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Abstract: A semiparametric sequential ordinal model is proposed to ana-
lyze socio-demographic and spatial determinants of first birth intervals after
marriage. Random effects are introduced to capture spatially structured and
unstructured latent covariates. The structured effects are modelled by assum-
ing conditional autoregressive priors, and for the unstructured effects we use
an exchangeable Gaussian prior, while the smooth effects of continuous co-
variates are modelled by penalized splines. Inference is based on the mixed
model approach. The model is applied to data from a cross-sectional survey.
Compared to a spatial parametric predictor, the spatial semiparametric model
better fits the data.

Zusammenfassung: Ein semiparametrisches, sequentielles, ordinales Mod-
ell wird zur Analyse sozialdemografischer und raumlicher Faktoren fiir Inter-
valle von Erstgeburten nach Verehelichung vorgeschlagen. Zufillige Effekte
werden eingesetzt um rdumlich strukturierte und unstrukturierte latente Ko-
variablen zu erfassen. Die strukturierten Effekte werden modelliert indem
konditionale autoregressive Priors angenommen werden, und fiir die unstruk-
turierten Effekte verwenden wir einen austauschbaren Gauss-Prior, wihrend
die glatten Effekte der stetigen Kovariablen durch ponalisierter Splines mod-
elliert sind. Die Inferenz basiert auf dem Ansatz Gemischter Modelle. Das
Modell wird auf Daten aus einer Querschnittserhebung angewandt. Ver-
glichen mit einem rdumlichen parametrischen Préadiktor passt das rdumliche
semiparametrische Modell besser zu den Daten.
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1 Introduction

Modelling fertility data is of great interest in population economics study (Henry, 1973;
Lloyd, 2005). Several indicators are used to measure fertility patterns, among which is
first birth intervals (FBI) after marriage (Lloyd, 2005). The timing of first birth is strongly
correlated with the pace of subsequent fertility and, often, rapid first birth leads to rapid
transition to higher parities and higher fertility. It may also suggest social and cultural
changes to fertility, values of family formation and parenthood. In many societies, espe-
cially in developing countries, birth carries multivalent social implications. For example,
child bearing contributes significantly to the woman’s identity in society, proves her fer-
tility and reduces the anxiety surrounding family continuance (Lloyd, 2005).

The aim of this article is to develop a statistical model to analyze FBI, and investi-
gate how global and local spatial effects on FBI can be successfully assessed, adjusting
for a variety of socio-demographic factors. Most of the previous studies of FBI have em-
ployed the discrete-time duration model because the duration times are reported in months
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and are discrete in nature (Feng and Quanhe, 1996; Zhenzhen, 2000). In this paper, we
propose working with ordinal representation of the length of the waiting interval as an
alternative approach to modelling waiting time data. The ordinal responses arise by cate-
gorizing the continuous outcomes (i.e., the interval in months) by adjacent intervals along
the continuous scale. The observed response can be regarded as the result of a sequential
process in which each time point (response category) can be reached successively.

The sequential ordinal model, as described by Albert and Chib (1997, 2001), can be
used to analyze such categorical responses that occur in sequential order. The sequential
ordinal model, also referred to as the continuation ratio model, is equivalent to the most
commonly used cumulative ordinal model where the distribution function is the extreme
value distribution (Lddrd and Matthews, 1985; Albert and Chib, 2001). For various exten-
sions and comparisons among these models, see the overview by Liu and Agresti (2005).
Tutz (2003) showed that the sequential ordinal model belongs to the multivariate exponen-
tial family, and the generalized linear model framework applies. Several reasons justify
the choice of sequential ordinal models to analyze event history data. Firstly, the se-
quential ordinal model compared to other duration models (e.g. the classical proportional
hazards model) avoids the estimation bias introduced by long-term survivors. Secondly,
the sequential ordinal model can be used to model non-proportional and non-monotonic
hazard functions, and the effect of time-varying covariates can be allowed (Albert and
Chib, 2001; Tutz, 2003).

Applications of the sequential ordinal model in the analysis of event history demo-
graphic data, to our knowledge, are few. Such a use, however, is common in several other
fields. In epidemiological studies, for instance, Knorr-Held, Raber, and Becker (2002)
applied both cumulative and sequential ordinal models to map disease-specific cancer in-
cidence data. Albert and Chib (2001) developed a sequential ordinal model to analyze
length of hospital stay data. In another study, Tutz (2005) developed an isotonic sequen-
tial ordinal model to analyze repeated ordinal measurements. Similar applications have
appeared in educational and economic studies. Albert and Chib (1997) applied sequential
ordinal models to analyze education attainment, creating an ordinal response by cate-
gorizing duration (i.e., the number of years) of schooling. Omori (2003) compared the
proportional hazard model and the sequential ordinal model to estimate Japanese diffusion
index data.

In the following, we extend the sequential ordinal model of Albert and Chib (1997,
2001) by modelling FBI with a flexible geoadditive predictor (Fahrmeir, Kneib, and Lang,
2004) that incorporates random effects to account for spatial correlation and heterogeneity
and allows nonlinear effects of continuous covariates and the usual fixed effects. For ex-
ample, social norms associated with FBI can exhibit spatial effects (Entwisle, Casterline,
and Sayed, 1989) and may be useful to quantify in order to formulate socio-economic
policies. Furthermore, continuous variables such as age at marriage and year of marriage
are estimated using categorical dummies or quadratic components, but this assumption
may be too restrictive and such factors may exhibit nonlinear effects (Zhang and Steele,
2004). Inference follows the mixed model approach (Fahrmeir et al., 2004).

The rest of this paper is structured as follows. Section 2 describes the model and the
estimation procedure. Section 3 outlines the data and the analysis plan. In Section 4, we
give the results. We conclude in Section 5 with a discussion.



L. Kazembe 85

2 The Model

We consider the common situation of a cross-sectional regression analysis. Let y; be
a response variable with J ordered categories. In additional, we have a vector w; =
(w1, - .., w;)" of p covariates. The observations (y;, w;) are assumed independent. The
basic idea is to cast the model in terms of conditional transition probabilities Pr(y; =
Jlyi > 7),j =1,...,J — 1. In our example, this is the characteristic of the ith woman
who has first birth in interval j, which occurs only after passing levels 1,2,...,5 — 1 and
only bears at level j or higher. The probability of having birth at interval j, conditional
on the event that the jth interval is reached is given by,

where 0 = (6;,...,0;,_1) are the cutpoints, one of which is normalized to O to ensure
identifiability. [ is a strictly monotone function, w.« is the effect of covariates associ-
ated with the response. If I is chosen to be a logistic distribution function we obtain a
sequential logit (Tutz, 2003; Liu and Agresti, 2005),

exp(f; — wia)

P P — - i> ‘7 i) — ) 2
vy = Jly 2 Jywi) = T exp(0; = wla) (2)
or equivalently in logit form
Pr(y; = jlw; ,
Nij = M:@-—w;a, j=1,...,J—1. 3)

N Pr(y; > jlw;)

where 7);; is a predictor.

Model (1) can also be formulated in terms of latent variables expressing the propensity
of a woman to reach category j before bearing her first child. Corresponding to the jth
category (of time to first birth), define latent variable {z;;}, where z;; = 0; — wia +¢;; =
1ni; + €i;, where ¢€;; is an error variable. We observe y; = 1 if z;; < 6;, and we observe
y; = 2 if the first latent variable z;; > 6; and the second latent variable z;; < 65. In
general we have

( 1 if Zil S (91
2 if zj > 01,22 < 05

Yi : “4)
J—1if zjp > 01,20 > 09, ..., 25521 <054

J if 2i1 > 01,200 > 00,0, 2001 > 051,215 < 0.

\

The latent variable representation can be simplified by incorporating the cutpoints {6;}
into the mean function and fixing one of the cutpoints, ¢; = 0. It can be shown that
this categorization implies that P(y; = jly; > j,w;) is as specified in equation (1).
In the discrete time survival context, the outcome variable y; = 7 corresponds to an
event in a pre-specified time interval [a;_1, a;). Thus the sequential ordinal model for
Pr(y; = jly; > j) provides a discrete version of hazard regression (Tutz, 1991).

An alternative to the sequential model is the cumulative model given by

Pr(y; < jlw) = F(0; —wja),  j=1,...,J =1, (5)
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If F' is the logistic distribution function one obtains the proportional odds model

Pr(y; < jlw;)

log ,
Pr(y; > jlw;)

=0; — wha. (6)

When the logit link is replaced by the complimentary log-log link, the resulting model

Pr(y; < jlw;)

, =0, — wa (7
Pr(y; > jlw) ]

log |—log
is equivalent to the proportional hazards model. Laird and Matthews (1985) showed that
the cumulative model and sequential model are identical when the complementary log-log
link is used.

Modelling of heterogeneity and spatially structured variation may be obtained by in-
troducing random effects. Similarly, nonlinear effects are introduced in the model through
smoothing functions. The predictor (3) is expanded to include all possible explanatory
variables like fixed, nonlinear and spatial covariates, giving a semi-parametric predictor
(Tutz, 2003),

q
i = 0; — wio+ Y fulwa) + fu(si) (8)
k=1
where « are fixed effects corresponding to w; = (wj,...,wsy), fi, k = 1,...,q are
unknown smooth functions of continuous covariates x; = (z;1,. .., x;,) that enter non-
linearly, and f,(s;) is the spatial component of the model that captures random effects of
area s;, s € {1,..., S}, where woman 7 lives. The component f(s;) is split further into

spatially structured and unstructured random effects, fg,-(s;) and fu.s-(S;) respectively,
to capture any residual between-and-within district variation in FBI that is not explained
by components of the model.

To obtain a mixed model formulation of the predictor in generic form, we introduce

some matrix notation. Let n = (7, ...,7,;)" denote the predictor, f, = (fx(x1),- ..,
fr(zn;))" the effects of covariate x;, j = 1,...,p, far = (fotr(51),---, fstr(5n)) the
spatial effects, and funstr = (funstr(S1)s - - -y funstr(Sn))’ the uncorrelated random effects.

Then fi, fsr, and f,.s can always be expressed as the matrix product of an appro-
priately defined design matrix X and a (possible high-dimensional) vector of regression
coefficients 3, such that f, = X, /3,. Further, define v = (0,a/)" as the overall fixed
regression coefficients (including the threshold parameters), and

1 —w
V:

1 —w

the corresponding design matrix constructed from the covariates w; and thresholds 6.
Then, after reindexing, we can rewrite the predictor (8) in generic matrix notation as

n=Vy+Xip+- -+ X0, 9)

where V' represents fixed effects (including the threshold parameters) while each of the
term X, (3, represents a nonparametric, spatial or random effect.
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2.1 Prior Assumptions

Specification of the model (9) is completed by assigning appropriate prior distributions
for the regression coefficients. In the empirical Bayesian approach, the parameters ~y are
considered fixed effects, while (3, . .., §; are random effects. In the Bayesian framework
we assign diffuse priors for the fixed effects i.e. p(+y) o const, and informative priors for
the random effects.

By assuming the effects of continuous covariates vary smoothly over their codomain,
their priors can be modelled through P-splines (Eilers and Marx, 1996). The approach
assumes the unknown function f; can be approximated by a polynomial spline of degree
[ with equally spaced knots (2 pmin = Cro < Cr1 < -+ < Crr—1 < Chr = Th,maz) Within
the domain of x;. For each covariate zj, an [ degree P-spline approximation of f is
defined as

Fe(@) = BimBrom (1) - (10)
m=1

The P-spline is a linear combination of n = r + [ B-spline basis functions Bjy,,. The
estimation of f is reduced to the estimation of 5, = (0k1,...,0km)’. Here, a cubic
P-spline in combination with second order random walk priors for 3, is employed

Bkm = 2ﬁk,m—1 + 6k,m—2 + Upm (11)

with g, ~ N(0,72) for m > 2 with 3,1 and 3,2 assigned diffuse priors.

For the spatial component, we distinguish the spatially structured and unstructured
effects, defined in matrix form as fy, = X, Osr and funstr = XunstrBunstr» respectively.
The spatially structured component is modelled by assuming a conditional autoregressive
(CAR) prior (Besag, York, and Mollie, 1991). The CAR prior define areas as neighbors if
they share a common boundary and assume that the effect of area s is conditionally Gaus-
sian, with the mean of the effects of neighboring areas as expectation and a variance that
is inverse proportional to the number of neighbors of areas s. Hence the most commonly
used spatial smoothness prior is,

1 2
65tr(5)|ﬁstr(r)as7érv7-52tr NN (FZﬁstr(r)a;i;r> ) CRS {L---as}a (12)
$ T‘G(Ss §

where N is the number of adjacent sites, and r» € J, denotes that r is a neighbor of area
s. The parameter 72, quantifies the amount of spatial variation present in the data and
control the smoothness. For the unstructured heterogeneity we introduce additional i.i.d.
Gaussian priors with

Bunstr(8) ~ N(0, 72 40) sefl,...,S}. (13)

2.2 Mixed Model based Inference

Inference for the semiparametric sequential ordinal models is based on the empirical
Bayesian approach, also called the mixed model methodology (Fahrmeir et al., 2004;
Brezger, Kneib, and Lang, 2005). This is achieved by recasting the predictor model (9)
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as a generalized linear mixed model (GLMM) after appropriate reparametrization. This
provides the key for simultaneous estimation of the function evaluations f; and the vari-
ance parameters 77 in the empirical Bayes approach. To rewrite model (9) as mixed
model, we assume that 3, has dimension dj and the corresponding penalty matrix has
rank r, < dj, = dim(f3;,). Each parameter vector 3, is partitioned into a penalized (ﬁp e
and unpenalized (3,"") part yielding a variance component model (Fahrmeir et al., 2004
Brezger et al., 2005),

6h _ \I}unpﬁunp \ijenﬁpen (14)

unp pen

for some well defined dj, x (dj, —rp,) matrix ¥,"” and a dj, x 1, matrix U}". The following
priors are assumed. For the penalized part, an i.1.d. Gaussian prior is sultable, while for
the unpenalized part we assume a flat prior, this is

p(BY") ~ N(0,77L,),  p(B,") o< const. (15)
Applying decomposition (14) to all the components of predictor (9) yields
n = Xunpﬁunp + Xpenﬁpen ) (16)

We have obtained in (16) a GLMM with fixed effects 5*"? and random effects 57°". The
posterior, in terms of the GLMM representation, is given by

~

p(ﬂunp’ﬁpenky) o L ﬁunp ﬁpen H pen|7_h (17)

where L(-) denotes the likelihood which is the product of individual likelihood contribu-
tions and p(5;"|77%) is as defined above.

Estimation of regression coefficients and variance parameters is carried out using it-
eratively weighted least squares and approximate restricted maximum likelihood. At the
first iteration the default (starting) values are assumed for the penalized, unpenalized and
variance parameters. Then updates for 3, and ;" are obtained in the first step by solv-
ing a system of linear equations given estimates for the variance parameters. In the second
step updates of the variance parameters are obtained by maximizing the approximate re-
stricted log-likelihood. The restricted log-likelihood is maximized through a Fisher scor-
ing technique. The two steps above are iterated until convergence. Fahrmeir et al. (2004)
derived numerically efficient formulae that allow for handling large data sets.

3 Applications

3.1 Data

For applications of the methodology we consider data from the 2000 Malawi Demo-
graphic and Health Survey (MDHS). The 2000 MDHS interviewed a representative sam-
ple of more than 13000 eligible women aged between 15 and 49 years (National Statistical
Office and ORC Macro 2001, 2000). A two-stage stratified sampling design was imple-
mented to collect the data. The data were realized through a questionnaire that included
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Table 1: Categorization of marriage to first birth intervals (in months).

Marriage to first Response Frequency Percent
birth interval (months)

8-10 1 1375 16.5
11-12 2 1354 16.2
13-16 3 1644 19.7
17-21 4 1277 15.3
22-31 5 1333 16.0
>32 6 1358 16.3
Total 8342 100

questions on marriage and reproductive histories, of which detailed dates of birth of all
women and their children were collected.

We analyze the time between marriage and first birth. We consider data from women
who indicated births after post-marital conceptions. Those classified as premarital births
(who gave a date of first birth that preceded date of marriage), and those classified pre-
marital conceptions (who married within 7 months of their first birth) are excluded from
further analysis, yielding 8342 (79.6%) ever-married women of postmarital conceptions.

The response variable is constructed by categorising the intervals between marriage
and first births (in months) into six segments as shown in Table 1. This type of segmenta-
tion is consistent with previous studies of FBI (Feng and Quanhe, 1996), as well as guided
by exploratory analysis of the empirical hazard function. In general, the interval of 8-11
months tried to capture the behavior of contemporary women or rural counterparts who
are pressed to have an heir soon after marriage in order to consolidate their marriage. For
the interval 12-24 months, it is argued that within this period an average woman would
have had a birth. Beyond this, it is a deliberate attempt to delay birth.

Several covariates, grouped into two broad categories: community and bio-demographic
covariates, are included in the analyses. These have been found important in previous
studies of first birth intervals (Zhenzhen, 2000). Community factors allow for socio-
cultural and/or socio-economic factors both at small and large scale, and include region,
place of residence (rural/urban), education of the woman and ethnicity. Bio-demographic
characteristics include age at marriage, year of marriage and age differences between
spouses. Descriptive statistics of the variables are shown in Table 2. The DHS data
also has information on district of residence, which permit inclusion of spatial correla-
tion effects to capture residual or unobserved factors that may influence the pattern of the
response.

3.2 Analysis

We fit the following three models, for both the sequential and cumulative models. The
cumulative model is estimated for comparison purposes. The first model, M1, is purely
spatial

MLl: 0 = 0; — far(district;) — funser(district;) .

In this model we introduce spatial smoothness priors to capture spatial correlations at
district level. This is achieved by assuming CAR priors (12). Further, the model permits
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Table 2: Summary of covariates used in the model. Given are the counts in each birth
interval category.

Birth interval segments Total
Covariate 1 2 3 4 5 6 (n)
Region
North 301 219 324 183 194 199 1420
Centre 544 578 630 463 458 419 3092
South 530 557 690 631 681 741 3830
Residence
Rural 279 223 243 231 205 199 1380
Urban 1096 1131 1401 1046 1128 1160 6962
Woman’s education
None 338 395 463 357 430 537 2520
Primary 899 896 1094 849 836 791 5365
Secondary & higher 138 63 87 71 67 31 457
Ethnicity
Chewa 415 463 491 340 354 320 2383
Lomwe 223 219 259 256 248 287 1492
Yao 144 183 210 173 207 268 1185
Ngoni 157 126 188 150 136 114 871
Others 436 363 496 358 388 370 2411
Spouses age diff.
Wife older 23 26 32 21 18 130 150
Husband older (< 5) | 658 684 807 615 594 615 3973
Husband older (> 5) | 567 524 628 546 597 556 3418
Year of Marriage
1966-1975 41 59 58 57 70 128 413
1976-1985 226 256 323 280 317 411 1813
1986-1995 740 686 893 687 733 767 4506
1996-2000 368 353 370 253 213 53 1610
Age at first marriage
<15 yr 149 129 197 185 236 416 1312
15-17 yr 566 646 749 605 632 558 3756
18-19 yr 409 372 436 290 290 210 2007
20-24 yr 242 187 230 179 156 147 1141
>25yr 9 20 32 18 19 28 126

unstructured heterogeneity. This model investigates whether there is substantial spatial
variation in the first birth intervals, and if the answer is yes can this variation be explained
by community and bio-demographic factors.

The second model, M2, is a spatial parametric model which adjusts for covariates, i.e.

M2: ny; = 0; — wiaw — far(district;) — funser(district;) .

With this model, we assess how much of the spatial variation is attenuated by the inclusion
of fixed effects of all considerable covariates. Here the effect of age at marriage (age)
and year of marriage (cohort) are estimated as fixed effects, categorized as in Table 2.
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In the last model, M3, we fit a spatial semi-parametric model with age at marriage and
marriage cohort assumed nonlinear and the rest of the variables assumed fixed

M3: n;; = 0; — wiae — fi(age;) — fa(cohort;) — far(district;) — funse(district;).

For the nonlinear effects we use a second-order random walk prior (11). Model M3
investigates the bias of fitting restrictive linear model, M2.

We compare the fitted models using Akaike Information criterion (AIC) or Bayesian
Information Criterion (BIC). These are defined as sum of the the log-likelihood and the
degrees of freedom (df). The log-likelihood measures the goodness of fit whereas the df
measures model complexity. The smaller the AIC or BIC, the better the model. Imple-
mentation of these models were carried out in BayesX (Brezger et al., 2005). In BayesX,
regression coefficients are estimated iteratively. For each model fitted, convergence is
achieved when the change in regression parameters is 0.0001 and terminated at 400 itera-
tions if convergence is not achieved. However at under 25 iterations all models converged.

4 Results

4.1 Model Selection

In Table 3, model selection values are given for the two types of ordinal models (se-
quential and cumulative) with different specifications of the covariates. The results show
that the sequential logit models have smaller AIC and BIC values than the cumulative
logit models. In model M1, the AIC and BIC criterion have a slight preference for the
sequential model, with differences of AAIC = 5.7 and ABIC = 3.4 in AIC and BIC,
respectively. In model M2 the differences in AIC and BIC values between the sequential
model and the proportional odds model are large (AAIC = 86.9 and ABIC = 75.9).
The proportional odds model fits the data worst between the two. Considering model M3,
again as evidenced by the large differences in AIC and BIC values (AAIC = 103.8 and
ABIC = 93.6), the sequential logit models fit the data much better than the proportional
odds models. A look at the maps based on model M1 and M3 (results not shown), reveals
that the estimated spatial effects are fairly similar, with slightly more pronounced pattern
in the cumulative model. This may be caused by the order restrictions. In summary, based
on the AIC and BIC alone, the sequential model is chosen.

4.2 Model Estimates

Now turning to the sequential model, Figure 1a shows the structured spatial variation in
FBI estimated from the model without covariates (M1). The estimates ranged between
—0.24 and +0.27. Dark gray indicates areas with increased chance of early first birth,
while areas with white to light gray denote those with lower or delayed first birth. The
figure displays considerable spatial autocorrelation in the underlying hazard towards first
births. The 80% credible intervals (Figure 1b), show areas of significant positive and
negative effects. The variance component for spatially structured effects is estimated at
0.056. The unstructured geographical effects (Figure 2a), with estimates ranging from
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Table 3: Model comparison values based on AIC and on BIC for the three models, to-
gether with the marginal log-likelihood (LL). Also given are variance components 72 for
the spatial effects.

Model Description —2LL df AIC BIC T2,
Cumulative

Ml Spatial random effects (RE) only 29570.3 255 29621.4 29801.0 0.099
M2 Fixed + RE 29048.2 40.1 29128.2 29409.2 0.027
M3 Fixed + Nonlinear + RE 28877.2 503 28977.7 29331.0 0.014
Sequential

M1 Spatial random effects (RE) only 29564.0 25.9 29615.7 29797.6 0.056
M2 Fixed + RE 28961.0 40.1 29041.3 293233 0.012
M3 Fixed + Nonlinear + RE 28770.5 51.7 28873.9 29237.4 0.006

—0.22 to +0.21, have noticeable influence on the model as confirmed by the correspond-
ing confidence intervals map (Figure 2b).

We continue the analysis by including community and bio-demographic character-
istics in model M2. The improved fit of the model is evidenced by the values of log-
likelihood, AIC or BIC (Table 3). The purely spatial model (M1) is the least complex
(df = 25.9) and fitted poorly (AIC =29615.7, BIC = 29797.6 in M1), when compared
to model M2 (AIC = 29041.3 and BIC = 29323.3). Accounting for these risk factors,
in model M2, eliminated considerable regional variation as evidenced by the reduction in
the variance components for the structured spatial effects (¢%, = 0.012). This suggests
that community and bio-demographic factors partly explain geographical differences in
FBI. The estimates of the covariates are given in Table 4.

We fit the last model (M3) by assuming nonlinear smoothing functions for the contin-
uous covariates: age at marriage and year of marriage. Values of LL, AIC and BIC for the
model are again given in Table 3. There is a notable improvement in model fit compared
to the spatial parametric model (M2). The adjusted spatial residual effects are given in
Figure 3. The estimated smooth geographical effects (Figure 3a), with values ranging
from -0.029 to +0.018, are very weak. Indeed, none of the effects are significant (Figure
3b). The spatial variance is again reduced to 0.006. The unstructured geographical effects
(Figure not shown) are estimated between -0.25 and +0.19. In general, the number areas
of statistically significant effects are slightly reduced, but the overall variability remains
the same.

Table 4 shows estimates of covariates obtained from model M3. Results from the
cumulative model are also given for comparison purposes. Included in the table are esti-
mates of the threshold parameters, 61, . . . , 05 for first five categories, with the last category
(> 32 months) assigned as reference. The threshold parameters are interpreted as follows.
Higher values of the threshold i.e., (§ > 0) correspond to early first birth and lower values
(0 < 0) correspond to delayed first birth. For example, lower (higher) values of § signify a
shift to the right (left) side on the latent scale, which implies a decreased (increased) prob-
ability for that category. Generally, estimates for threshold parameters increase from 6, to
05, which indicates that the probability of having birth increases with increasing time in
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Figure 1: (a) Structured spatial effects, at district level, of first birth intervals (Model M1).
Shown are the posterior modes. (b): Corresponding posterior probabilities at 80% nom-
inal level, white denotes regions with strictly negative credible intervals, black denotes
regions with strictly positive credible intervals, and gray depicts regions of nonsignificant
effects.

marriage. Note that when compared, the threshold parameter estimates for the cumulative
and sequential model are similar for §; only. The difference comes in because in cumula-
tive model, interest is to estimate cumulative probabilities, while in the sequential model,
the aim is to estimate conditional probabilities. Thus these two model equal in definition
at the first threshold only. Clearly, based on the cumulative model, the likelihood of first
birth increases with increasing time in marriage. Fixed effects associated with FBI are re-
gion, education, ethinicity, marriage cohort and age at first marriage (Table 4). However,
marriage cohort and age of marriage are better estimated as nonlinear effects (Figure 4).
Indeed, considering the values of log-likelihood, AIC or BIC (Table 3), the model with
nonlinear effects (M3) is better than the two (M1 and M2).
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Figure 2: (a) Unstructured spatial effects, at district level, of first birth intervals (Model
MT1). Shown are the posterior modes. (b): Corresponding posterior probabilities at 80%
nominal level, white denotes regions with strictly negative credible intervals, black de-
notes regions with strictly positive credible intervals, and gray depicts regions of non-
significant effects.

5 Discussion and Conclusion

We have proposed a sequential ordinal model to analyze small-scale geographical vari-
ability in first birth intervals. The model assumed a semiparametric predictor, which fa-
cilitates smoothing of spatial effects and nonlinear effects of continuous covariates, while
estimating other fixed effects in a single framework. A recently developed mixed model
approach is used for inference (Fahrmeir et al., 2004; Tutz, 2003). In the following, we
discuss the approach adopted, the results obtained, and limitations which appeal for fur-
ther future studies.

The semiparametric model has been shown to provide flexible models in situations
where the set of covariates consists of categorical and continuous variables. Here we
note that the relationship between age at marriage and year of marriage with FBI are
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Table 4: Estimates of fixed effects for the three models fitted. Given are the posterior
modes and standard errors in brackets.

Sequential Models Cumulative Models
Covariate Mil M2 M3 Mi M2 M3
Threshold
01 -1.64 (0.04) -1.74 (0.06) -2.07 (0.14) |-1.67 (0.05) -1.75(0.08) -2.23 (0.19)
0 -1.43(0.04) -1.51(0.06) -1.82(0.15)|-0.75(0.05) -0.81(0.07) -1.28 (0.19)
03 -0.88 (0.04) -0.93(0.07) -1.22(0.15)| 0.08 (0.05) 0.05(0.07) -0.41(0.19)
n -0.73 (0.05) -0.73 (0.07) -1.02(0.15)| 0.74 (0.05) 0.74 (0.07) 0.29 (0.19)
05 0.02 (0.05) 0.09 (0.07) -0.19(0.15)| 1.65(0.05) 1.69(0.08) 1.26(0.19)
O 0 0 0 0 0 0
Region
Northern 0 0 0 0
Central -0.04 (0.06) -0.04 (0.05) -0.04 (0.08) -0.04 (0.08)
Southern 0.17 (0.07)  0.16 (0.06) 0.28 (0.11) 0.26 (0.09)
Residence
Rural 0 0 0 0
Urban -0.01 (0.02) -0.02 (0.02) -0.01 (0.03) -0.01 (0.03)
Ethnicity
Chewa -0.07 (0.03) -0.07 (0.04) -0.08 (0.05) -0.07 (0.05)
Lomwe 0.05(0.04)  0.04 (0.04) 0.07 (0.05) 0.06 (0.05)
Yao 0.04 (0.04)  0.05 (0.04) 0.03 (0.05) 0.04 (0.05)
Ngoni -0.02 (0.04) -0.02 (0.04) -0.04 (0.06) -0.03 (0.05)
Others 0 0 0 0
Woman’s Education
None 0 0 0 0
Primary 0.04 (0.03)  0.04 (0.03) 0.09 (0.04) 0.09 (0.04)
Secondary & higher -0.13 (0.05) -0.12 (0.05) -0.20 (0.06) -0.19 (0.06)
Spouses age diff.
Wife older 0 0 0 0
Husband older (< 5) -0.02 (0.03) -0.002 (0.03) 0.002 (0.04) 0.02 (0.05)
Husband older (> 5) -0.05 (0.03) -0.05 (0.03) -0.05 (0.05) -0.05 (0.05)
Year of Marriage
1966-1975 0.34 (0.05) 0.42 (0.07)
1976-1985 0.18 (0.03) 0.21 (0.04)
1986-1995 0.01 (0.03) -0.01 (0.03)
1996-2000 0 0
Age at first marriage
<15 years 0 0
15-17 years -0.06 (0.03) -0.07 (0.04)
18-19 years -0.26 (0.04) -0.34 (0.05)
20-24 years -0.19 (0.04) -0.23 (0.06)
>25 years 0.13 (0.09) 0.19 (0.13)

nonlinear. Such behavior, apart from improving model prediction, does emphasize that
demographic relations are not as simplistic as often depicted. Adequate and appropriate
statistical modelling is useful for answering substantial questions in applied research.
The analysis in this article is based on the mixed model approach. It provides a valu-
able alternative to estimation via MCMC simulation techniques. The fully Bayesian in-
ference has received considerable coverage (Knorr-Held et al., 2002; Omori, 2003; Albert
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Figure 3: (a) Structured spatial effects, at district level, of first birth intervals (Model M3).
Shown are the posterior modes. (b): Corresponding posterior probabilities at 80% nom-
inal level, white denotes regions with strictly negative credible intervals, black denotes
regions with strictly positive credible intervals, and gray depicts regions of nonsignificant
effects.

and Chib, 2001). The mixed-model based approach as implemented in BayesX has been
explained in detail in Fahrmeir et al. (2004), and this has been closely adopted here.

Many of the previous studies concerning FBI considered discrete-time duration mod-
els. Here we assessed the ordinal representation using the sequential model. Although the
performance of the sequential ordinal model against proportional hazard model should
have been evaluated, such comparisons have been reported elsewhere. Omori (2003)
compared a proportional hazard model with sequential probit model and found that the
estimates from the two models were consistently similar. More generally, the sequential
ordinal model can estimate non-proportional and non-monotone hazard functions. An im-
mediate extension to the model is to consider category-specific effects. We plan to explore
the applicability of such models in future studies.

The choice between cumulative and sequential ordinal models merits further discus-
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Figure 4: Non-linear effects of year of marriage (left) and age at first marriage (right).
Shown are the posterior modes within 80% and 95% credible bands.

sion. L&dédrd and Matthews (1985), Tutz (1991), and Liu and Agresti (2005) provide a
more detailed review of their properties. A more intuitive choice between the cumulative
and sequential models can be based on the goals of the analysis. The sequential model
is recommended when the underlying outcome is irreversible, and where the process is
step-wise. This indeed is the case in our example data on waiting time till first birth after
marriage. Our final results indicate that the sequential model has a much better fit than
the cumulative model. Inclusion of spatial random effects and nonlinear effects leads to a
further best fitting model. Knorr-Held et al. (2002) pointed out that the sequential model
is better compared to the cumulative model. They further stated four arguments in favor
of the sequential model. In general, the cumulative and sequential models are equivalent
when the distribution function F’ is the extreme value distribution.

Overall, we found considerable spatial variability in FBI even after controlling for
socio-demographic covariates. These spatial effects are surrogates of factors not captured
by the survey instruments. Understanding the geographical variability of fertility behavior
is an increasingly important research problem (Borgoni and Billari, 2003). However, this
has often been done implicitly and at gross scale using categorical variables to measure
geographic effects (Gould, Herrchen, and Pham, 1998). In our approach, we explicitly
introduced spatial effects and modelled them using CAR priors.

In summary, the primary objective of this article was to illustrate a novel application of
a recently developed structured additive regression model to analyze demographic data.
The approach is data driven. The results emphasize that adequate statistical modelling
and analysis is of importance in understanding complex relations that may exist in social
and demographic processes.
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