
AJS

Austrian Journal of Statistics
June 2014, Volume 43/3-4, 279–292.
http://www.ajs.or.at/

On the Exact Two-Sided Tolerance Intervals for

Univariate Normal Distribution and Linear

Regression

Viktor Witkovský
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Abstract

Statistical tolerance intervals are another tool for making statistical inference on an
unknown population. The tolerance interval is an interval estimator based on the results
of a calibration experiment, which can be asserted with stated confidence level 1 − α,
for example 0.95, to contain at least a specified proportion 1 − γ, for example 0.99, of
the items in the population under consideration. Typically, the limits of the tolerance
intervals functionally depend on the tolerance factors. In contrast to other statistical
intervals commonly used for statistical inference, the tolerance intervals are used relatively
rarely. One reason is that the theoretical concept and computational complexity of the
tolerance intervals is significantly more difficult than that of the standard confidence and
prediction intervals.

In this paper we present a brief overview of the theoretical background and approaches
for computing the tolerance factors based on samples from one or several univariate nor-
mal (Gaussian) populations, as well as the tolerance factors for the non-simultaneous
and simultaneous two-sided tolerance intervals for univariate linear regression. Such tol-
erance intervals are well motivated by their applicability in the multiple-use calibration
problem and in construction of the calibration confidence intervals. For illustration, we
present examples of computing selected tolerance factors by the implemented algorithm
in MATLAB.

Keywords: normal population, linear regression, tolerance factor, simultaneous tolerance in-
tervals, multiple-use calibration, MATLAB algorithm.

1. Introduction

Statistical tolerance intervals are interval estimators used for making statistical inference on
population(s), which can be fully described by a probability distribution from a given family
of distributions (as e.g., the family of normal distributions). For more details on different
types of statistical intervals consult, e.g., the following books: Hahn and Meeker (1991),
Krishnamoorthy and Mathew (2009), and Liu (2011).

Although the concept of statistical tolerance intervals has been well recognized for a long time,
surprisingly, it seems that their applications remain still limited. The reliable algorithms for
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computing the exact tolerance factors are missing in the commonly used statistical packages
(even for inferences on normal populations), however, more or less accurate approximations are
available. Implementations of such algorithms (mainly based on approximate and/or Monte
Carlo methods) are currently under fast development, as, e.g., in the package tolerance for
R, see Young (2010).

Thus, possible applications should rely either on implemented approximate methods or on
published collections of tables for tolerance factors (if available), see e.g. the book Odeh and
Owen (1980), which gives many of the most required factors in the context of the normal
distribution, however, with limited precision. Due to the recognized importance of statistical
tolerance intervals in technical applications, ISO (the International Organization for Stan-
dardization) has currently prepared a revised version of the ISO standard 16269-6 (Statistical
interpretation of data — Part 6: Determination of statistical tolerance intervals), which also
provides detailed tables of tolerance factors for selected tolerance intervals.

The theory of statistical tolerance intervals, as well as the computational methods and algo-
rithms, have been developed significantly during the last three decades. This, together with
the fast growing computational power of the personal computers, allows development of fast,
efficient and reliable implementations of the algorithms for highly precise computing of the
exact tolerance factors and limits required for the statistical tolerance intervals. For a com-
prehensive overview of the recent advances and developments in this area see Krishnamoorthy
and Mathew (2009).

In this paper we shall briefly overview the theoretical background and describe some computa-
tional approaches for computing the exact tolerance factors for two-sided statistical tolerance
intervals based on sample(s) from normal (Gaussian) population(s). Moreover, we shall also
present a method for computing the exact simultaneous two-sided tolerance intervals for nor-
mal linear regression by using the method for computing the simultaneous tolerance factors
for several independent univariate normal populations.

Based on that, we have developed a MATLAB algorithm for efficient and highly precise
computation of the exact tolerance factors for the non-simultaneous as well as simultaneous
two-sided tolerance intervals for several independent univariate normal populations. This can
be used also for computing the exact tolerance factors for the non-simultaneous two-sided
tolerance intervals, and also (in combination with other optimization procedures, based on
Monte Carlo simulations) for computing the exact simultaneous two-sided tolerance intervals
for univariate normal linear regression.

The methods and algorithms can be further used in the multiple-use calibration problem for
constructing the appropriate simultaneous interval estimators (calibration confidence inter-
vals) for values of the variable of primary interest, say x, based on possibly unlimited sequence
of future observations of the response variable, say y, and on the results of the given cali-
bration experiment, which was modeled/fitted by a linear regression model. Such calibration
intervals can be obtained by inverting the simultaneous tolerance intervals constructed for the
regression (calibration) function. For more details see, e.g., Scheffé (1973), Mee, Eberhardt,
and Reeve (1991), Mee and Eberhardt (1996), Mathew and Zha (1997), and Chvosteková
(2013b).

2. Two-sided tolerance intervals for univariate normal distribution

First, let us consider a simple calibration experiment, say E , which is represented by a random
sample of size n from a population whose distribution is characterized by a univariate normal
distribution N(µ, σ2), i.e. Y1, . . . , Yn, where Yi are independent random variables normally
distributed, Yi ∼ N(µ, σ2), where µ and σ2 are unknown parameters (mean and variance) of
the population distribution.

Notice that the available information on distribution of the unknown population, based on
the result of experiment E , is fully characterized by the random sample, or equivalently by
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the sufficient statistics: the sample mean, Ȳ = 1
n

∑n
i=1 Yi, and the sample variance, S2 =

1
n−1

∑n
i=1(Yi − Ȳ )2. Under given assumptions, it is well known that the sufficient statistics

are independent random variables and their distribution is given by Ȳ ∼ N(µ, δ2σ2), where
δ2 = 1

n , and S2 ∼ σ2 1
νχ

2
ν , where ν = n − 1 denotes the degrees of freedom (DFs) and χ2

ν

represents a chi-square distribution with ν DFs.

2.1. Two-sided tolerance intervals for one univariate normal distribution

Given the result of the calibration experiment E , we wish to construct a two-sided tolerance
interval (i.e., a random interval (LE , UE), with its limits depending on the result of the ex-
periment E), which can be asserted with confidence level 1− α (for example 0.95) to contain
at least a specified proportion 1− γ (for example 0.99) of the items in the population under
consideration.

That is, we wish to construct the two-sided (1−γ, 1−α)-tolerance interval which will cover a
pre-specified proportion of possibly infinite sequence of independent future realizations of the
response variable Y = µ+ σε (with ε ∼ N(0, 1) assumed to be independent of the calibration
experiment E) such that

P{E}

(
P{Y }

(
LE ≤ Y ≤ UE | E

)
≥ 1− γ

)
= 1− α. (1)

Notice that the confidence level 1−α is related to the random nature of the outcome (result)
of the calibration experiment E . That is, the required two-sided tolerance interval will cover
more than (1− γ)× 100% proportion of the items of the unknown (normal) population, and
this will be true in (1− α)× 100% cases of the hypothetical calibration experiments.

In general, there are potentially many possible approaches to finding a solution to the problem
as specified by (1). There is no unique solution until the form of the tolerance limits of the
two-sided tolerance interval (LE , UE) is reasonably restricted. Commonly, the tolerance limits
are considered in the form

LE = Ȳ − κ
√
S2, UE = Ȳ + κ

√
S2, (2)

where κ denotes the tolerance factor (a subject of the required solution) which depend on the
stated coverage and confidence probabilities (1 − γ and 1 − α, respectively), and further on
the parameters characterizing the design of the experiment, δ2 and ν. So, if necessary, we
can emphasize the dependence of the tolerance factor κ on other parameters by writing either
κ(1− γ, 1− α, δ2, ν), or κ(δ2, ν), etc.

Consequently, the following conditional probability statement (conditional for given result of
E) should be fulfilled for (1− α)× 100% of the possible results of the calibration experiment
(i.e., Ȳ and S2)

1− γ ≤ P{Y }

(
LE ≤ Y ≤ UE | E

)
= P{ε}

(
Ȳ − κ

√
S2 ≤ µ+ σε ≤ Ȳ + κ

√
S2 | Ȳ , S2

)
= P{ε}

(
(Ȳ − µ)/σ − κ

√
S2/σ2 ≤ ε ≤ (Ȳ − µ)/σ + κ

√
S2/σ2 | Ȳ , S2

)
= Φ

(
δZ + κ

√
Q/ν

)
− Φ

(
δZ − κ

√
Q/ν

)
= Φ

(
δ|Z|+ κ

√
Q/ν

)
− Φ

(
δ|Z| − κ

√
Q/ν

)
≡ C(κ |Z,Q), (3)

where Z = (Ȳ −µ)/δσ, Q = νS2/σ2, and Φ(·) is the cumulative distribution function (CDF) of
the standard normal distribution. So, C(κ |Z,Q) represents the proportion of the population
covered by the tolerance interval for the given tolerance factor κ and for the given result of
the calibration experiment E . C(κ |Z,Q) is commonly known as a content function.
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The content function C(κ |Z,Q) cannot be evaluated directly for given κ and the observed
result of the experiment E (Ȳ , and S2), as it depends on the unknown parameters µ and σ2.
However, if we are interested in the stochastic properties of the tolerance intervals based on
a large number of results of the hypothetical calibration experiments (i.e., the variability of
the results of independent calibration experiments is to be considered), then Z and Q are
independent pivotal random variables with known probability distributions independent of
the unknown parameters µ and σ2, i.e. Z ∼ N(0, 1) and Q ∼ χ2

ν .

So, the content function C(κ;Z,Q), now considered as a random variable (a function of
random variables Z and Q), can be used directly for checking the stochastic properties (the
true confidence level) of the tolerance intervals, for any candidate value of the tolerance factor
κ.

In particular, the tolerance factor κ is exact for the (1− γ, 1−α)-tolerance interval (LE , UE),
defined by (2), if

E{Z,Q}

(
I (C(κ;Z,Q) ≥ 1− γ)

)
= 1− α, (4)

where I(·) is an indicator function, with I(true) = 1 and I(false) = 0, and E{Z,Q}(·) denotes
the expectation operator with respect to the distribution of the random variables Z and Q.

Consequently, by applying a suitable iterative optimization procedure, C(κ;Z,Q) can be
used for computing the exact value of the tolerance factor κ, such that it fulfills the required
property given by (1), or (4), respectively. This may be realized either by using (repeated)
Monte Carlo simulations, or two-dimensional numerical integrations.

The below presented formula for computing the exact tolerance factor κ of the two-sided
(1 − γ, 1 − α)-tolerance intervals for a univariate normal distribution requires (repeated)
evaluation of one-dimensional integral, only. As we shall discuss in more details in the next
Sections, the approach can be generalized also for computing the tolerance factor for other
models based on normal distribution (as, e.g., the non-simultaneous, point-wise tolerance
intervals, as well as the simultaneous tolerance intervals for normal linear regression models),
however, with possibly needed evaluation of multivariate integrals.

Derivation is based on the results presented in Krishnamoorthy and Mathew (2009) (for more
details see the equations (1.2.3), (1.2.4), also (2.5.7) and (2.5.8)).

Notice that for a fixed δ and Z the function Φ(δ|Z|+r)−Φ(δ|Z|−r) is an increasing function
of r. Let us denote by r1−γ the solution to the equation

Φ(δ|Z|+ r1−γ)− Φ(δ|Z| − r1−γ) = 1− γ. (5)

Then, C(κ |Z,Q) ≥ 1− γ if and only if κ
√
Q/ν > r1−γ (or equivalently Q ≥ νr2

1−γ
κ2 ).

Based on (5), the problem can be rewritten equivalently as

P{ε}

(
(ε− δ|Z|)2 ≤ r2

1−γ | |Z|
)

= 1− γ (6)

where ε ∼ N(0, 1). For fixed Z, the random variable (ε− δ|Z|)2 ∼ χ2
1(δ2Z2), i.e. it has a non-

central chi-square distribution with one degree of freedom and the noncentrality parameter
δ2Z2. Consequently, r1−γ =

√
χ2

1;1−γ (δ2Z2), where χ2
1;1−γ

(
δ2Z2

)
denotes the (1−γ)-quantile

of the distribution χ2
1(δ2Z2).

Thus, the tolerance factor κ defined by (1) and (2) is given implicitly as a solution to the
equation

1− α = E{|Z|}

(
P{Q}

(
Q ≥ ν

κ2
χ2

1;1−γ
(
δ2Z2

)))
= E{|Z|}

(
1− Fχ2

ν

( ν
κ2
χ2

1;1−γ
(
δ2Z2

)))
= 2

∫ ∞
0

(
1− Fχ2

ν

( ν
κ2
χ2

1;1−γ
(
δ2z2

)))
φ(z) dz
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= 2
∫ ∞

0
Γ
(ν

2
,
ν

2κ2
χ2

1;1−γ
(
δ2z2

))
φ(z) dz, (7)

where E{|Z|}(f(|Z|)) denotes the expectation of the function f(|Z|), with respect to the dis-
tribution of |Z|, where Z ∼ N(0, 1), Fχ2

ν
(·) denotes the CDF of a chi-square distribution

with ν degrees of freedom, Γ(·, ·) is the incomplete regularized upper gamma function, and
φ(z) denotes the PDF (probability density function) of a standard normal distribution. From
computational point of view, the value χ2

1;1−γ(δ2z2) = r2
1−γ can be computed more efficiently

by directly solving the equation (5), i.e. Φ(δz + r1−γ)− Φ(δz − r1−γ) = 1− γ, than by using
a dedicated algorithm for computing quantiles of the non-central chi-square distribution.

2.2. Two-sided tolerance intervals for several independent univariate normal
distributions with common variance

Here we consider a calibration experiment E = {E1, . . . , Em} which is based on m+1 sufficient
statistics, Ȳ1, . . . , Ȳm and S2, where Ȳi = 1

ni

∑ni
j=1 Yij (the sample means), S2 = 1

ν

∑m
i=1(ni −

1)S2
i (the pooled sample variance) with S2

i = 1
ni−1

∑ni
j=1(Yij − Ȳi)2, and ν =

∑m
i=1(ni − 1),

where ni is the sample size of the ith population.

We wish to construct a set of simultaneous two-sided tolerance intervals (LE,i, UE,i), with
limits LE,i = Ȳi − κi

√
S2 and UE,i = Ȳi + κi

√
S2, such that

P{E}

( m⋂
i=1

{
P{Yi}

(
LE,i ≤ Yi ≤ UE,i | E

)
≥ 1− γ

})
= 1− α, (8)

where Yi ∼ N(µi, σ2) are mutually independent random variables, independent from the
calibration experiment E = {E1, . . . , Em}.
For a given (candidate) set of the tolerance factors, say κ1, . . . , κm, the content function for
the simultaneous tolerance intervals (LE,i, UE,i) is given by

C(κ1, . . . , κm |Z1, . . . , Zm, Q) =
min
i

(
Φ
(
δi|Zi|+ κi

√
Q/ν

)
− Φ

(
δi|Zi| − κi

√
Q/ν

))
, (9)

where δ2
i = 1

ni
, Zi = (Ȳi−µi)/δiσ ∼ N(0, 1) and Q = νS2/σ2 ∼ χ2

ν are mutually independent
pivot random variables.

The set of tolerance factors κ1, . . . , κm is exact for the simultaneous (1 − γ, 1 − α)-tolerance
intervals (LE,i, UE,i) if

E{Z1,...,Zm,Q}

(
I (C(κ1, . . . , κm;Z1, . . . , Zm, Q) ≥ 1− γ)

)
= 1− α. (10)

This may be checked either by a Monte Carlo simulation, or by (m+1)-dimensional numerical
integration.

Notice, however, that the solution to the equation (10) is not unique, until further restrictions
are imposed on the set of possible tolerance factors κ1, . . . , κm. Frequently, it is required to
have a common tolerance factor κ for all simultaneous tolerance intervals, i.e. κ1 = · · · =
κm = κ.

Under such restriction, the formula (7) can be generalized for computing the exact com-
mon tolerance factor κ of the simultaneous tolerance intervals, with limits LE,i = Ȳi − κ

√
S2

and UE,i = Ȳi + κ
√
S2, such that (8) holds true. However, a relatively simple generaliza-

tion is possible only under further restrictive assumption that the calibration experiment
E = {E1, . . . , Em} is based on m independent samples with common sample size n for each
population N(µi, σ2), i.e. with ν = m(n− 1). In particular, under this restriction we get the
content function

C(κ |Z1, . . . , Zm, Q) = Φ
(
δmax

i
|Zi|+ κ

√
Q/ν

)
− Φ

(
δmax

i
|Zi| − κ

√
Q/ν

)
, (11)
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as Φ(a+ r)− Φ(a− r) is a decreasing function of |a|.
Then, using the analogy of (7), the generalized formula is derived by considering the distri-
bution of the random variable Zmmax = max(|Z1|, . . . , |Zm|) (where Zi ∼ N(0, 1), i = 1, . . . ,m,
are independent random variables) instead of |Z| (where Z ∼ N(0, 1)). In summary, the exact
(simultaneous) tolerance factor κ can be computed as a solution to the equation

1− α = 2m
∫ ∞

0
Γ
(ν

2
,
ν

2κ2
χ2

1;1−γ
(
δ2z2

))
(2Φ(z)− 1)m−1 φ(z) dz, (12)

where δ2 = 1
n , ν = m(n− 1), and χ2

1;1−γ(δ2z2) denotes the (1− γ)-quantile of the non-central
chi-square distribution with 1 degree of freedom and the non-centrality parameter

√
δ2z2.

For m = 1, the tolerance factor given by the solution to the equation (12) is equivalent to
the factor given by the solution to the equation (7) with ν = m(n− 1). Application of such a
tolerance factor leads to the non-simultaneous tolerance intervals with limits LE,i = Ȳi−κ

√
S2

and UE,i = Ȳi + κ
√
S2 for the considered m populations, each fulfilling the property as

defined by (1), but formally different from the individual tolerance intervals defined by (2),

i.e. LEi = Ȳi − κ
√
S2
i , UEi = Ȳi + κ

√
S2
i .

2.3. One-sided tolerance intervals

For completeness (however, without more details), we note that the tolerance factor for the
one-sided (1 − γ, 1 − α)-tolerance interval (LE ,∞) (resp. (−∞, UE)) can be computed as a
quantile of the non-central t-distribution. In particular, the exact tolerance factor for the
(non-simultaneous) upper tolerance limit UE = Ȳ + κ

√
S2, based on a simple calibration

experiment E , is given by
κ = δtν,∆;1−α, (13)

where ν = n− 1, ∆ = z1−γ
δ with δ2 = 1

n and z1−γ being the (1− γ)-quantile of the standard
normal distribution, and tν,∆;1−α denotes the (1−α)-quantile of the non-central t-distribution
with ν degrees of freedom and the noncentrality parameter ∆. For more details see Krish-
namoorthy and Mathew (2009), equations (1.2.2) and (2.2.3).

We notice an interesting (technical) relationship of the right hand side expression of the
equation (7) to the CDF of the noncentral t-distribution with ν degrees of freedom and the
noncentrality parameter ∆, say Ftν,∆(·). In particular,

Ftν,∆(x) = Φ(−∆) +
∫ ∞
−∆

Γ
(ν

2
,
ν

2x2
(z + ∆)2

)
φ(z) dz. (14)

This relationship allows to use similar computational strategies for computing the required
tolerance factor κ, as for computing the CDF of the noncentral t-distribution. For more
details see Witkovský (2013a).

Based on (14), and using the analogy of (12), the exact common tolerance factor κ for si-
multaneous one-sided upper tolerance limits UEi = Ȳi + κ

√
S2 (for m independent, equally

sampled normal populations with possibly different means µi, common variance σ2, and with
common sample size n) can be computed as a solution to the equation

1− α = Φ
(
−z1−γ

δ

)m
+m

∫ ∞
−
z1−γ
δ

Γ
(
ν

2
,
νδ2

2κ2

(
z +

z1−γ
δ

)2
)

(Φ(z))m−1 φ(z) dz, (15)

where ν = m(n − 1), δ2 = 1
n , and z1−γ is the (1 − γ)-quantile of the standard normal

distribution. For more details and alternative derivation see Krishnamoorthy and Mathew
(2009), equation (2.5.3).

3. Two-sided tolerance intervals for univ. normal linear regression
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Here we shall assume that the calibration experiment E is modeled by the linear regression
model Y = Xβ + ε, where Y is an n-dimensional random vector of responses measured for
n values xi, i = 1, . . . , n, of the explanatory variable x ∈ X ⊆ Rr. However, here we shall
assume that the explanatory variable is one-dimensional, i.e. that x ∈ (xmin, xmax) ⊆ R, what
is a typical situation for the frequently used p-order polynomial regression models.

The matrix X represents the (n× q)-dimensional calibration experiment design matrix with
rows f(xi)′, for i = 1, . . . , n, i.e. q-dimensional functions of r-dimensional vectors xi. For
example, in simple p-order polynomial linear regression model we get q = p+ 1 and f(xi) =
(1, xi, x2

i , . . . , x
p
i )
′ for xi ∈ X = (xmin, xmax). For simplicity, here we shall assume that X is a

full-ranked matrix.

Further, β is the q-dimensional vector of regression coefficients and ε is an n-dimensional
vector of measurement errors with its assumed distribution ε ∼ N(0, σ2In). Based on the
calibration experiment E , we get the sufficient statistics

β̂ = (X ′X)−1X ′Y, S2 =
1
ν

(Y −Xβ̂)′(Y −Xβ̂), (16)

and mutually independent pivot variables

ZX =
β̂ − β
σ2

∼ N
(
0, (X ′X)−1

)
, Q =

νS2

σ2
∼ χ2

ν , (17)

where ν = n− q.

3.1. Non-simultaneous tolerance intervals

The non-simultaneous tolerance intervals for the possible future realizations of the response
variable Y (x) = f(x)′β + σε (where f(x) is a known q-dimensional model function of x ∈ X
and ε ∼ N(0, 1) is independent of the calibration experiment E), say (LE,x, UE,x), are such
that

P{E}

(
P{Y (x)}

(
LE,x ≤ Y (x) ≤ UE,x | E

)
≥ 1− γ

)
= 1− α. (18)

Similarly as in the univariate distribution case, the limits of the two-sided tolerance intervals
for linear regression, (LE,x, UE,x) for x ∈ X , are typically restricted to the form

LE,x = f(x)′β̂ − κx
√
S2, UE,x = f(x)′β̂ + κx

√
S2, (19)

where by κx we denote the required tolerance factor at x ∈ X .

Then, for the given candidate of the tolerance factor, say κx, the content function for the
non-simultaneous tolerance interval (LE,x, UE,x) is

C(κx |ZX , Q) = Φ
(
|f(x)′ZX |+ κx

√
Q/ν

)
− Φ

(
|f(x)′ZX | − κx

√
Q/ν

)
= Φ

(
δx|Z|+ κx

√
Q/ν

)
− Φ

(
δx|Z| − κx

√
Q/ν

)
≡ C(κx |Z,Q), (20)

where Z = 1
δx
f(x)′ZX ∼ N(0, 1), Q ∼ χ2

ν , and δ2
x = f(x)′(X ′X)−1f(x) denotes the variance

of the estimator f(x)′β̂ at x ∈ X .

By comparing (3) and (20), it is clear that the exact tolerance factor κx for the two-sided
non-simultaneous tolerance interval (LE,x, UE,x), evaluated at x ∈ X , can be computed by
solving the equation (7), with ν = n− q and δ2 = δ2

x = f(x)′(X ′X)−1f(x).

Notice that the value of the exact tolerance factor κx does not depend directly on the vector
x ∈ X and the model design matrix X. In fact, it depends on the model design only through
ν = n − q and δ2

x. That is, κx is equal for all x ∈ X , such that δ2
x = f(x)′(X ′X)−1f(x) is

equal. This allows creation of tables and/or efficient interpolation-based approximations for
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computing the exact non-simultaneous tolerance factors κx for the univariate normal linear
regression models.

3.2. Simultaneous tolerance intervals

The simultaneous two-sided tolerance intervals for a possibly infinite sequence of the future
realizations of the response variable Y (x) = f(x)′β + σε, say (LE(x), UE(x)) for any x ∈ X ,
are such that

1− α = P{E}

(
P{Y (x)}

(
LE(x) ≤ Y (x) ≤ UE(x) | E

)
≥ 1− γ, for all x ∈ X

)
= P{E}

(
min
x∈X

P{Y (x)}

(
LE(x) ≤ Y (x) ≤ UE(x) | E

)
≥ 1− γ

)
. (21)

Similarly as before, we consider the limits of the tolerance intervals to be restricted to the
form

LE(x) = f(x)′β̂ − κ(x)
√
S2, UE(x) = f(x)′β̂ + κ(x)

√
S2, (22)

where by κ(x) we denote the tolerance factor function defined for all x ∈ X .
Then, for a given candidate of the tolerance factor function, say κ(x), the content function
for the simultaneous tolerance intervals (LE(x), UE(x)) is given by

C(κ(x) |ZX , Q) =
min
x∈X

(
Φ
(
|f(x)′ZX |+ κ(x)

√
Q/ν

)
− Φ

(
|f(x)′ZX | − κ(x)

√
Q/ν

))
, (23)

where ZX = β̂−β
σ2 ∼ N

(
0, (X ′X)−1

)
and Q ∼ χ2

ν with ν = n − q. Notice that the content
function (23) depends on the design matrix X, in particular through the matrix (X ′X)−1.
The tolerance factor function κ(x) is exact for the simultaneous (1−γ, 1−α)-tolerance intervals
(LE(x), UE(x)), for all x ∈ X , if

E{ZX ,Q}

(
I (C(κ(x);ZX , Q) ≥ 1− γ)

)
= 1− α. (24)

This may be checked either by a Monte Carlo simulation, or by (q+1)-dimensional numerical
integration. In general, evaluation of (23) and/or (24) is a computationally demanding task,
as it requires minimum search over x ∈ X for each evaluation at ZX , Q.
The solution to the equation (24) is not unique, until further restrictions are imposed on the
form of the tolerance factor function κ(x). In accordance with Witkovský (2013b), here we
suggest considering the family of the candidate tolerance factor functions κ(x), parametrized
by the scalar parameter m̃ ≥ 1, of the form

κ(x) = κ
(
δ2(x), ν, m̃

)
, (25)

where the function κ
(
δ2(x), ν, m̃

)
is given implicitly, for each x ∈ X , as a solution to the

equation (12), by setting δ2 = δ2(x) = f(x)′(X ′X)−1f(x), ν = n− q, and with m = m̃.
Here, the parameter m̃ (the simultaneousity parameter to be determined) represents the
complexity of the regression function f(x)′β over the considered range x ∈ X . The optimum
value of m̃ depends on the model and the design of the calibration experiment E : the model
function (e.g., the polynomial of order p), the considered set X , the design matrix X, and
the degrees of freedom ν. For example, in simple linear regression (polynomial of the order
p = 1) the value m̃ = 2 is a good starting point for the numerical (iterative) search procedure
(i.e., the complexity of the simple linear regression function for all x ∈ X is assumed to be
similar to the complexity of two independent normal populations).
Another possibility, suggested in Mee et al. (1991), is to consider the family of functions
κ(x) = κ(δ(x)), linear functions of δ(x) =

√
f(x)′(X ′X)−1f(x), parametrized by the scalar

parameter λ > 0 (a parameter to be determined). In particular,

κ(x) = κ(δ(x)) = κ(δ(x), q, λ) = λ
(
z1− γ

2
+ δ(x)

√
q + 2

)
, (26)



Austrian Journal of Statistics 287

where z1− γ
2

is the (1− γ
2 )-quantile of the standard normal distribution. Based on that, Mee

et al. (1991) derived their optimum tolerance function κ(δ(x)) (however, not exact) as a
solution to the equation

E{W,Q}

(
I
(
Ĉ(κ(δ(x));W,Q) ≥ 1− γ

))
= 1− α, (27)

by using the approximate content function

Ĉ(κ(δ(x)) |W,Q) =
min
δ(x)

(
Φ
(
δ(x)
√
W + κ(δ(x))

√
Q/ν

)
− Φ

(
δ(x)
√
W − κ(δ(x))

√
Q/ν

))
, (28)

where the range of δ(x) is considered for x ∈ X , and W ∼ χ2
q is independent of Q ∼ χ2

ν .
Notice that the content function (28) does not depend directly on the design matrix X.

3.3. Multiple-use calibration problem

A motivation for computing tolerance intervals for the univariate normal linear regression is
the multiple-use calibration problem and the associated problem of computing the calibration
confidence intervals.

In many experimental sciences, acquisition of the measurement results frequently requires
measurement procedures involving instrument calibration which can be modeled as a linear
(polynomial) regression problem. Then, the required measurement result, say x∗, is obtained
through measuring the observable response variable, say Y∗ = Y (x∗) = f(x∗)′β + σε, and
by inverting the fitted regression (calibration) function. A problem of constructing and com-
puting the appropriate confidence intervals for the unobservable values of the explanatory
variable x∗, based on a given fitted calibration function (a result of the calibration experi-
ment), for a possibly unlimited sequence of future observations of the response variable Y∗, is
known as the multiple-use calibration problem.

As proposed in Scheffé (1973), such calibration intervals for x∗ values can be obtained from
the simultaneous tolerance intervals for the considered linear regression (calibration function),
with warranted minimum (1 − γ)-coverage (for all such intervals simultaneously), and with
confidence at least (1−α) (i.e. for (1−α)×100% of possible calibration experiments). For an
overview of the problem and the used methods see, e.g., Mee et al. (1991), Mee and Eberhardt
(1996), Mathew and Zha (1997), Krishnamoorthy and Mathew (2009), Chvosteková (2013a),
Chvosteková (2013b), and Witkovský (2013b).

In particular, for given observation Y∗ = Y (x∗), we shall construct the calibration confidence
interval for the unobservable value of the explanatory variable, say x∗ ∈ X , by inverting the
simultaneous tolerance intervals. So, the calibration confidence interval for x∗ is given by the
random set

S (Y∗; E) = {x ∈ X : Y∗ ∈ (LE(x), UE(x))}. (29)

The set (29) is not necessarily an interval. However, for most practical situations where the
calibration function is (significantly) strictly monotonic for x ∈ X , the confidence set (29)
typically results in an interval. Based on (21) and (29), we can directly characterize the
stochastic properties of the calibration confidence intervals:

P{E}

(
P{Y (x∗)}

(
x∗ ∈ S (Y (x∗) | E)

)
≥ 1− γ

)
= 1− α. (30)

We notice, however, that from the practical point of view, such calibration confidence in-
tervals are considered to be too conservative, and consequently, as suggested in Mee and
Eberhardt (1996), usage of the non-simultaneous two-sided tolerance intervals (LE,x, UE,x) is
recommended in (29), instead of using the exact simultaneous two-sided tolerance intervals
(LE(x), UE(x)).
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4. MATLAB algorithm

Based on (12), we have developed the MATLAB algorithm ToleranceFactorGK, that com-
putes the tolerance factors κ for the two-sided tolerance intervals by using an adaptive Gauss-
Kronod quadrature. Usage of the complementary incomplete Gamma function (for computing
the CDF of chi-square distribution) and the complementary error function (for computing the
CDF of standard normal distribution) allows precise evaluation of the tolerance factors even
for extremely small values of the probabilities γ and/or α (i.e. for extremely high coverage
and confidence). The complementary error function is also used to find the solution (root)
r, of the equation [1 − (Φ(x + r) − Φ(x − r))] − γ = 0, by using the Halley’s method (root-
finding algorithm based on two function derivatives). The current version of the algorithm
is available at the web page http://www.mathworks.com/matlabcentral/fileexchange/
24135-tolerancefactor.

For illustration and possible comparisons with other algorithms, here we present several values
of the tolerance factor κ (presented with up to 15 decimal places) computed by the algorithm
ToleranceFactorGK for the two-sided (1− γ, 1− α)-tolerance interval for univariate normal
population(s), based on a calibration experiment characterized by the parameters n, δ2, ν,
and m.

Example 1. Let us consider the following parameters: γ = 0.01, α = 0.05, n = 10, m = 1,
ν = n − 1, and δ2 = 1

n . The tolerance factor, defined as a solution to the equation (12), is
calculated in MATLAB by using the algorithm ToleranceFactorGK:

gamma = 0.01; alpha = 0.05;
n = 10; m = 1; nu = n-1; delta2 = 1/n;
kappa = ToleranceFactorGK(n,1-gamma,1-alpha,m,nu,delta2)

kappa = 4.436908728948544

Example 2. As was explained in Section 2, by solving the equation (12), it is possible
to compute the common tolerance factor also for the simultaneous tolerance intervals of m
populations, assuming that the common sample size for all m populations is n. Let us consider
the following parameters: γ = 0.01, α = 0.05, n = 10, m = 4, ν = m(n− 1), and δ2 = 1

n . The
common tolerance factor for the simultaneous two-sided tolerance intervals is calculated by

gamma = 0.01; alpha = 0.05;
n = 10; m = 4; nu = m*(n-1); delta2 = 1/n;
options.Simultaneous = true;
kappa = ToleranceFactorGK(n,1-gamma,1-alpha,m,nu,delta2,options)

kappa = 3.574857233534562

Example 3. The information from m independent sources can be effectively used also if we
are interested in calculating a non-simultaneous tolerance interval for one particular popula-
tion. However, we wish to use the pooled sample variance estimator (i.e. with more degrees
of freedom than could be achieved from one sample). So, let us consider the following pa-
rameters: γ = 0.01, α = 0.05, n = 10, m = 4, ν = m(n − 1) = 36 δ2 = 1

n . Now, the
(non-simultaneous) tolerance factor is κ = 3.385579684948129. Notice that the tolerance
factor can be calculated also if we directly set m = 1 and ν = 36 (if m = 1 the calculated
tolerance factor is non-simultaneous).

gamma = 0.01; alpha = 0.05;
n = 10; m = 4; nu = m*(n-1); delta2 = 1/n;
options.Simultaneous = false;
kappa = ToleranceFactorGK(n,1-gamma,1-alpha,m,nu,delta2,options)

kappa = 3.385579684948129

Example 4. In order to illustrate the ability to compute the tolerance factors even for ex-
tremely large values of the coverage and confidence probabilities, let us consider the following

http://www.mathworks.com/matlabcentral/fileexchange/24135-tolerancefactor
http://www.mathworks.com/matlabcentral/fileexchange/24135-tolerancefactor
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Figure 1: Tolerance factors for the two-sided (0.95, 0.95)-tolerance intervals evaluated at 15
equidistant points δ(x) ∈ (δmin, δmax).

parameters: γ = 10−5, α = 10−18, n = 250, m = 1, ν = n− 1, δ2 = 1
n . The calculated value

of the tolerance factor is given by

gamma = 1e-5; alpha = 1e-18;
n = 250; m = 1; nu = n-1; delta2 = 1/n;
options.TailProbability = true;
kappa = ToleranceFactorGK(n,gamma,alpha,m,nu,delta2,options)

kappa = 6.967664575030617

Example 5. The algorithm can be used directly for computing the exact tolerance factors of
the non-simultaneous two-sided tolerance intervals for normal linear regression models, and
also, by using further optimization (used for finding the optimum value of m̃) for computing
the exact tolerance factors of the simultaneous two-sided tolerance intervals.

For illustration, let us consider a calibration experiment for simple linear regression: Y =
Xβ+ε, where X is an (n×2) design matrix with n = 20. The first column of X, representing
the intercept, is a column of ones, the second column has two distinct elements: −1 for the
first 10 rows and 1 for the last 10 rows. So, (X ′X)−1 is a diagonal matrix with both diagonal

elements equal to 1
n = 0.05, and consequently, δ(x) =

√
(1, x)(X ′X)−1(1, x)′ =

√
1
n(1 + x2).

We wish to compute the tolerance factors for the two-sided tolerance intervals with x ∈ X =

(−2, 2), i.e. for δ(x) ∈ (δmin, δmax) =
(√

1
n ,
√

1
n(1 + 22)

)
= (0.2236, 0.5).

Figure 1 plots the values of the exact non-simultaneous, the exact simultaneous and the
approximate tolerance factors, calculated for 15 equidistant values of δ(x) ∈ (δmin, δmax). The
exact non-simultaneous tolerance factors were calculated by (12), with n = 20, ν = n−q = 18,
and m = 1. The exact simultaneous tolerance factors were calculated according to (24)
and (25) with m̃ = 4.3, found by Monte Carlo based optimization, and ν = n − q = 18.
The approximate tolerance factors were calculated by (26), with the optimum value of the
parameter λ = 1.2057 taken from Table 2 in Mee et al. (1991), for n = 20 and τ = 2. Here is
the MATLAB code used for computing the tolerance factors:
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%% Exact non-simultaneous tolerance factors:
gamma = 0.05; alpha = 0.05;
n = 20; q = 2; nu = (n-q); m = 1;
delta_min = sqrt(1/n); delta_max = sqrt((1+2^2)/n); N = 15;
delta = linspace(delta_min,delta_max,N)';
kappa_NonSim = zeros(N,1);
for i = 1:N

kappa_NonSim(i) = ...
ToleranceFactorGK(n,1-gamma,1-alpha,m,nu,delta(i)^2);

end

%% Exact simultaneous tolerance factors:
gamma = 0.05; alpha = 0.05;
n = 20; q = 2; nu = (n-q); m = 4.3;
options.Simultaneous = true;
kappa_Sim = zeros(N,1);
for i = 1:N

kappa_Sim(i) = ...
ToleranceFactorGK(n,1-gamma,1-alpha,m,nu,delta(i)^2,options);

end

%% Approximate Mee-Eberhardt-Reeve tolerance factors:
lambda_MER = 1.2334;
z_quantile = norminv(1-gamma/2);
kappa_MER = zeros(N,1);
for i = 1:N

kappa_MER(i) = ...
lambda_MER * (norminv(1-gamma/2) + sqrt(2+q)*delta(i));

end

5. Discussion

The motivation for computing the exact simultaneous tolerance intervals for univariate normal
distributions and univariate normal linear regression models is rather strong. However, the
required methods and algorithms for computing the tolerance factors are more complicated,
than those for computing the non-simultaneous tolerance intervals. The efficient algorithms
are still missing in the commonly used statistical packages.

The main goal of the paper was to advocate the usage of the exact and/or approximate
tolerance intervals. We have presented a brief overview of the theoretical background and
approaches for computing the tolerance factors based on samples from one or several univariate
normal populations, and also presented the methods for computing the tolerance factors for
the non-simultaneous and simultaneous two-sided tolerance intervals for univariate normal
linear regression. For a more comprehensive overview of the models and methods for tolerance
intervals and tolerance regions we suggest to consult the book Krishnamoorthy and Mathew
(2009).
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