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Maria-Pia Victoria-Feser
Université de Genève

Abstract

A robust approach to the estimation of time series models is proposed. Taking from
a new estimation method called the Generalized Method of Wavelet Moments (GMWM)
which is an indirect method based on the Wavelet Variance (WV), we replace the classical
estimator of the WV with a recently proposed robust M-estimator to obtain a robust
version of the GMWM. The simulation results show that the proposed approach can be
considered as a valid robust approach to the estimation of time series and state-space
models.
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1. Introduction

The robust estimation of time series parameters is still a widely open topic in statistics
for various reasons. First of all, the robustness theory for dependent data is still not fully
developed given that the classical robustness measures are not directly applicable in the
time series context. In fact, for example, there is no unique definition of an influence function
(Hampel 1974) for time series since there is no unique definition of outliers or, more specifically,
there are different types of outliers which require to adapt such a measure (see Maronna,
Martin, and Yohai 2006, for a detailed overview). Secondly, many of the existing methods for
robust estimation of time series’ parameters are limited in terms of the range of models that
can be estimated and, above all, in terms of computation complexity as the models get larger
or more complicated. Moreover, robust estimation of latent time series models (models made
of the sum of several unobserved processes) has been largely ignored.

For robust estimation and inference for time series, a detailed list of references can be found
in Maronna et al. (2006), Chapter 8. Most of the literature in this domain has dealt with
standard time series models such as autoregressive and/or moving average processes, starting
with the seminal work of Masreliez and Martin (1977), Denby and Martin (1979), Bustos and
Yohai (1986) and Künsch (1984). Estimating robustly the parameters of latent models has
not gone beyond the AR(1) plus white noise (Masreliez and Martin 1977), probably because
of the difficulty in implementation of the different algorithms.
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This paper intends to explore the possibilities opened up by combining two recently proposed
approaches: the first concerning the robust estimation of the Wavelet Variance (WV) proposed
by Mondal and Percival (2012) and the second proposed by Guerrier, Stebler, Skaloud, and
Victoria-Feser (2013b) presenting a new method for the estimation of complex time series
parameters based on the WV, called the generalized method of wavelet moments (GMWM).
Since GMWM estimators are based on the matching between empirical and model based WV
estimators, the use of a robust estimator for the WV will in principle ensure robustness of
the model’s parameters estimator, as done, for example, with the robust generalized method
of moments (see Hansen 1982; Ronchetti and Trojani 2001).

The paper is organized as follows. In Section 2 we present a robust WV estimator proposed by
Mondal and Percival (2012) that we modify to improve its robustness properties. In Section
3 we briefly present the GMWM and propose a robust version of this method, and in Section
4 we present a simulation study that involves several models, including latent time series
models.

2. Robust Estimation of the Wavelet Variance

The WV is a quantity which is widely used throughout many scientific and engineering dis-
ciplines as a means to decompose, describe and summarize time series. For example, it has
been used for over 30 years as a standard routine measure of frequency stability in lasers
(see Fukuda, Tachikawa, and Kinoshita (2003)) or atomic clocks (see Allan (1987)). More
recently, the WV has also been used with optical sensors (see Kebabian, Herndon, and Freed-
man (2005)), various types of gas monitoring spectrometers (see Bowling, Sargent, Tanner,
and Ehleringer (2003); Werle, Mücke, and Slemr (1993)), sonic anemometer-thermometers
(see Loescher, Ocheltree, Tanner, Swiatek, Dano, Wong, Zimmerman, Campbell, Stock, Ja-
cobsen et al. (2005)), inertial sensors (see Guerrier (2009); El-Sheimy, Hou, and Niu (2008)),
radio-astronomical instrumentation (see Schieder and Kramer (2001)). The WV was also used
for example in Percival and Guttorp (1994) to analyse geophysics time series. This approach
was also used for physiological signal analysis for example in Fadel, Orer, Barman, Vong-
patanasin, Victor, and Gebber (2004) or in Gebber, Orer, and Barman (2006). In Whitcher
(2004), discrete wavelet packet transforms are used to estimate one of the parameters of a
seasonal long memory process for the analysis of atmospheric and economic time series.

The WV can be interpreted as the variance of a process after it has been subject to an
approximate bandpass filter (Percival and Guttorp 1994). Let {Xt}, t ∈ Z, be a stationary
process, or a non-stationary process with stationary backward differences of order d. By
applying a specific wavelet filter {h̃j,l}, j = 1, . . . , J to this process we obtain the Maximum
Overlap Discrete Wavelet Transform (MODWT) coefficients {Wj,t} (see e.g. Percival and
Walden 2000) as follows

Wj,t =
Lj−1∑
l=0

h̃j,lXt−l, t ∈ Z (1)

where j is the scale at which the filter is applied and Lj = (2j−1)(L1−1) + 1 is the length of
that filter with L1 being the length of {h̃1,l}. Given the wavelet coefficients, the WV at scale
j is defined as the variance of the wavelet coefficients at this scale

νj = var (Wj,t) (2)

Under the stationarity conditions defined above, it can be observed that the WV νj is not
a function of t (i.e. is time-invariant). This entails a series of properties, among which the
following

∞∑
j=1

νj = σ2
X (3)



Austrian Journal of Statistics 269

where σ2
X is the variance of {Xt}. Hence, the WV is a decomposition of the process variance

and, as highlighted earlier, is consequently useful under many aspects if one is concerned by
how the variance of a process is distributed across the different scales.

The MODWT estimator of the WV was defined in Percival (1995) and is given by

ν̂j =
1

M(Tj)

∑
t∈Tj

W 2
j,t (4)

with Tj being the set of time indices for which the wavelet coefficients are free of end effects,
and M(Tj) = T − Lj + 1 being their number. This estimator of the WV is the most efficient
asymptotically and it’s properties were studied and proved in Serroukh, Walden, and Percival
(2000).

An alternative estimator for the WV is based on the Discrete Wavelet Transform (DWT)
coefficients (see Greenhall 1991; Percival and Guttorp 1994), for which the wavelet filter is
applied to the process in (1) in a different manner. More specifically, the DWT filters a
sequence {Xt} on non-overlapping windows yielding the DWT wavelet coefficients

W j,t = 2−j/2
Lj−1∑
l=0

hj,lXt−l (5)

where t is taken at intervals of lag Lj .

However, in a recent article Mondal and Percival (2012) underline how even “a moderate
amount of contamination often has a very adverse effect on conventional estimates of the
wavelet variance”. For this purpose they propose an M-estimator for the WV based on the
transformation of the WV (a scale parameter) to a location parameter as follows

Qj,t = log
(
W 2
j,t

)
(6)

They then propose to use the following M-estimator

µ̂j = argmin
µj∈R


∣∣∣∣∣∣
∑
t∈Tj

ψ(Qj,t − µj)

∣∣∣∣∣∣
 (7)

which is then inversely transformed and corrected for bias in order to obtain a consistent
estimator for νj . Here ψ(·) is a function of bounded variation which guarantees the robustness
of the estimator. Mondal and Percival (2012) suggest four types of ψ-functions and make use
of the median-type function for their simulations, that is to say ψ(z) =sign(z). This ψ-
function is therefore the one which will be used in the Monte Carlo simulations presented
further on in this paper.

Moreover, preliminary simulations have shown that in many cases the WV based on the
DWT coefficients appear to be more appropriate for robustness purposes than the MODWT
coefficients. Hence the Monte Carlo study will be done using the WV based on the DWT
coefficients W j,t by using the relationship between these and the MODWT coefficients as
underlined in Percival (1995).

3. Robust Generalized Method of Wavelet Moments

Guerrier et al. (2013b) propose a method for the estimation of complex time series models,
namely the GMWM. The method extends from the GMM setting and uses the implicit link
which exists between the WV and the underlying assumed model Pθ. The link is the following

νj =
∫ 1/2

−1/2
SWj (f)df =

∫ 1/2

−1/2
|Hj(f)|2SPθ

(f)df (8)
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where SWj (f) is the Power Spectral Density (PSD) function for the wavelet coefficients Wj

or W j,t, Hj(f) =
∑L1−1

l=0 h̃j,le
−i2πfl denotes the transfer function of the wavelet filters h̃j,l (or

hj,l), with | · | being the modulus, and SPθ
is the PSD implied by Pθ. Hence there is a link

between the WV and Pθ.

Let us define ν = [ν1, . . . , νJ ] as the vector of WV and ν(θ) as the WV vector implied by the
process Pθ. Taking advantage of the above link, Guerrier et al. (2013b) propose the following
estimator

θ̂ = argmin
θ∈Θ

(ν̂ − ν(θ))T Ω (ν̂ − ν(θ)) (9)

where Ω is an appropriate positive definite weighting matrix. The authors provide the proofs
of consistency of the estimator for a number of time series models as well as of its asymptotic
normality.

The idea behind this paper is to combine the estimation method presented in Section 2 with
the GMWM. Hence, instead of using the classical estimator of the WV defined in (4), we
propose to use the transformed and corrected version of the estimator in (7) using the DWT.
We then use this estimator for ν̂ in (9) to obtain a robust estimation method.

This proposed approach has its theoretical bases in the papers by Ronchetti and Trojani
(2001) and Genton and Ronchetti (2003). Using a robust estimator of ν implies a robust
estimator for θ with a bounded influence function since a bounded estimator for ν bounds
the function (ν̂ − ν(θ)).

The next section presents a Monte Carlo study to investigate the performance of this new
approach on different stochastic processes.

4. Monte Carlo Study

In this section we present a Monte Carlo study of the estimator proposed in Section 3. We
will investigate the performance of the estimator on three processes, namely a white noise
process (WN), a first-order autoregressive process (AR1) and a composite stochastic process
like the simulation presented in Guerrier et al. (2013b).

In addition to the wavelet moments used in the latter article, Guerrier, Stebler, Skaloud,
and Victoria-Feser (2013a) suggest using additional moments of the processes to improve the
performance of the GMWM estimator. Hence, the simulations will use the second moment
in the case of the WN and AR1 processes and the first and second moments of the first-
order difference of the composite process since the latter is stationary and has a non-zero
expectation.

We will compare three estimators: the Maximum Likelihood Estimator (MLE), the classi-
cal GMWM estimator (GMWM) and the robust estimator proposed in the present paper
(RGMWM). For the classic GMWM, the first and second moments will be estimated respec-
tively via the classical estimators of mean and variance whereas the third estimator will use
respectively the median and the M-estimator proposed in (7). For the classical and robust WV
estimator, the DWT wavelet transform is used. In all studies, processes of length L = 1000
were simulated and the contaminations were additive (i.e. Gaussian noise with a specific
variance σ2

ε was added to an ε-percentage of the observations of the underlying process).

4.1. White Noise

A white noise process can be written as Xt
iid∼ N(0, σ2).

Hence, the only parameter to be estimated is σ2. The performance of the proposed estimators
when there is no contamination is illustrated in Figure 1 where all estimators appear to be
unbiased. The RGMWM however has a larger variance which is to be expected since efficiency
is the price to pay for robustness.
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Figure 1: Finite sample performance of the MLE, GMWM and RGMWM estimators on an
uncontaminated white noise process of length L = 1, 000, with σ = 1. MLE represents
the maximum likelihood estimator, GMWM represents the classic GMWM estimator with
additional second moment of the process, RGMWM represents the robust GMWM based on
the M-estimator proposed by Mondal and Percival (2012) with DWT wavelet transforms.

Table 1: Finite sample bias, variance and MSE of the MLE, GMWM and RGMWM estimators
on an uncontaminated white noise process of length L = 1, 000, with σ = 1. MLE represents
the maximum likelihood estimator, GMWM represents the classic GMWM estimator with
additional second moment of the process, RGMWM represents the robust GMWM based on
the M-estimator proposed by Mondal and Percival (2012) with DWT wavelet transforms.

MLE GMWM RGMWM

Bias 2.033 · 10−3 1.768 · 10−3 6.990 · 10−3

Variance 2.021 · 10−3 2.141 · 10−3 4.520 · 10−3

MSE 2.025 · 10−3 2.144 · 10−3 4.568 · 10−3

Table 1 confirms these interpretations showing that in an uncontaminated setting, the best
choice would be the MLE. However, by contaminating 5% of the sample with additive noise
with σ2

ε = 100 we can see how the MLE and the classical GMWM become highly biased
and variable. Looking at Figure 2 and at the Mean Squared Errors (MSE) in Table 2, the
advantage of using the RGMWM is evident.

4.2. First-Order Autoregressive

A first-order autoregressive process can be represented as follows

Xt = φXt−1 + εt

where φ is the autoregressive parameter and εt
iid∼ N(0, σ2).

Figure 3 shows how the proposed RGMWM estimator appears to confirm its robustness
properties under a 1%-contaminated process with additive noise with σ2

ε = 9. Its improved
performance compared to the classical estimators is highlighted by the results in Table 3.
The latter table appears to indicate that this robust approach is particularly convenient for
estimating the σ2 of the innovation process compared to the autoregressive parameter φ.

4.3. Latent Time Series Model

The GMWM methodology was mainly developed to estimate models made up by latent
processes. An example of such a process was given in Guerrier et al. (2013b) as a sum
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Figure 2: Finite sample performance of the MLE, GMWM and RGMWM estimators on a
5%-contaminated white noise process of length L = 1, 000, with σ = 1 and contamination
generated by adding Gaussian noise with σ2

ε = 100. MLE represents the maximum likelihood
estimator, GMWM represents the classic GMWM estimator with additional second moment
of the process, RGMWM represents the robust GMWM based on the M-estimator proposed
by Mondal and Percival (2012) with DWT wavelet transforms.

Table 2: Finite sample bias, variance and MSE of the MLE, GMWM and RGMWM estimators
on a 5%-contaminated white noise process of length L = 1, 000, with σ = 1 and contamination
generated by adding Gaussian noise with σ2

ε = 100. MLE represents the maximum likelihood
estimator, GMWM represents the classic GMWM estimator with additional second moment
of the process, RGMWM represents the robust GMWM based on the M-estimator proposed
by Mondal and Percival (2012) with DWT wavelet transforms.

MLE GMWM RGMWM

Bias 4.988 · 10−1 5.018 · 10−1 1.690 · 10−1

Variance 1.450 · 10−2 1.478 · 10−2 6.448 · 10−3

MSE 2.633 · 10−1 2.666 · 10−1 3.500 · 10−2
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Figure 3: Finite sample performance of the MLE, GMWM and RGMWM estimators on a
1%-contaminated first-order autoregressive process of length L = 1, 000 with σ = 1, φ =
0.9 and contamination generated by adding Gaussian noise with σ2

ε = 9. MLE represents
the maximum likelihood estimator, GMWM represents the classic GMWM estimator with
additional second moment of the process, RGMWM represents the robust GMWM based on
the M-estimator proposed by Mondal and Percival (2012) with DWT wavelet transforms.

Table 3: Finite sample bias, variance and MSE of the MLE, GMWM and RGMWM estimators
on a 1%-contaminated first-order autoregressive process of length L = 1, 000 with σ = 1,
φ = 0.9 and contamination generated by adding Gaussian noise with σ2

ε = 9. MLE represents
the maximum likelihood estimator, GMWM represents the classic GMWM estimator with
additional second moment of the process, RGMWM represents the robust GMWM based on
the M-estimator proposed by Mondal and Percival (2012) with DWT wavelet transforms.

MLE GMWM RGMWM

φ Bias −1.629 · 10−2 −1.759 · 10−2 −4.946 · 10−3

Variance 2.764 · 10−4 3.067 · 10−4 3.667 · 10−4

MSE 5.419 · 10−4 6.163 · 10−4 3.912 · 10−4

σ2 Bias 1.563 · 10−1 1.313 · 10−1 3.846 · 10−2

Variance 6.661 · 10−3 6.904 · 10−3 8.082 · 10−3

MSE 3.108 · 10−2 2.414 · 10−2 9.561 · 10−3

of an autoregressive process, a drift process {ω} and a white noise process as follows

Yt = φYt−1 + ω + ut, ut
iid∼ N(0, σ2

AR)

Xt = Yt + εt, εt
iid∼ N(0, σ2

WN )

For these kind of processes, the GMWM (along with the robust version presented in this pa-
per) presents important advantages over alternative approaches (see Guerrier et al. (2013b)).
When contaminating this process (with φ = 0.95, ω = 0.04, σ2

AR = 16, σ2
WN = 4) with 5%-

additive outliers with σ2
ε = 9, the results seem to indicate that the classic GMWM does not

appear to be greatly affected by this contamination for the first three parameters. However, it
shows all the impact of the outliers for the estimation of the white noise innovation parameter
σ2
WN where the RGMWM shows only a very slight bias.

The results presented in Table 4 show how the GMWM seems to perform better than the
proposed RGMWM except for the parameter σ2

WN where the GMWM is completely biased.
Therefore, although slightly biased for most of the parameters, the RGMWM limits this bias
for all parameters whereas the classical GMWM loses this property for one parameter. The
improved performance of the RGMWM on the innovation parameters could be explained by
the fact that the latter process is especially identifiable at the first scales of the WV which
are also the most informative (i.e. they have a larger number of wavelet coefficients).
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Figure 4: Finite sample performance of the MLE, GMWM and RGMWM estimators on a
5%-contaminated composite process (10) of length L = 1, 000, with φ = 0.95, ω = 0.04,
σ2
AR = 16, σ2

WN = 4 and contamination generated by adding Gaussian noise with σ2 = 9.
GMWM represents the classic GMWM estimator with additional first and second moment
of the first-differenced process, RGMWM represents the robust GMWM based on the M-
estimator proposed by Mondal and Percival (2012) with DWT wavelet transforms.

5. Conclusions and Perspectives

Given the theoretical bases and the results of the Monte Carlo studies, the proposed estimator
appears to be an extremely valid candidate for the robust estimation of time series models.
Knowing the theoretical WV ν(θ) of a process, it is possible to estimate the parameters θ of
this process in a robust manner.

The theoretical WV of many processes can be derived from the results in Zhang (2008)
or, as an alternative, Guerrier et al. (2013b) suggest to use indirect inference to overcome
the complexity of calculations for certain models. Hence, the proposed estimator is easily
implemented and computationally inexpensive while at the same time providing a robust
estimation method for many processes for whom robust estimation methods are scarce.

There are many possible developments for this method, including the study of its asymptotic
properties. Given the variety of wavelet decompositions, different wavelets and filtering meth-
ods could be explored to understand if some of them could contribute more effectively to the
robust estimation approach presented in this paper. Moreover, as highlighted earlier, Guerrier
et al. (2013a) suggested additional adjustments to the GMWM methodology to improve its
performance and its robust equivalents could be considered to improve the performance also
of the approach proposed in this paper.
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Table 4: Finite sample bias, variance and MSE of the GMWM and RGMWM estimators on
a 5%-contaminated composite process (10) of length L = 1, 000, with φ = 0.95, ω = 0.04,
σ2
AR = 16, σ2

WN = 4 and contamination generated by adding Gaussian noise with σ2 = 9.
GMWM represents the classic GMWM estimator with additional first and second moment
of the first-order difference of the process, RGMWM represents the robust GMWM based on
the M-estimator proposed by Mondal and Percival (2012) with DWT wavelet transforms.

GMWM RGMWM

φ Bias −3.709 · 10−3 −1.670 · 10−2

Variance 9.269 · 10−4 1.744 · 10−3

MSE 9.407 · 10−4 2.023 · 10−3

σ2
AR Bias 5.035 · 10−1 2.088

Variance 1.030 · 101 1.436 · 101

MSE 1.055 · 101 1.872 · 101

ω Bias 4.896 · 10−4 3.344 · 10−2

Variance 1.801 · 10−4 6.897 · 10−3

MSE 1.803 · 10−4 8.015 · 10−3

σ2
WN Bias 1.535 · 101 −4.975 · 10−1

Variance 4.332 · 101 6.333
MSE 2.788 · 102 6.580
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