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Palacký University in Olomouc

Karel Hron
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Abstract

Recent experience with interpretation of orthonormal coordinates in compositional
data shows clearly a necessity of their better understanding in terms of logratios that
form the primary source of information within the logratio methodology. This is even
more crucial in the special case of compositional tables, where both balances and coordi-
nates with odds ratio interpretation are involved. The aim of the paper is to provide a
decomposition of covariance structure of orthonormal coordinates in compositional tables
in terms of logratio variances, which could serve this purpose. For their better inter-
pretability, the formulas are also accompanied with appropriate comments and graphical
illustrations, and implications for the prominent case of 2 × 2 compositional tables are
discussed.
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1. Introduction

Although the logratio methodology seems to be nowadays a well-established approach to
statistical analysis of compositional data, i.e. multivariate observations carrying relative in-
formation (Aitchison 1986; Pawlowsky-Glahn and Buccianti 2011), it is also suitable for more
complex data structures, where not the absolute values but rather ratios are of primary in-
terest. One of them are compositional tables (Egozcue, Dı́az-Barrero, and Pawlowsky-Glahn
2008; Egozcue, Pawlowsky-Glahn, Templ, and Hron 2014; Fačevicová, Hron, Todorov, Guo,
and Templ 2014a; Fačevicová, Hron, Todorov, and Templ 2014b), a continuous counterpart
to well-known contingency tables (Agresti 2002). Besides the difference in the nature of data,
(cells of the contingency table are discrete counts, while parts of the compositional tables
are continuous values), the main difference between is that, on the one hand, a contingency
table collects results from n independent observations, while, on the other hand, a composi-
tional table itself represents one observation. The analysis of relationships between row and
column factors is thus based on sample of n compositional tables. Furthermore, by applying
the Aitchison geometry (Egozcue and Pawlowsky-Glahn 2006), and following the principles of
compositional data analysis, it is possible to decompose the original table into its independent
and interactive parts (the latter capturing relations between both factors), while assuming
geometric marginals instead of the standard arithmetic ones. Moreover, in Fačevicová et al.
(2014b) orthonormal coordinates were assigned to both independence and interaction tables
that enable to perform statistical analysis using standard methods and focus only on coordi-
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nates of the interaction table. The problem of analysis of relationship between factors from a
sample of tables, which would need to be handled using three-dimensional contingency tables
or log-linear models in the standard case, thus can directly transferred to standard statisti-
cal treatment (like hypotheses testing) in coordinates; for example, independence of factors
corresponds to zero coordinates of the interaction table.

While coordinates of the independence table can be interpreted through balances (Egozcue
and Pawlowsky-Glahn 2005), coordinate representation of the interaction one needs to be
formulated in sense of odds ratios (Fačevicová et al. 2014b). Although motivation for the latter
coordinates is quite intuitive as odds ratios become popular to represent also contingency
tables (Agresti 2002), interpretation of the coordinate system as a whole may seem to be too
complex for practical purposes. On the way to enhance the interpretability, one possibility is
to analyze covariance structure of coordinates (Fǐserová and Hron 2011) to see which ratios
contribute (in positive or negative sense) to values of individual variances and covariances.
Nevertheless, a specific structure of compositional tables and their respective coordinates
requires a deeper insight as balances form just one part of the coordinate system.

The aim of the presented paper is to analyze covariance structure of orthonormal coordinates
for compositional tables in terms of elements of the variation matrix (Aitchison 1986), i.e.,
as linear combinations of variances of single logratios, which seems to be a necessary step in
further development of any reasonable coordinate representation of compositional tables. The
paper is organized as follows. In the next section, basics of compositional tables and their
decomposition into independent and interactive parts are recalled. Section 3 is devoted to
the covariance structure of coordinates itself, where the corresponding formulas (that might
seem to be rather complex) are always illustrated with a graphical scheme to allow their better
understanding. In Section 4 some implications for the special case of 2×2 compositional tables
are briefly mentioned. Section 5 presents an illustrative example and Section 6 concludes.

2. Orthonormal coordinates of I x J compositional tables

A I × J compositional table x is a special case of compositional data that are arranged into
a form of table to indentify relation between two (row and column) factors. They are formed
by parts xij > 0 for i = 1, 2, . . . , I and j = 1, 2, . . . , J which carry only relative information.
Consequently, their sum κ is arbitrary (like κ = 1 for the case of proportions), reached formally
using the closure operation

C(x) =

 κxij∑I,J
k,l=1 xkl

I,J
i,j=1

.

The sample space of representations of I × J compositional tables is the simplex, (IJ − 1)-
dimensional subset of RIJ defined as

SIJ =

x = (xij)
I,J
i,j=1 | xij > 0, i = 1, 2, . . . , I, j = 1, 2, . . . , J ;

I,J∑
i,j=1

xij = κ

 .
To follow specific features of compositional tables (as a special case of compositional data),
the Aitchison geometry on the simplex is defined, see Egozcue and Pawlowsky-Glahn (2006)
for details. This geometry has the same algebraic-geometrical structure as the standard
Euclidean geometry in real space and is represented by operations of perturbation, power
transformation, and the Aitchison inner product. According to Egozcue et al. (2008) these
operations are defined for compositional tables x and y and α ∈ R as

x⊕ y = C (xijyij)
I,J
i,j=1 , α� x = C

(
xαij

)I,J
i,j=1

and

〈x,y〉A =
1

2IJ

∑
i,j

∑
k,l

ln
xij
xkl

ln
yij
ykl

.
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Compositional table n = C (xij = 1)I,Ji,j=1 stands for the neutral element in the (IJ − 1)-

dimensional vector space (SIJ ,⊕,�).

Each compositional table x can be expressed as

x = 〈x, e1〉A � e1 ⊕ . . .⊕ 〈x, eIJ−1〉A � eIJ−1,

where (e1, . . . , eIJ−1) form an orthonormal basis in (IJ−1)-dimensional simplex (with respect
to the Aitchison geometry), resulting in (IJ − 1)-dimensional real vector of orthonormal
coordinates

z = h(x) = (z1, . . . , zIJ−1) = (〈x, e1〉A, . . . , 〈x, eIJ−1〉A) .

Consequnetly, the following relations between the Aitchison and the Euclidean geometries can
be derived,

h(α� x⊕ β � y) = α · h(x) + β · h(y), 〈x,y〉A = 〈h(x), h(y)〉E ,

i.e. h is an isometric mapping from SIJ to RIJ−1 (we refer also to isometric logratio (ilr)
transformation (Egozcue, Pawlowsky-Glahn, Mateu-Figueras, and Barceló-Vidal 2003)).

Within the framework of the Aitchison geometry it is possible to decompose the original
compositional table into its independent and interactive parts, x = xind ⊕ xint, see Egozcue
et al. (2008) for details. The independent part (independence table) is compositional table
with elements

xind =

xindij =

(
I∏

k=1

J∏
l=1

xkjxil

) 1
IJ


I,J

i,j=1

(1)

and the interactive part (interaction table)

xint =

xintij =

(
I∏

k=1

J∏
l=1

xij
xkjxil

) 1
IJ


I,J

i,j=1

. (2)

According to Fačevicová et al. (2014b), the independence and the interaction tables can be
expressed in I + J − 2 and (I − 1)(J − 1) nonzero orthonormal coordinates, respectively, the
remaining coordinates (up to the total number of IJ−1 variables) being zero. The coordinates
of the independence table can be expressed as balances

zri =

√
(I − i)J
I − i+ 1

ln
(xi1 . . . xiJ)1/J

(xi+1,1 . . . xIJ)1/(IJ−iJ)
, i = 1, . . . , I − 1, (3)

and

zcj =

√
I(J − j)
J − j + 1

ln
(x1j . . . xIj)

1/I

(x1,j+1 . . . xIJ)1/(IJ−Ij)
, j = 1, . . . , J − 1, (4)

representing the row and column information (logratios), respectively, conveyed by the inde-
pendence table; coordinates of the interaction table can be chosen as

zintrs =
1√

r · s · (r − 1) · (s− 1)
ln
r−1∏
i=1

s−1∏
j=1

xijxrs
xisxrj

, (5)

with an odds ratio structure. These two sets of coordinates together form an orthonormal co-
ordinate representation of the original compositional table x. Covariance structure in terms of
elements of the variation matrix (Aitchison 1986), especially for coordinates of the interaction
table, will be studied in detail in the next section.
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3. Covariance structure of coordinates of the compositional table

In the following, covariance structure of the above mentioned coordinate representation will
be expressed as linear combinations of variances of logratios. At first, covariance structure of
the interaction table is introduced, followed by the independence table structure, and finally
also mutual relations between both tables (expressed through the corresponding covariances)
are analyzed.

Variances of logratios form the elemental information on variability in compositional tables
and are summarized in IJ × IJ variation matrix

T =


var

(
ln x11

x11

)
var

(
ln x11

x12

)
· · · var

(
ln x11

xIJ

)
var

(
ln x12

x11

)
var

(
ln x12

x12

)
· · · var

(
ln x12

xIJ

)
...

...
. . .

...

var
(
ln xIJ

x11

)
var

(
ln xIJ

x12

)
· · · var

(
ln xIJ

xIJ

)

 . (6)

As it is usual within the logratio methodology, all coordinates are logcontrasts, i.e. they can
be expressed in form

z =
I∑
i=1

J∑
j=1

aij lnxij = a′ lnx, where
I∑
i=1

J∑
j=1

aij = 0.

Also the covariance structure can be derived accordingly (Aitchison 1986).

Proposition 3.1 Variances and covariances for logcontrasts a′ lnx and b′ lnx of a IJ-part
compositional table x are

var(a′ lnx) = −1

2
a′Ta, (7)

cov(a′ lnx,b′ lnx) = −1

2
a′Tb. (8)

Since the possible logcontrast representation of coordinates (2), (3) and (4), Equations (7)
and (8) are crucial to derive of their covariance structure. As the interaction table is usually
of main interest for the analysis, we start with variances of its respective coordinates.

Theorem 3.2 Consider an arbitrary coordinate zrs, for r = 2, . . . , I and s = 2, . . . , J of the
interaction table xint from (5). Its variance is formed by three parts,

var(zrs) = A1 −B1 − C1. (9)

The first part, increasing the variance, is

A1 =
1

rs(s− 1)

r−1∑
i=1

s−1∑
j,j′=1

var

(
ln

xij
xrj′

)
+

1

rs(r − 1)

r−1∑
i,i′=1

s−1∑
j=1

var

(
ln
xij
xi′s

)
+

+
r − 1

rs

s−1∑
j=1

var

(
ln
xrj
xrs

)
+
s− 1

rs

r−1∑
i=1

var

(
ln
xis
xrs

)
. (10)

The variance of the coordinate is reduced by parts

B1 =
1

2

1

rs(r − 1)(s− 1)

r−1∑
i,i′=1

s−1∑
j,j′=1

var

(
ln

xij
xi′j′

)
+

1

rs

r−1∑
i=1

s−1∑
j=1

var

(
ln
xij
xrs

)
(11)
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and

C1 =
1

2

r − 1

rs(s− 1)

s−1∑
j,j′=1

var

(
ln
xrj
xrj′

)
+

1

2

s− 1

rs(r − 1)

r−1∑
i,i′=1

var

(
ln
xis
xi′s

)
+

+
1

rs

r−1∑
i=1

s−1∑
j′=1

var

(
ln

xis
xrj′

)
. (12)

Proof: When parts of the compositional table x are rearranged in form of composition
xr = (x11, x12, . . . , x1J , x21, . . . , xIJ), coordinate zrs of the interaction table can be expressed as
zrs = a′ lnxr, where for elements of the coefficient vector a = (a11, a12, . . . , a1J , a21, . . . , aIJ)
the following relations hold,

aij = 1/
√
rs(r − 1)(s− 1) for i = 1, . . . , r − 1 j = 1, . . . , s− 1

aij = −(r − 1)/
√
rs(r − 1)(s− 1) for i = r j = 1, . . . , s− 1

aij = −(s− 1)/
√
rs(r − 1)(s− 1) for i = 1, . . . , r − 1 j = s

aij = (r − 1)(s− 1)/
√
rs(r − 1)(s− 1) for i = r j = s

aij = 0 otherwise.

Equation (9) is then consequence of Proposition 3.1.

�

From Theorem 3.2 it is clear that variance of the coordinate zrs is formed by nine groups of
logratio variances. Four of them increase the overall variability and the other five reduce it.
The first four groups are represented by A1, which is formed by logratios of “inner” parts of
the partial table or part xrs, with its last row and column (i.e. r-th row and s-th column of
the original table x) except of the part xrs itself:

• variances of logratios between an inner part of the partial table and a part from its last
row (except of xrs),

• variances of logratios between an inner part of the partial table and a part from its last
column (except of xrs),

• variances of logratios between a part from the last row (except of xrs) and xrs itself,

• variances of logratios between a part from the last column (except of xrs) and xrs itself.

The variance of zrs is reduced by B1 and C1, formed by variances of logratios corresponding
to remaining possible relations between parts of the above defined groups (inner tables, last
row/column without xrs, part xrs itself). Concretely, B1 consists of

• variances of logratios between inner parts of the partial table,

• variances of logratios between an inner part and xrs.

Similarly, C1 is formed by

• variances of logratios between parts from the last row (except of xrs),

• variances of logratios between parts from the last column (except of xrs),

• variances of logratios between parts from the last row and the last column (except of
xrs).

The above relations can be expressed also graphically, as shown in Figure 1.

Covariances between coordinates of the interaction table are derived in the next theorem.
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Figure 1: Variance of coordinate zrs is increased by variances of logratios between a part from
area highlighted by (/) and a part from the second area highlighted by (\) – A1. The variance
of zrs is reduced by variances of logratios between two parts from area (/) – B1 or two parts
from (\) – C1.

Theorem 3.3 Consider two coordinates of the interaction table zr1s1 , zr2s2, for r1, r2 =
2, . . . , I and s1, s2 = 2, . . . , J . Then for their covariance the following holds,

cov(zr1s1 , zr2s2) = K(A2 +B2 − C2 −D2), (13)

where

A2 = (s2 − 1)

r1−1∑
i1=1

r2−1∑
i2=1

s1−1∑
j1=1

var

(
ln
xi1j1
xi2s2

)
+ (r2 − 1)

r1−1∑
i1=1

s1−1∑
j1=1

s2−1∑
j2=1

var

(
ln
xi1j1
xr2j2

)
+

+(r1 − 1)(s1 − 1)(s2 − 1)

r2−1∑
i2=1

var

(
ln
xr1s1
xi2s2

)
+ (r1 − 1)(r2 − 1)(s1 − 1)

s2−1∑
j2=1

var

(
ln
xr1s1
xr2j2

)
,

(14)

B2 = (s1 − 1)

r1−1∑
i1=1

r2−1∑
i2=1

s2−1∑
j2=1

var

(
ln
xi1s1
xi2j2

)
+ (s1 − 1)(s2 − 1)(r2 − 1)

r1−1∑
i1=1

var

(
ln
xi1s1
xr2s2

)
+

+(r1 − 1)

s1−1∑
j1=1

r2−1∑
i2=1

s2−1∑
j2=1

var

(
ln
xr1j1
xi2j2

)
+ (r1 − 1)(r2 − 1)(s2 − 1)

s1−1∑
j1=1

var

(
ln
xr1j1
xr2s2

)
,

(15)

C2 =

r1−1∑
i1=1

r2−1∑
i2=1

s1−1∑
j1=1

s2−1∑
j2=1

var

(
ln
xi1j1
xi2j2

)
+ (r2 − 1)(s2 − 1)

r1−1∑
i1=1

s1−1∑
j1=1

var

(
ln
xi1j1
xr2s2

)
+

+(r1 − 1)(s1 − 1)

r2−1∑
i2=1

s2−1∑
j2=1

var

(
ln
xr1s1
xi2j2

)
+ (r1 − 1)(r2 − 1)(s1 − 1)(s2 − 1)var

(
ln
xr1s1
xr2s2

)
,

(16)

D2 = (s1 − 1)(s2 − 1)

r1−1∑
i1=1

r2−1∑
i2=1

var

(
ln
xi1s1
xi2s2

)
+ (s1 − 1)(r2 − 1)

r1−1∑
i1=1

s2−1∑
j2=1

var

(
ln
xi1s1
xr2j2

)
+

+(r1 − 1)(s2 − 1)

s1−1∑
j1=1

r2−1∑
i2=1

var

(
ln
xr1j1
xi2s2

)
+ (r1 − 1)(r2 − 1)

s1−1∑
j1=1

s2−1∑
j2=1

var

(
ln
xr1j1
xr2j2

)
(17)

and K = 1
2

1√
r1r2s1s2(r1−1)(r2−1)(s1−1)(s2−1)

.

Proof: The covariances are obtained using the general formula (8), where the corresponding
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coefficient vectors a1 and a2 have elements

ak
ij =


1/
√

rksk(rk − 1)(sk − 1) for i = 1, . . . , rk − 1 j = 1, . . . , sk − 1

−(rk − 1)/
√

rksk(rk − 1)(sk − 1) for i = rk j = 1, . . . , sk − 1

−(sk − 1)/
√

rksk(rk − 1)(sk − 1) for i = 1, . . . , rk − 1 j = sk

(rk − 1)(sk − 1)/
√

rksk(rk − 1)(sk − 1) for i = rk j = sk
0 otherwise,

(18)

and k = 1, 2.

�

Similarly as for the case of variances, there is a group of logratio variances that increases the
overall covariance between coordinates (A2 and B2) and the remaining variances reduce it (C2

and D2). Specifically, for construction of logratios in A2 the following parts are employed,

• an inner part of the first partial table and a part from the last column of the second
partial table (except of xr2,s2),

• an inner part of the first partial table and a part from the last row of the second partial
table (except of xr2,s2),

• the part xr1,s1 and a part from the last column of the second partial table (except of
xr2,s2),

• the part xr1,s1 and a part from the last row of the second partial table (except of xr2,s2),

where we always deal with two “virtual” tables corresponding to the coordinates of interest.
Similarly, B2 is formed by variances of logratios of

• a part from the last column of the first partial table (except of xr1,s1) and an inner part
of the second partial table,

• a part from the last column of the first partial table (except of xr1,s1) and the part
xr2,s2 ,

• a part from the last row of the first partial table (except of xr1,s1) and an inner part of
the second partial table,

• a part from the last row of the first partial table (except of xr1,s1) and the part xr2,s2 .

On the other hand, the covariance is reduced by C2, involving logratios between

• an inner part of the first partial table and an inner part of the second partial table,

• an inner part of the first table and the part part xr2,s2 ,

• the part xr1,s1 and an inner part of the second partial table,

• parts xr1,s1 and xr2,s2 ,

and by D2 consisting of logratios, formed by

• a part from the last column of the first partial table (except of xr1,s1) and a part from
the last column of the second partial table (except of xr1,s1),

• a part from the last column of the first partial table (except of xr1,s1) and a part from
the last row of the second partial table (except of xr2,s2),

• a part from the last row of the first partial table (except of xr1,s1) and a part from the
last column of the second partial table (except of xr2,s2),
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• a part from the last row of the first partial table (except of xr1,s1) and a part from the
last row of the second partial table (except of xr2,s2).

Also covariance between two coordinates of the interaction table could supported by its graph-
ical representation, see Figure 2.

Since coordinates of the independence table (3), (4) are balances obtained from sequential
binary partitions, dividing rows and columns of the original table, respectively (Egozcue and
Pawlowsky-Glahn 2005), their variances and covariances are obtained as direct consequence
of Fǐserová and Hron (2011).

Figure 2: Covariance between coordinates zr1,s1 and zr2,s2 is increased by variances of logratios
between a part of the first partial table from area highlighted by (/) and a part of the second
partial table from area highlighted by (|) – A2. The second group of variances increasing the
covariance between coordinates are connected to logratios between parts from (\) and (−)
areas – B2. The covariance is reduced by variances of logratios between parts from (/) and
(−) area – C2 or two parts from (\) and (|) – D2.

Theorem 3.4 Consider coordinates of the independence table zrk for k = 1, . . . , I − 1 and zcl
for l = 1, . . . , J − 1, then their variances are

var(zrk) = K

I∑
i′=k+1

J∑
j,j′=1

var

(
ln

xkj
xi′j′

)
− K

2
(I − k)

J∑
j,j′=1

var

(
ln
xkj
xkj′

)
−

− K

2(I − k)

I∑
i,i′=k+1

J∑
j,j′=1

var

(
ln

xij
xi′j′

)
, (19)

where K = 1
J(I−k+1) , for balances between rows, and

var(zcl ) = K

I∑
i,i′=I

J∑
j′=l+1

var

(
ln

xil
xi′j′

)
− K

2
(J − l)

I∑
i,i′=1

var

(
ln
xil
xi′l

)
−

− K

2(J − l)

I∑
i,i′=1

J∑
j,j′=l+1

var

(
ln

xij
xi′j′

)
, (20)

where K = 1
I(J−l+1) , for balances between columns.

The variances of these coordinates are enlarged by variances of logratios between a part from
the k-th row/l-th column and any part from the subsequent rows/columns. On the other
hand, the variances of zrk and zcl are reduced by variances of logratios between parts from the
same row/column.

According to relation (8) there are three main options how to get covariance between coordi-
nates of the independence table, depending on concrete balances of interest. All these possible
covariances are summarized in the following theorem.

Theorem 3.5 Consider three coordinates of the independence table zrk1, zrk2 and zrk, for
k1, k2, k = 1, . . . , I − 1, k1 6= k2, computed using expression (3), and three coordinates zcl1, zcl2
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and zcl , for l1, l2, l = 1, . . . , J − 1, l1 6= l2, computed from (4). Then

cov(zrk1
, zrk2

) =
K

(I − k2)

I∑
i′=k2+1

J∑
j,j′=1

var

(
ln

xk1j

xi′j′

)
+

K

(I − k1)

I∑
i=k1+1

J∑
j,j′=1

var

(
ln

xij

xk2j′

)
−

−K

J∑
j,j′=1

var

(
ln

xk1j

xk2j′

)
− K

(I − k1)(I − k2)

I∑
i=k1+1

I∑
i′=k2+1

J∑
j,j′=1

var

(
ln

xij

xi′j′

)
,

(21)

where K = 1
2J

√
(I−k1)(I−k2)

(I−k1+1)(I−k2+1) , for row balances,

cov(zcl1 , z
c
l2) =

K

(J − l2)

I∑
i,i′=1

J∑
j′=l2+1

var

(
ln

xil1

xi′j′

)
+

K

(J − l1)

I∑
i,i′=1

J∑
j=l1+1

var

(
ln

xij

xi′l2

)
−

−K

I∑
i,i′=1

var

(
ln

xil1

xi′l2

)
− K

(J − l1)(J − l2)

I∑
i,i′=1

J∑
j=l1+1

J∑
j′=l2+1

var

(
ln

xij

xi′j′

)
,

(22)

where K = 1
2I

√
(J−l1)(J−l2)

(J−l1+1)(J−l2+1) , for column balances, and

cov(zrk, z
c
l ) =

K

(J − l)

I∑
i′=1

J∑
j=1

J∑
j′=l+1

var

(
ln

xkj

xi′j′

)
+

K

(I − k)

I∑
i=1

I∑
i′=k+1

J∑
j′=1

var

(
ln

xil

xi′j′

)
−

−K

I∑
i′=1

J∑
j=1

var
(
ln

xkj

xi′l

)
− K

(I − k)(J − l)

I∑
i=k+1

I∑
i′=1

J∑
j=1

J∑
j′=l+1

var

(
ln

xij

xi′j′

)
,

(23)

where K = 1
2

√
(I−k)(J−l)

IJ(I−k+1)(J−l+1) , between row and column balances.

To complete the covariance structure of coordinates of the compositional table x, covariances
between coordinates of the interaction and independence tables are necessary. They are
provided in the last theorem.

Theorem 3.6 Consider coordinate of the interaction table zrs, for r = 2, . . . , I and s =
2, . . . , J , and two coordinates of the independence table, zrk, for k = 1, . . . , I − 1, and zcl , for
l = 1, . . . , J−1. Then for covariances between coordinates of the interaction and independence
tables the following hold,

cov(zrs, z
r
k) = K · (A3 −B3), (24)

where

A3 =
1

J(I − k)

r−1∑
i=1

I∑
i′=k+1

s−1∑
j=1

J∑
j′=1

var

(
ln

xij

xi′j′

)
+

s− 1

J

r−1∑
i=1

J∑
j′=1

var

(
ln

xis

xkj′

)
+

+
r − 1

J

s−1∑
j=1

J∑
j′=1

var

(
ln

xrj

xkj′

)
+

(r − 1)(s− 1)

J(I − k)

I∑
i′=k+1

J∑
j′=1

var

(
ln

xrs

xi′j′

)
,

(25)

B3 =
1

J

r−1∑
i=1

s−1∑
j=1

J∑
j′=1

var

(
ln

xij

xkj′

)
+

s− 1

J(I − k)

r−1∑
i=1

I∑
i′=k+1

J∑
j′=1

var

(
ln

xis

xi′j′

)
+

+
r − 1

J(I − k)

I∑
i′=k+1

s−1∑
j=1

J∑
j′=1

var

(
ln

xrj

xi′j′

)
+

(r − 1)(s− 1)

J

J∑
j′=1

var

(
ln

xrs

xkj′

)
,

(26)
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for K = 1
2

1√
rs(r−1)(s−1)

√
J(I−k)
I−k+1 , and

cov(zrs, z
c
l ) = K · (A4 −B4), (27)

where

A4 =
1

I(J − l)

r−1∑
i=1

I∑
i′=1

s−1∑
j=1

J∑
j′=l+1

var

(
ln

xij

xi′j′

)
+

s− 1

I

r−1∑
i=1

I∑
i′=1

var
(
ln

xis

xi′l

)
+

+
r − 1

I

I∑
i′=1

s−1∑
j=1

var
(
ln

xrj

xi′l

)
+

(r − 1)(s− 1)

I(J − l)

I∑
i′=1

J∑
j′=l+1

var

(
ln

xrs

xi′j′

)
,

(28)

B4 =
1

I

r−1∑
i=1

I∑
i′=1

s−1∑
j=1

var
(
ln

xij

xi′l

)
+

s− 1

I(J − l)

r−1∑
i=1

I∑
i′=1

J∑
j′=l+1

var

(
ln

xis

xi′j′

)
+

+
r − 1

I(J − l)

I∑
i′=1

s−1∑
j=1

J∑
j′=l+1

var

(
ln

xrj

xi′j′

)
+

(r − 1)(s− 1)

I

I∑
i′=1

var
(
ln

xrs

xi′l

)
,

(29)

for K = 1
2

1√
rs(r−1)(s−1)

√
I(J−l)
J−l+1 .

Proof: The assertion of the theorem is a direct consequence of Proposition 3.1 and Equations
(3), (4) and (5).

�

Similarly as for the case of interaction table, also the above results could be interpeted graph-
ically. Because Theorems 3.4 and 3.5 represent a special case of balances, that were in detail
analyzed in (Fǐserová and Hron 2011), in Figure 3 we focus just on covariances, resulting from
Theorem 3.6.

Figure 3: Covariance between a coordinate of the interaction table, zrs (left), and coordinates
of the independence table, zrk (middle) or zcl (right), is increased by variances of logratios
between parts from areas (/) and (−), or (\) and (|), respectively, and reduced by variances
of logratios between parts from areas (/) and (|), or (\) and (−), respectively.

4. Implications for 2 x 2 compositional tables

In practice, 2 × 2 compositional (and also contingency) tables represent a prominent special
case that requires a special treatment (Fačevicová et al. 2014a; Agresti 2002). From Equations
(3), (4) and (5) it is easy to see that for coordinate representation of the compositional table

x = C
(
x11 x12
x21 x22

)
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it is sufficient to consider the following coordinates,

zind1 =
1

2
ln
x11x12
x21x22

, zind2 =
1

2
ln
x11x21
x12x22

and zint =
1

2
ln
x11x22
x12x21

. (30)

By applying the above theorems their covariance structure can be easily derived,

var(zint) =
1

4

[
var

(
ln
x11
x21

)
+ var

(
ln
x11
x12

)
+ var

(
ln
x21
x22

)
+ var

(
ln
x12
x22

)
−var

(
ln
x11
x22

)
− var

(
ln
x12
x21

)]
,

var(zind1 ) =
1

4

[
var

(
ln
x11
x21

)
+ var

(
ln
x11
x22

)
+ var

(
ln
x12
x21

)
+ var

(
ln
x12
x22

)
−var

(
ln
x11
x12

)
− var

(
ln
x21
x22

)]
,

var(zind2 ) =
1

4

[
var

(
ln
x11
x12

)
+ var

(
ln
x11
x22

)
+ var

(
ln
x21
x12

)
+ var

(
ln
x21
x22

)
−var

(
ln
x11
x21

)
− var

(
ln
x12
x22

)]
,

cov(zint, zind1 ) =
1

4

[
var

(
ln
x11
x21

)
− var

(
ln
x22
x12

)]
,

cov(zint, zind2 ) =
1

4

[
var

(
ln
x11
x12

)
− var

(
ln
x21
x22

)]
,

cov(zind1 , zind2 ) =
1

4

[
var

(
ln
x11
x22

)
− var

(
ln
x12
x21

)]
.

Moreover, from the above covariance structure it is also interesting to see that coordinates
(30) are uncorrelated (or even independent under the assumption of normality) if, and only if

var

(
ln
x11
x21

)
= var

(
ln
x12
x22

)
, var

(
ln
x11
x12

)
= var

(
ln
x21
x22

)
, var

(
ln
x11
x22

)
= var

(
ln
x12
x21

)
.

(31)

In other words, it means that zero covariances can be easily expressed in terms of logratio
variances. Consequently, the above relations could be used, e.g., by designing simulation
settings for 2 × 2 compositional tables using elements of the variation matrix as a source of
elemental information in covariance structure of compositional tables.

Following Fačevicová et al. (2014a), it is possible to assign also another system of orthonormal
coordinates to a 2× 2 compositional table. Specificaly, we get

zind1 =
1√
2

ln
x12
x21

, zind2 =
1√
2

ln
x11
x22

, zint =
1

2
ln
x11x22
x12x21

, (32)

for the interaction and independent tables, respectively, and the covariance structure changes
as follows,

var(zint) =
1

4

[
var

(
ln
x11
x12

)
+ var

(
ln
x11
x21

)
+ var

(
ln
x12
x22

)
+ var

(
ln
x21
x22

)
−var

(
ln
x11
x22

)
− var

(
ln
x12
x21

)]
,

var(zind1 ) =
1

2
var

(
ln
x12
x21

)
,

var(zind2 ) =
1

2
var

(
ln
x11
x22

)
,

cov(zint, zind1 ) =
1

4
√

2

[
var

(
ln
x11
x12

)
+ var

(
ln
x11
x21

)
− var

(
ln
x12
x22

)
− var

(
ln
x21
x22

)]
,

cov(zint, zind2 ) =
1

4
√

2

[
var

(
ln
x11
x21

)
+ var

(
ln
x21
x22

)
− var

(
ln
x11
x12

)
− var

(
ln
x12
x22

)]
,

cov(zind1 , zind2 ) =
1

4

[
var

(
ln
x11
x21

)
+ var

(
ln
x12
x22

)
− var

(
ln
x11
x12

)
− var

(
ln
x21
x22

)]
.
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Now, although coordinates of the independent table are formed just by (scaled) logratios, the
covariance structure becomes more complex than before. For example, coordinates (32) are
mutually uncorrelated (independent) if, and only if

var

(
ln
x11
x12

)
= var

(
ln
x11
x21

)
= var

(
ln
x12
x22

)
= var

(
ln
x21
x22

)
. (33)

In other words, it means that var
(
ln x12

x21

)
and var

(
ln x11

x22

)
are influential just for variances of

coordinates zind1 , zind2 , zint, forming also natural constraints for their possible values.

5. Numerical example

To illustrate the presented theoretical outputs, let us consider the sample of eighteen 2 × 3
compositional tables, each reflecting population structure in European country according to
age and BMI index ((weight in kg)/(height in m)2), with values 25− 44, 45− 64, 65− 84 and
under- or normal weight and overweight or obesity, respectively. The data set is an aggregated
version of data from Fačevicová et al. (2014b). Table 1 shows an example of compositional
table from the sample.

Table 1: Structure of population in Austria in 2008 according to age and BMI index (in
proportions).

AUT 25− 44 45− 64 65− 84

under or normal 0.249 0.144 0.074
over or obesity 0.171 0.221 0.140

Firstly, each table from the sample has been expressed in coordinates and, consequently, their
descriptive statistics has been calculated. The sample mean is

z = (0.409, 0.294,−0.450, 0.578, 0.637),

but for our purposes the covariance structure of the sample is of primary interest. The
variation matrix (6), as a source of elemental information in compositional tables, equals

T =



0 0.037 0.083 0.024 0.030 0.069
0.037 0 0.030 0.077 0.050 0.051
0.083 0.030 0 0.127 0.098 0.065
0.024 0.077 0.127 0 0.019 0.078
0.030 0.050 0.098 0.019 0 0.040
0.069 0.051 0.065 0.078 0.040 0


.

For example, using this matrix and equation (9), variance of the first coordinate of the inter-
action table, z22, can be obtained as

var(zrs) = 1
4var

(
ln x11

x21

)
+ 1

4var
(
ln x11

x12

)
+ 1

4var
(
ln x21

x22

)
+ 1

4var
(
ln x12

x22

)
−1

8var
(
ln x11

x11

)
− 1

4var
(
ln x11

x22

)
− 1

8var
(
ln x21

x21

)
− 1

8var
(
ln x12

x12

)
−1

4var
(
ln x12

x21

)
= 1

4 t14 + 1
4 t12 + 1

4 t45 + 1
4 t25 −

1
8 t11 −

1
4 t15 −

1
8 t44 −

1
8 t22 −

1
4 t24

= 0.0057.
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By comparing with the corresponding elements of the variation matrix we can conclude that
none of logratios contributes exceptionally (in the positive sense) to variability of the co-
ordinate. In the negative sense, the logratio ln(underweight or normal weight in age 45-
64/overweight or obesity in age 25-44 ) shows a dominant effect. Similarly, also other vari-
ances and covariances can be derived (and further analysed for structural patterns), resulting
in a covariance matrix

var(z) =


0.006 0.003 −0.010 0.007 0.004
0.003 0.013 −0.007 −0.004 −0.0005
−0.010 −0.007 0.051 −0.021 −0.012

0.007 −0.004 −0.021 0.051 0.026
0.004 −0.0005 −0.012 0.026 0.026

 .

Finally, note that by considering both markedly nonzero means of coordinates of the inter-
action table (first two elements of the vector z) and their corresponding small variances, we
can conclude that, based on the considered sample, age and BMI index are not dependent.

6. Discussion

Recent experience with orthonormal coordinates for compositional data (Reimann, Filzmoser,
Fabian, Hron, Birke, Demetriades, Dinelli, and Ladenberger 2012; Filzmoser and Walczak
2014) shows clearly the necessity of their better understanding in terms of logratios, which
could be achieved also by decomposing the corresponding covariance structure. This is even
more crucial for compositional tables, where both balances and coordinates with odds ratio
interpretation are involved. Obviously, due to complex character of the above formulas for
covariance structure in compositional tables, they will be rather rarely used for practical
computations. Therefore, the formulas are also accompanied with comments and graphical
illustrations to better understand their logical structure that is much more important for the
aim of the paper. Consequently, similarly as for the case of balances (Fǐserová and Hron 2011),
we are convinced that decomposition of variances and covariances as linear combinations
of logratio variances enhances interpretability of coordinates of compositional tables, using
logratios as the primary source of information in compositional data.

Acknowledgments Authors gratefully acknowledge the support of the Operational Program
Education for Competitiveness - European Social Fund (project CZ.1.07/2.3.00/20.0170 of the
Ministry of Education, Youth and Sports of the Czech Republic) and the grant PrF 2014 028
Mathematical Models of the Internal Grant Agency of the Palacký University in Olomouc.
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