(m)
e−

w
2 wm−1dw − 1 for p > 0. (8)

Similarly, we will have the risk function of θ̂SGB under GELF as RGBS(θ) and is given by

RGBS(θ) = E

[(
θ̂SGB
θ

)p
− p ln

(
θ̂SGB
θ

)
− 1

]
(9)

= E

[(
e(θ) + d.

T

θ

)p
− p ln

(
e(θ) + d.

T

θ

)
− 1

]
=

p∑
j=0

p(p− 1)...(p− j + 1)

j!

(
(1− k1)θ0

θ

)j (k1

m

)p−j Γ(m+ j)

Γ(m)

−p
∫ ∞

0
ln

((
(1− k1)θ0

θ

)
+

(
k1

2m

)
.w

)
.

1

2mΓ(m)
e−

w
2 wm−1dw − 1 for p > 0.

The risk function of θ̂MLE under GELF is given by

RMLE(θ) = E

[(
θ̂MLE

θ

)p
− p ln

(
θ̂MLE

θ

)
− 1

]

=
Γ(m+ p)

Γ(m)
− p[ψ(m)− ln(2m)]− 1 for p > 0, (10)

where ψ(.) is the digamma function.
To find the Bayes shrinkage estimator, we need a guess value of θ0 that at times could be
unknown. We will use the empirical Bayes estimate of θ in place of θ0. The Bayes’ estimator
given in (6) depends on α and β, and that in (7) depends on α, which are the parameters
of the prior distribution of θ. The parameters α and β, could be estimated by means of
empirical Bayes’ procedure (see Lindley (1969) and Awad and Gharraf (1986)). Given the
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random sample x, the likelihood function of θ has an inverse gamma density with shape
parameter (m − 1) and scale parameter T

2 . Following this, we can use the estimates of the
prior parameters α and β from the sample by (m− 1) and T

2 respectively. Hence we can take

θ̂0 as

θ̂0 = θ̂GB.emp =

[
Γ(2m− 1)

Γ(2m+ p− 1)

] 1
p

T

= cemp.T, (11)

with cemp =
[

Γ(2m−1)
Γ(2m+p−1)

] 1
p
.

To find out θ̂GBS.emp, we substitute θ̂0 in place of θ0 and hence

θ̂GBS.emp = cemp.m.T1 + (1− cemp.m)θ̂0

= k1.emp.T1 + (1− k1.emp)θ̂0

= k1.emp.θ̂MLE + (1− k1.emp)θ̂0

=

(
3

2
cemp −m.c2

emp

)
T = kempT. (12)

The risk functions of empirical Bayes estimator and empirical Bayes shrinkage estimator are

RGB.emp(θ) =
(2cemp)

p.Γ(m+ p)

Γ(m)
− p[ψ(m) + ln{2cemp}]− 1 (13)

and

RGBS.emp(θ) =
(2kemp)

p.Γ(m+ p)

Γ(m)
− p[ψ(m) + ln{2kemp}]− 1 (14)

respectively.

4. Simulation study

We present some experimental results to observe the performance of Bayes estimation of θ us-
ing the prior (3) for different sample sizes, different effective sample sizes, different priors, and
for different sampling schemes. We have considered different sample sizes n = 20, 25, 30, 35,
different effective sample sizes; m = 10, 15, and 20, different hyper-parameter values for α and
β, and six ([1] - [6]) different sampling schemes as described in Table 1. We have simulated
progressive Type-II samples using the algorithm proposed by Balakrishnan and Sandhu (1995)
from the Rayleigh model with θ = 2. The estimators are compared based on the average value
of estimates and their corresponding risk performances. For Bayesian computation, we have
considered two different set of hyperparameters: α = β = 0, which is a non-informative prior
(labeled as “Prior 1”) and α = β = 2, which is an informative prior (labeled as “Prior 2”).
The two different values of p are considered for the loss function: p = 1, 2. The simulation
results are summarized in Table 2 and 3. All results are based on 10, 000 repetitions.

From Tables 2 and 3 we notice that risk does not depend on sample size n but it depends on
effective sample size m, and as effective sample size increases, the risk decreases and average
Bayes estimates come closer to the true value of θ. When a guess value θ0 is chosen in the
neighborhood of θ, then obviously the risk is minimum and Bayes shrinkage estimate is better.
But in practice, θ is unknown and choosing a guess value is difficult one. Even though the risk
for empirical Bayes estimates are a bit more, but from a pragmatic point of view, empirical
Bayes shrinkage estimator is worthwhile.
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Table 1: Different progressive Type-II censoring schemes used in the simulation study

Number Scheme

[1] (0 0 0 0 0 0 0 0 0 10)
[2] (0 0 0 0 0 0 0 0 0 15)
[3] (0 0 0 0 0 0 0 0 0 0 0 0 0 0 10)
[4] (0 0 0 0 0 0 0 0 0 20)
[5] (0 0 0 0 0 0 0 0 0 0 0 0 0 0 15)
[6] (0 2 1 0 0 2 1 2 1 1 0 0 2 0 8)

∗ In the Table, Scheme (0 0 0 r) indicates that at 1st, 2nd and 3rd failure, no active unit is withdrawn or
removed but at 4th failure, r active units are withdrawn or removed from the test.

Table 2: The average MLE and the Bayes estimators (θ̂) from different estimation procedures
for the parameter θ under the general entropy loss function with p = 1. The true risk (in
bold) and the estimated risk are presented within parentheses.

(n, m, Censoring scheme)
Estimate (20,10,[1]) (25, 10, [2]) (25, 15, [3]) (30, 10, [4]) (30, 15, [5]) (35, 20, [6])

θ̂MLE 2.004 1.971 1.997 2.008 1.995 1.993
(0.051, 0.049) (0.051, 0.052) (0.034, 0.036) (0.050, 0.047) (0.033, 0.031) (0.025, 0.026)

Prior 1 θ̂GB 2.004 1.971 1.997 2.008 1.995 1.993
(0.051, 0.049) (0.051, 0.052) (0.034, 0.036) (0.050, 0.047) (0.033, 0.031) (0.025, 0.026)

θ̂GBS 2.004 1.971 1.997 2.008 1.995 1.993
(0.051, 0.049) (0.051, 0.052) (0.034, 0.036) (0.050, 0.047) (0.033, 0.031) (0.025, 0.026)

θ̂GB.emp 2.109 2.074 2.066 2.114 2.064 2.052
(0.052, 0.051) (0.052, 0.052) (0.034, 0.037) (0.052, 0.049) (0.034, 0.031) (0.025, 0.026)

θ̂GBS.emp 2.054 2.019 2.031 2.058 2.028 2.019
(0.051, 0.049) (0.051, 0.052) (0.033, 0.037) (0.051, 0.048) (0.033, 0.031) (0.025, 0.026)

Prior 2 θ̂GB 1.837 1.837 1.874 1.813 1.885 1.902
(0.045, 0.046) (0.045, 0.046) (0.031, 0.032) (0.045, 0.044) (0.031, 0.029) (0.025, 0.026)

θ̂GBS 1.921 1.921 1.934 1.896 1.943 1.949
(0.038, 0.039) (0.038, 0.039) (0.028, 0.029) (0.038, 0.037) (0.028, 0.026) (0.023, 0.025)

θ̂GB.emp 2.110 2.110 2.060 2.079 2.071 2.069
(0.052, 0.054) (0.052, 0.054) (0.034, 0.035) (0.052, 0.049) (0.034, 0.032) (0.022, 0.024)

θ̂GBS.emp 2.054 2.054 2.024 2.024 2.035 2.031
(0.051, 0.053) (0.051, 0.053) (0.033, 0.034) (0.051, 0.049) (0.033, 0.031) (0.025, 0.026)

5. Data analysis

We are considering the data that appeared in tests on endurance of deep grove ball bearings
[Lawless (1982), p.228]. The data are the number of hundreds of million revolutions before
failure for each of the 23 ball bearings in the life test:
0.1788, 0.2892, 0.33, 0.4152, 0.4212, 0.456, 0.4848, 0.5184, 0.5196, 0.5412, 0.5556, 0.678,
0.6864, 0.6864, 0.6888, 0.8412, 0.9312, 0.9864, 1.0512, 1.0584, 1.2792, 1.2804, 1.734.
To study the goodness of fit of the Rayleigh model, we compute the χ2 statistic (with 3
degrees of freedom) and it is 1.0312 with the corresponding p-value 0.7937. Therefore, the
high p-value clearly suggests that the one parameter Rayleigh model can be used to analyze
this data set. Besides this, we also plotted the scaled TTT (TTT stands for “total time on
test”) transformed (Aarset 1987) of the ball bearing data. Usually this plot is used to identify
whether a random sample is from a lifetime distribution with constant against bathtub-type
hazard rate; for further details see Aarset (1987). Figure 2 indicates that the empirical hazard
function is unimodal and therefore it is reasonable to use Rayleigh distribution to analyze the
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Table 3: The average MLE and the Bayes estimators (θ̂) from different estimation procedures
for the parameter θ under the general entropy loss function with p = 2. The true risk (in
bold) and the estimated risk are presented within parentheses.

(n, m, Censoring scheme)
Estimate (20,10,[1]) (25, 10, [2]) (25, 15, [3]) (30, 10, [4]) (30, 15, [5]) (35, 20, [6])

θ̂MLE 2.002 1.997 2.017 1.988 1.986 1.979
(0.201, 0.198) (0.201, 0.198) (0.134, 0.128) (0.201, 0.196) (0.134, 0.139) (0.104, 0.109)

Prior 1 θ̂GB 1.909 1.904 1.953 1.896 1.923 1.916
(0.196, 0.198) (0.196, 0.193) (0.131, 0.125) (0.196, 0.193) (0.131, 0.138) (0.106, 0.103)

θ̂GBS 1.979 1.974 2.001 2.039 1.971 1.967
(0.185, 0.193) (0.185, 0.182) (0.126, 0.121) (0.185, 0.181) (0.126, 0.132) (0.105, 0.103)

θ̂GB.emp 2.054 2.049 2.051 2.114 2.020 2.001
(0.208, 0.205) (0.208, 0.204) (0.136, 0.132) (0.208, 0.202) (0.136, 0.142) (0.104, 0.102)

θ̂GBS.emp 2.028 2.022 2.033 2.013 2.002 1.998
(0.204, 0.201) (0.204, 0.201) (0.135, 0.131) (0.204, 0.199) (0.135, 0.140) (0.104, 0.101)

Prior 2 θ̂GB 1.762 1.773 1.827 1.729 1.982 1.978
(0.176, 0.183) (0.176, 0.176) (0.122, 0.124) (0.176, 0.179) (0.122, 0.122) (0.100, 0.104)

θ̂GBS 1.901 1.912 1.926 1.868 1.813 1.802
(0.139, 0.146) (0.139, 0.141) (0.104, 0.115) (0.139, 0.137) (0.104, 0.116) (0.094, 0.102)

θ̂GB.emp 2.052 2.067 2.031 2.011 2.015 2.001
(0.208, 0.218) (0.208, 0.213) (0.136, 0.127) (0.208, 0.198) (0.136, 0.124) (0.082, 0.100)

θ̂GBS.emp 2.026 2.040 2.014 1.984 1.999 1.982
(0.204, 0.214) (0.204, 0.209) (0.135, 0.126) (0.204, 0.196) (0.135, 0.123) (0.101, 0.107)

data.
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Figure 2: Scaled TTT transformed plot of the ball bearing data

For the purposes of illustrating the methods discussed in this article, a progressively Type-II
censored sample was generated from this data set with effective sample size m = 13. The
observations (in hundreds of millions) and removed numbers are reported in Table 4 [see Wu
et al. (2006)].

It is observed from Table 5 that the Empirical Bayes Shrinkage Estimate of θ is better in
terms of minimum risk sense. As p increases, estimates decrease and their risks increase.
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Table 4: Progressively Type II censored sample for Example.

i 1 2 3 4 5 6 7
x(i) 0.1788 0.2892 0.33 0.4212 0.456 0.4848 0.5184

ri 0 0 3 0 0 2 0

i 8 9 10 11 12 13
x(i) 0.5196 0.6780 0.6864 0.8412 0.9312 1.2792

ri 0 2 0 2 1 0

Table 5: Empirical Bayes and Empirical Bayes Shrinkage Estimate and their risks for the ball
bearing data.

p Empirical Bayes Empirical Bayes Empirical Bayes Empirical Bayes
Estimate risk Shrinkage Estimate Shrinkage risk

1 0.3809 0.0397 0.3733 0.0391

2 0.3735 0.1586 0.3698 0.1565

6. Conclusion

In this article, we have derived Bayes shrinkage estimate of the parameter of the Rayleigh dis-
tribution under conjugate prior assuming general entropy loss function. The Bayes estimate,
Bayes shrinkage estimate assuming a point guess value are derived and their risks have been
studied. Bayes shrinkage estimate is reasonably good from a risk perspective. In practice,
as the true value of the parameter is unknown, getting a point guess value is difficult. An
empirical Bayes procedure has been followed to get an estimated guess value of the parame-
ter and utilizing so, empirical Bayes and empirical Bayes shrinkage estimates and their risks
have been calculated. The performance of the empirical Bayes shrinkage estimate is fairly
reasonable and competitive. We recommend empirical Bayes shrinkage estimate for practical
purposes intended for enhanced outcomes. Real life data analysis also echos similar trend as
observed in the simulation study.
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tions. Birkhäuser, Boston.

Balakrishnan N, Sandhu RA (1995). “A Simple Simulation Algorithm for Generating Pro-
gressive Type-II Censored Samples.” The American Statistician, 49(2), 119–230.

Calabria R, Pulcini G (1996). “Point Estimation under Asymmetric Loss Functions for Left-
Truncated Exponential Samples.” Communications in Statistics-Theory & Methods, 25(3),
585–600.

Cramer E, Iliopoulos G (2010). “Adaptive Progressive Type-II Censoring.” Test, 19(2), 342–
358.

Dey DK, Ghosh M, Srinivasan C (1987). “Simultaneous Estimation of Parameters under
Entropy Loss.” Journal of Statistical Planning and Inference, 15, 347–363.

Dey DK, Liu PL (1992). “On Comparison of Estimators in a Generalized Life Model.” Mi-
croelectronics Reliability, 32, 207–221.

Dey S (2009). “Comparison of Bayes Estimators of ohe Parameter and Reliability Function for
Rayleigh Distribution under Different Loss Functions.” Malaysian Journal of Mathematical
Sciences, 3, 247–264.

Dey S, Das MK (2007). “Note on Prediction Interval for a Rayleigh Distribution: Bayesian
Approach.” American Journal of Mathematical and Management Science, 1-2, 43–48.

Harris E, Shakarki G (1979). “Use of the Population Distribution to Improve Estimation of
Individual Mean in Epidemiological Studies.” Journal of Chronical Disease, 32, 233–243.

Hendi ML, Abu-Youssef SE, Alraddadi AA (2007). “A Bayesian Analysis of Record Statistics
from the Rayleigh Model.” International Mathematical Forum, 2(13), 619–631.

Howlader HA (1985). “HPD Prediction Intervals for Rayleigh Distribution.” IEEE Transac-
tions on Reliability, 34, 121–123.

Howlader HA, Hossain A (1995). “On Bayesian Estimation and Prediction from Rayleigh
Distribution Based on Type-II Censored Data.” Comm. Stat. Theory Methods, 24(9),
2249–2259.

Kundu D (2008). “Bayesian Inference and Reliability Sampling Plan for Weibull Distribution.”
Technometrics, 50, 144–154.

Kundu D, Pradhan B (2009). “Bayesian Inference and Life Testing Plans for Generalized
Exponential Distribution.” Science in China, Series A: Mathematics, 52(6), 1373–1388.

Lawless JF (1982). Statistical Models and Methods for Lifetime Data. John Wiley and Sons,
New York.

Lindley DV (1969). Introduction to Probability and Statistics from a Bayesian View Point.
Vol.1. Cambridge University Press.

Marshall RJ (1991). “Mapping Disease and Mortality Rates using Empirical Bayes Estima-
tors.” Journal of Applies Statistics, 40, 283–294.



14 On Rayleigh Distribution

Ng HKT, Kundu D, Chan PS (2009). “Statistical Analysis of Exponential Lifetimes under an
Adaptive Type-II Progressive Censoring Scheme.” Naval Research Logistics, 56, 687–698.

Prakash G (2009). “Some Estimators for the Pareto Distribution.” Journal of Scientific
Research, 1(2), 236–247.

Prakash G, Singh DC (2006). “Shrinkage Estimators for the Inverse Dispersion of the Inverse
Gaussian Distribution under the LINEX Loss Function.” Austrian Journal of Statistics,
35(4), 463–470.

Rayleigh JWS (1980). “On the Resultant of a Large Number of Vibrations of the Some Pitch
and of Arbitrary Phase.” Philosophical Magazine, 5-th Series, 10, 73–78.

Salman AN, Shareef RA (2014). “Bayesian Shrinkage Estimator for the Scale Parameter
of Exponential Distribution under Improper Prior Distribution.” International Journal of
Statistics and Applications, 4(3), 135–143.

Singh DC, Prakash G, Singh P (2007). “Shrinkage Estimators for the Shape Parameter of
Pareto Distribution using the LINEX Loss Function.” Communication in Statistics - Theory
and Methods, 36(4), 741–753.

Singh GP, Singh SK, Singh U, Upadhyay SK (2008). “Bayes Estimators of Exponential
Parameters from a Censored Sample using a Guess Estimate.” Data Science Journal, 7,
106–114.

Sinha SK, Howlader HA (1983). “Credible and HPD Intervals of the Parameter and Reliability
of Rayleigh Distribution.” IEEE Transactions on Reliability, 32, 283–294.

Thompson JR (1968). “Some Shrinkage Techniques for Estimating the Mean.” Journal of
American Statistical Association, 63, 113–122.

Tso G (1990). “Forecasting money supply in Hong Kong with a multiple shrinkage estimator.”
In Proceeding of the ASA Section on Business and Commerce. ASA.

Wooff A (1985). “Bounds on Reciprocal Moments with Applications and Developments in
Stein Estimation and Post Stratification.” Journal of Royal statistical Society, B, 47, 362–
371.

Wu SJ, Chen DH, Chen ST (2006). “Bayesian Inference for Rayleigh Distribution under
Progressive Censored Sample.” Applied Stochastic Models in Business and Industry, 22,
269–279.

Zellner A (1986). “Bayesian Estimation and Prediction using Asymmetric Loss Function.”
Journal of American statistical Association, 81, 446–451.

Affiliation:

Sanku Dey
Department of Statistics
St. Anthony’s College
Shillong, Meghalaya, India
E-mail: sanku_dey2k2003@yahoo.co.in

mailto:sanku_dey2k2003@yahoo.co.in


Austrian Journal of Statistics 15

Tanujit Dey
Department of Quantitative Health Sciences
Cleveland Clinic
Cleveland, OH USA
E-mail: deyt@ccf.org

Sudhansu S. Maiti
Department of Statistics
Visva-Bharati University
Santiniketan, West Bengal, India
E-mail: dssm1@rediffmail.com

Austrian Journal of Statistics http://www.ajs.or.at/

published by the Austrian Society of Statistics http://www.osg.or.at/

Volume 44 Submitted: 2014-09-15
December 2015 Accepted: 2015-01-27

mailto:deyt@ccf.org
mailto:dssm1@rediffmail.com
http://www.ajs.or.at/
http://www.osg.or.at/

	Introduction
	Review of progressive Type-II sampling

	Prior and loss function
	Estimation
	Simulation study
	Data analysis
	Conclusion

