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Abstract

We introduce and study general mathematical properties of a new generator of contin-
uous distributions with two extra parameters called the Another generalized transmuted
family of distributions. We present some special models. We investigate the asymptotes
and shapes. The new density function can be expressed as a linear combination of expo-
nentiated densities based on the same baseline distribution. We obtain explicit expressions
for the ordinary and incomplete moments and generating functions, Bonferroni and Lorenz
curves, asymptotic distribution of the extreme values, Shannon and Rényi entropies and
order statistics, which hold for any baseline model, certain characterisations are presented.
Further, we introduce a bivariate extensions of the new family. We discuss the different
method of estimation of the model parameters and illustrate the potentiality of the family
by means of two applications to real data. A brief simulation for evaluating Maximum
likelihood estimator is done.

Keywords: transmuted distribution, generated family, maximum likelihood, moment, order
statistic, quantile function, Rényi entropy, characterizations..

1. Introduction

Numerous classical distributions have been extensively used over the past decades for modeling
data in several areas such as engineering, actuarial, environmental and medical sciences,
biological studies, demography, economics, finance and insurance. However, in many applied
areas such as lifetime analysis, finance and insurance, there is a clear need for extended
forms of these distributions. For that reason, several methods for generating new families
of distributions have been studied. Some attempts have been made to define new families
of probability distributions that extend well-known families of distributions and at the same
time provide great flexibility in modeling data in practice.

In many practical situations, classical distributions do not provide adequate fits to real data.
For example, if the data are asymmetric, the normal distribution will not be a good choice.
So, several generators employing one or more parameters to generate new distributions have
been proposed in the statistical literature. Some well-known generators are Marshal-Olkin
generated family (MO-G) Marshall and Olkin (1997), the beta-G by Eugene, Lee, and Famoye
(2002) and Jones (2004), Kumaraswamy-G (Kw-G for short) Cordeiro and de Castro (2011),
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McDonald-G (Mc-G) by Alexander, Cordeiro, Ortega, and Sarabia (2012), gamma-G (type 1)
by Zografos and Balakrishnan (2009), gamma-G (type 2) by Ristić and Balakrishnan (2012),
gamma-G (type 3) by Torabi and Hedesh (2012), log-gamma-G by Amini, MirMostafaee, and
Ahmadi (2012), logistic-G by Tahir, Cordeiro, Alzaatreh, Mansoor, and Zubair (2015a), expo-
nentiated generalized-G by Cordeiro, Ortega, and da Cunha (2013), Transformed-Transformer
(T-X) by Alzaatreh, Lee, and Famoye (2013), exponentiated (T-X) by Alzaghal, Famoye, and
Lee (2013), Weibull-G by Bourguignon, Silva, and Cordeiro (2014), Exponentiated half lo-
gistic generated family by Cordeiro, Alizadeh, and Ortega (2014a), Lomax-G by Cordeiro,
Ortega, Popović, and Pescim (2014b), Kumaraswamy Odd log-logistic-G by Alizadeh, Emadi,
Doostparast, Cordeiro, Ortega, and Pescim (2015b), Kumaraswamy Marshall-Olkin by Al-
izadeh, Tahir, Cordeiro, Mansoor, Zubair, and Hamedani (2015c), Beta Marshall-Olkin by
Alizadeh, Cordeiro, De Brito, and Demétrio (2015a), Type 1 Half-Logistic family of distribu-
tions by Cordeiro, Alizadeh, and Diniz Marinho (2015) and Odd generalized exponential-G
by Tahir, Cordeiro, Alizadeh, Mansoor, Zubair, and Hamedani (2015b).

Let r(t) be the probability density function (pdf) of a random variable T ∈ [a, b] for −∞ <
a < b < ∞ and let W [G(x)] be a function of the cumulative distribution function (cdf) of a
random variable X satisfying the following conditions:

(i) W [G(x)] ∈ [a, b],

(ii) W [G(x)] is differentiable and monotonically non-decreasing, and

(iii) W [G(x)]→ a as x→ −∞ andW [G(x)]→ b as x→∞.
(1)

Recently, Alzaatreh et al. (2013) defined the T-X family of distributions by

F (x) =

∫ W [G(x)]

a
r(t) dt, (2)

where W [G(x)] satisfies the conditions (1). The pdf corresponding to (2) is given by

f(x) =

{
d

dx
W [G(x)]

}
r {W [G(x)]} . (3)

Taking W [G(x)] = 1−
(
Ḡ(x)

)α
and r(t) = 1 + λ− 2λ t , 0 < t < 1, we define the cumulative

distribution function (cdf) of the Another Generalized Transmuted Class (AGT-G for short)
of distributions by

F (x;λ, α, ξ) = (1 + λ)
[
1−

(
Ḡ(x; ξ)

)α]− λ [1− (Ḡ(x; ξ)
)α]2

, α > 0 , |λ| ≤ 1 (4)

where G(x; ξ) is the baseline cdf depending on a parameter vector ξ and α > 0 and |λ| ≤ 1 are
two additional shape parameters. For each baseline cdf G, the AGT-G family of distributions
is defined by the cdf (4). It includes the Transmuted family of distributions and the
proportional reversed hazard rate models. Some special models are given in Table 1.

This paper is organized as follows. In Section 2, we define the AGT-G family. Three special
cases of this family are defined in Section 3. In Section 4, the asymptotic and shape of
the density and hazard rate functions are expressed analytically. Some useful expansions are
derived in Section 5. In Section 6, we provide explicit expressions for the moments, incomplete
moments, generating function and mean deviation. Extreme values are discussed in Section 7.
General expressions for the Rényi and Shannon entropies are presented in Section 8. General
results for order statistics are obtained in Section 9. Certain characterisations are given in
Section 10. In Section 11, we introduce a bivariate extension of the new family. Estimation
procedures of the model parameters are presented in Section 12. Applications to two real
data sets illustrate the performance of the new family in Section 13. The paper is concluded
in Section 14.
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Table 1: Some known special cases of the AGT-G model.

α λ G(x) Reduced distribution

1 - G(x) Transmuted G family of distributions Shaw and Buckley (2009)

- 0 G(x) Proportioanl hazard rate family Gupta and Gupta (2007)

1 0 G(x) G(x)

1 - exponentiated exponential Transmuted exponentiated exponential distribution Merovci (2013a)

1 - Pareto Transmuted Pareto distribution Merovci and Puka (2014)

1 - Gumbel Transmuted Gumbel distribution Aryal and Tsokos (2009)

1 - Weibull Transmuted Weibull distribution Aryal and Tsokos (2011)

1 - inverse Weibull Transmuted inverse Weibull distribution Merovci, Elbatal, and Ahmed (2014)

1 - Lindley Transmuted Lindley distribution Merovci (2013b)

1 - Lindley-geometric Transmuted Lindley-geometric Merovci and Elbatal (2014a)

1 - Weibull-geometric Transmuted Weibull-geometric Merovci and Elbatal (2014b)

1 - Rayligh Transmuted Rayligh distribution Merovci (2013c)

- - Generalized Rayligh Transmuted Generalized Rayligh distribution Merovci (2014)

1 - extreme value Transmuted extreme value distribution Aryal and Tsokos (2009)

1 - log-logistic Transmuted log-logistic distribution Aryal (2013)

2. The new family

The corresponding density function to (4) is given by

f(x;λ, α, ξ) = αg(x, ξ)
(
Ḡ(x, ξ)

)α−1 {
1 + λ− 2λ

[
1−

(
Ḡ(x; ξ)

)α]}
(5)

where g(x; ξ) is the baseline pdf. Equation (5) will be most tractable when the cdf G(x)
and the pdf g(x) have simple analytic expressions. Hereafter, a random variable X with
density function (5) is denoted by X ∼ AGT-G(α, λ, ξ). Further, we can omit (sometimes)
the dependence on the vector ξ of the parameters and simply write G(x) = G(x; ξ).

The hazard rate function (hrf) of X becomes

h(x;λ, α, ξ) =
αg(x, ξ)

(
Ḡ(x, ξ)

)α−1 {
1 + λ− 2λ

[
1−

(
Ḡ(x; ξ)

)α]}
1− (1 + λ)

[
1−

(
Ḡ(x; ξ)

)α]
+ λ

[
1−

(
Ḡ(x; ξ)

)α]2 (6)

To motivate the new family, let Z1, Z2 be i.i.d random variables from 1 −
(
Ḡ(x; ξ)

)α
and

Z1:2 = min{Z1, Z2} and Z2:2 = max{Z1, Z2}, and let

V =

{
Z1:2, with probability 1+λ

2 ;

Z2:2, with probability 1−λ
2 .

Then FV (x;λ, α, ξ) = (1 + λ)
[
1−

(
Ḡ(x; ξ)

)α] − λ [1− (Ḡ(x; ξ)
)α]2

, which is the proposed
family. The AGT-G family of distributions is easily simulated by inverting (4) as follows: if
U has a uniform U(0, 1) distribution,then

XU = G−1

1−

[
λ− 1 +

√
(1 + λ)2 − 4λU

2λ

] 1
α

 for λ 6= 0 (7)

has the density function (5).

3. Special AGT-G distributions

In the following sections, we study some mathematical properties of AGT-G distribution since
it extends several widely-known distributions in the literature. First, we discuss some special
AGT-G distributions.
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Figure 1: The pdf’s of various AGT-E distributions .

3.1. AGT-Exponential(AGT-E) distribution

The parent exponential distribution has pdf and cdf given, respectively, by

g(x, γ) = γ exp(−γ x) (8)

and
G(x, γ) = 1− exp(−γ x) (9)

The cdf and pdf of AGT-Exponential distribution are given by (x > 0)

F (x;λ, α, γ) = (1 + λ) [1− exp(−α γ x)]− λ [1− exp(−α γ x)]2 , α > 0 , |λ| ≤ 1 (10)

f(x;λ, α, γ) = αγ exp(−α γ x) {1 + λ− 2λ [1− exp(−α γ x)]} (11)

Figure 1 illustrates some of the possible shapes of the pdf of the AGT-E distribution.
The expectation and variance of AGT-E are:

E(X) =
2− λ
2αγ

and var(X) =
4− 3λ

4α2γ2.

3.2. AGT-Fréchet (AGT-F) distribution

The parent Fréchet distribution has cdf and pdf given, respectively, by

G(x; a, b) = exp

(
−
(
b

x

)a)
, a > 0, b > 0, x > 0, (12)

and

g(x; a, b) = abax−(a+1) exp

(
−
(
b

x

)a)
(13)

The cdf and pdf of AGT-Fréchet distribution are given by (x > 0) :

F (x;λ, α, a, b) = (1 + λ)

[
1−

[
1− exp

(
−
(
b

x

)a)]α]
− λ

[
1−

[
1− exp

(
−
(
b

x

)a)]α]2
, α > 0 , |λ| ≤ 1, a > 0, b > 0, (14)
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and

f(x;λ, α, a, b) = αabax−(a+1) exp
(
−
(
b
x

)a) [
1− exp

(
−
(
b
x

)a)]α−1
×
{

1 + λ− 2λ
[
1−

[
1− exp

(
−
(
b
x

)a)]α]}
(15)

3.3. AGT-Normal(AGT-N) distribution

The cdf and pdf of AGT-Normal distribution are given by:

F (x;λ, α, µ, σ) = (1 + λ)

[
1−

(
1− Φ

(
x− µ
σ

))α]
− λ

[
1−

(
1− Φ

(
x− µ
σ

))α]2
, α > 0 , |λ| ≤ 1, (16)

and

f(x;λ, α, µ, σ) = αφ

(
x− µ
σ

)(
1− Φ

(
x− µ
σ

))α−1
×
{

1 + λ− 2λ

[
1−

(
1− Φ

(
x− µ
σ

))α]}
(17)

3.4. The AGT-Uniform (AGT-U) distribution

The parent uniform distribution in the interval (0, θ), θ > 0 has cdf and pdf given, respec-
tively, by

G(x; θ) =
x

θ
(18)

and

g(x; θ) =
1

θ
(19)

The cdf and pdf of AGT-Uniform distribution are given by:

F (x;λ, α, θ) = (1 + λ)
[
1−

(
1− x

θ

)α]
− λ

[
1−

(
1− x

θ

)α]2
, α > 0 , |λ| ≤ 1 (20)

and

f(x;λ, α, θ) =
α

θ

(
1− x

θ

)α−1 {
1 + λ− 2λ

[
1−

(
1− x

θ

)α]}
(21)

3.5. The AGT-Weibull (AGT-W) distribution

The parent Weibull distribution has cdf and pdf given by, respectively:

G(x; a, b) = 1− exp (−bxa) (22)

and
g(x; a, b) = abxa−1 exp (−bxa) (23)

The cdf and pdf of AGT-Weibull distribution are given by

F (x;λ, α, a, b) = (1 + λ) [1− exp (−αbxa)]
− λ [1− exp (−αbxa)]2 , α > 0 , |λ| ≤ 1 (24)
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Figure 2: The pdf’s of various AGT-Weibull distributions .

f(x;λ, α, a, b) = αabxa−1 exp (−αbxa)
{1 + λ− 2λ [1− exp (−αbxa)]} (25)

Figure 2 illustrates possible shapes of the density functions for some AGT-Weibull distribu-
tions.

4. Asymptotics and shapes

Proposition 1 The asymptotics of equations (4), (5) and (6) as G(x)→ 0 are given by

F (x) ∼ α (1 + λ)G(x) as G(x)→ 0,

f(x) ∼ α (1 + λ) g(x) as G(x)→ 0,

h(x) ∼ α (1 + λ) g(x) as G(x)→ 0.

Proposition 2 The asymptotics of equations (4), (5) and (6) as x→∞ are given by

1− F (x) ∼
(
Ḡ(x)

)α
as x→∞,

f(x) ∼ α g(x)
(
Ḡ(x)

)α−1
as x→∞,

h(x) ∼ α g(x)

Ḡ(x)
as x→∞.

The shapes of the density and hazard rate functions can be described analytically. The critical
points of the AGT-G density function are the roots of the equation

g′(x)

g(x)
+ (1− α)

g(x)

Ḡ(x)
−

2αλg(x)
(
Ḡ(x)

)α−1
1 + λ− 2λ

[
1−

(
Ḡ(x)

)α] = 0. (26)

The critical points of h(x) are obtained from the equation

g′(x)

g(x)
+ (1− α)

g(x)

Ḡ(x)
−

2αλg(x)
(
Ḡ(x)

)α−1
1 + λ− 2λ

[
1−

(
Ḡ(x)

)α]
+
αg(x)

(
Ḡ(x)

)α−1 {
1 + λ− 2λ

[
1−

(
Ḡ(x)

)α]}
1− (1 + λ)

[
1−

(
Ḡ(x)

)α]
+ λ

[
1−

(
Ḡ(x)

)α]2 = 0. (27)
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5. Useful expansions

By using generalized binomial expansion we can show that the cdf (4) of X has the expansion

F (x;α, λ, ξ) =

∞∑
k=0

ck (G(x))k =

∞∑
k=0

ckHk(x) (28)

where c0 = 0 and for k ≥ 1,

ck = (−1)k
[
(λ− 1)

(
α

k

)
− λ

(
2α

k

)]
(29)

and Ha(x) = (G(x))a denotes the exponentiated-G (”exp-G” for short) cumulative distribu-
tion. We can prove

∑∞
k=0 ck = 1. Some structural properties of the exp-G distributions

are studied by Mudholkar et al. (1996), Gupta and Kundu (2001) and Nadarajah and Kotz
(2006), among others.

The density function of X can be expressed as an infinite linear combination of exp-G density
functions

f(x;α, λ, ξ) =

∞∑
k=0

ck+1hk+1(x), (30)

where hk+1 = (k+ 1)G(x)kg(x)( for k ≥ 0) is the exp-G density with power parameter k+ 1.

Equation (30) reveals that the AGT-G density function is a linear combination of exp-G
density functions. Thus, some mathematical properties of the new model can be derived
from those properties of the exp-G distribution. For example, the ordinary and incomplete
moments and moment generating function (mgf) of X can be obtained from those quantities
of the exp-G distribution.

The formulae derived throughout the paper can be easily handled in most symbolic com-
putation software plataforms such as Maple, Mathematica and Matlab. These plataforms
have currently the ability to deal with analytic expressions of formidable size and complexity.
Established explicit expressions to calculate statistical measures can be more efficient than
computing them directly by numerical integration. The infinity limit in these sums can be
substituted by a large positive integer such as 20 or 30 for most practical purposes.

6. Some measures

6.1. Moments

Let Yk be a random variable with exp-G distribution with power parameter k + 1, i.e., with
density hk+1(x). A first formula for the nth moment of X ∼AGT-G follows from (30) as

E(Xn) =

∞∑
k=0

ck+1E(Y n
k ), (31)

where
∑∞

k=0 ck = 1. Expressions for moments of several exp-G distributions are given in
Nadarajah and Kotz (2006b), which can be used to obtained E(Xn).

A second formula for E(Xn) can be written from (31) in terms of the G quantile function as

E(Xn) =

∞∑
k=0

(k + 1) ck+1 τ(n, k), (32)

where τ(n, k) =
∫∞
−∞ x

n (G(x))k g(x)dx =
∫ 1
0 (QG(u))n ukdu. Cordeiro, Nadarajah et al.

(2011) obtained τ(n, k) for some well known distribution such as Normal, Beta, Gamma and
Weibull distributions, which can be used to find moments of AGT-G.
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For empirical purposes, the shape of many distributions can be usefully described by what we
call the incomplete moments. These types of moments play an important role in measuring
inequality, for example, income quantiles and Lorenz and Bonferroni curves, which depend
on the incomplete moments of a distribution. The nth incomplete moment of X is

mn(y) = E(Xn|X < y) =
∞∑
k=0

(k + 1) ck+1

∫ G(y)

0
(QG(u))n ukdu. (33)

The last integral can be computed for most G distributions.

6.2. Generating function

Let MX(t) = E(etX) be mgf of X ∼ AGT-G,then, the first form of MX(t) comes from (30)
as

MX(t) =
∞∑
k=0

ck+1Mk(t), (34)

where Mk(t) is the mgf of Yk. Hence, MX(t) can be determined from the exp-G generating
function.

A second formula for MX(t) can be derived from (30) as

MX(t) =

∞∑
i=0

(k + 1) ck+1 ρ(t, k), (35)

where ρ(t, k) =
∫∞
−∞ et x (G(x))k g(x)dx =

∫ 1
0 exp[t QG(u)] ukdu.

We can obtain the mgfs of several distributions directly from equation (35).

6.3. Mean deviation

The mean deviation about the mean (δ1 = E(|X −µ′1|)) and about the median (δ2 = E(|X −
M |)) of X can be expressed as

δ1(X) = 2µ′1 F
(
µ′1
)
− 2m1

(
µ′1
)

and δ2(X) = µ′1 − 2m1(M), (36)

respectively, where µ′1 = E(X), M = Median(X) is the median defined by M = Q(0.5),
F (µ′1) is easily calculated from the cdf (4) and m1(z) =

∫ z
−∞ xf(x)dx is the first incomplete

moment obtained from (33) with n = 1.

Now, we provide two alternative ways to compute δ1 and δ2. A general equation for m1(z)
can be derived from (30) as

m1(z) =
∞∑
k=0

ck+1 Jk(z), (37)

where Jk(z) =
∫ z
−∞ xhk+1(x)dx is the basic quantity to compute the mean deviation for the

exp-G distributions. Hence, the mean deviation in (36) depend only on the mean deviation
of the exp-G distribution. So, alternative representations for δ1 and δ2 are

δ1(X) = 2µ′1F
(
µ′1
)
− 2

∞∑
k=0

ck+1 Jk(µ
′
1) and δ2(X) = µ′1 − 2

∞∑
k=0

ck+1 Jk(M).

A simple application of Jk(z) refers to the the AGT-G distribution discussed in Section 3.5.
The exponentiated Weibull with parameter k + 1 has pdf (for x > 0) given by

hk+1(x) =
(k + 1)η

ση
xη−1 exp

[
−(
x

σ
)η
]{

1− exp
[
−(
x

σ
)η
]}k
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and then

Jk(z) =
(k + 1)η

ση

∫ z

0
xη exp

[
−(
x

σ
)η
]{

1− exp
[
−(
x

σ
)η
]}k

dx

=
(k + 1)η

ση

k∑
r=0

(−1)r
(
k

r

) ∫ z

0
xη exp

[
−(r + 1)(

x

σ
)η
]

The last integral is just the incomplete gamma function and then the mean deviation for the
AGT-G distribution can be determined from

m1(z) =

∞∑
k=0

k∑
r=0

(k + 1)bk+1 (−1)r
(
k

r

)
(r + 1)1+η−1 σ2η+1

γ(1 + η−1, (r + 1)(
z

σ
)η)

A second general formula for m1(z) can be derived by setting u = G(x) in (30)

m1(z) =
∞∑
k=0

(k + 1) ck+1 Tk(z), (38)

where Tk(z) =
∫ G(z)
0 QG(u)ukdu is a simple integral defined from the baseline quantile func-

tion and QG(u) = G−1(u).

Remark: Applications of these equations employed to obtain Bonferroni and Lorenz curves
defined for a given probability π by

B(π) =
T (q)

πµ′1
and L(π) =

T (q)

µ′1
,

respectively, where µ′1 = E(X) and q = Q(π) is the qf of X at π.

7. Extreme values

Let X = (X1 + · · ·+Xn)/n denote the mean of a random sample from (5), then by the usual
central limit theorem

√
n(X−E(X))/

√
V ar(X) approaches the standard normal distribution

as n→∞ under suitable conditions. Sometimes one would be interested in the asymptotics
of the extreme values Mn = max{X1, . . . , Xn} and mn = min{X1, . . . , Xn}.
First, suppose G belongs to the max domain of attraction of Gumbel extreme value distri-
bution. Then by Leadbetter, Lindgren, and Rootzén (2012) (chapter 1), there must exist a
strictly positive function, say h(t), such that

lim
t→∞

1−G(t+ xh(t))

1−G(t)
= e−x,

for every x ∈ (−∞,∞). But

lim
t→∞

1− F (t+ xh(t))

1− F (t)
= lim

x→∞

xf(tx)

f(t)
= e−αx,

for every x ∈ (−∞,∞). So, it follows from Leadbetter et al. (2012) (chapter 1) that F belongs
to the max domain of attraction of the Gumbel extreme value distribution with

lim
n→∞

P [an(Mn − bn ≤ x)] = exp [− exp(−αx)]

for some suitable norming constants an > 0 and bn. Second, suppose G belongs to the max
domain of attraction of the Fréchet extreme value distribution. Then from Leadbetter et al.
(2012) (Chapter 1), there must exist a β > 0 such that

lim
t→∞

1−G(t+ xh(t))

1−G(t)
= xc
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for every x ∈ (−∞,∞). But

lim
t→∞

1− F (t+ xh(t))

1− F (t)
= lim

t→∞

xf(tx)

f(t)

= xα c,

for every x > 0. So, it follows from Leadbetter et al. (2012) (chapter 1) that F belongs to the
max domain of attraction of the Gumbel extreme value distribution with

lim
n→∞

P [an(Mn − bn ≤ x)] = exp(−xα c)

for some suitable norming constants an > 0 and bn. Third, suppose G belongs to the max
domain of attraction of the Weibull extreme value distribution. Then, Leadbetter et al. (2012)
(chapter 1), there must exist a β > 0 such that

lim
t→0

G(tx)

G(t)
= xβ

for every x < 0. But

lim
t→0

F (tx)

F (t)
= lim

t→0

xf(tx)

f(t)
= xβ

for every x < 0. So, it follows from Leadbetter et al. (2012) (chapter 1) that F belongs to the
max domain of attraction of the Weibull extreme value distribution with

lim
n→∞

P [an(Mn − bn ≤ x)] = exp
[
−(−x)β

]
for some suitable norming constants an > 0 and bn. We conclude that F belongs to the
same max domain of attraction as that of G. The same argument applies to min domain of
attraction.That is, F belongs to the same max domain of attraction as that of G.

8. Entropies

An entropy is a measure of variation or uncertainty of a random variable X. Two popular
entropy measures are the Rényi and Shannon entropies Renyi (1961) , Shannon (2001). The
Rényi entropy of a random variable with pdf f(x) is defined as

IR(γ) =
1

1− γ
log

(∫ ∞
0

fγ(x)dx

)
,

for γ > 0 and γ 6= 1. The Shannon entropy of a random variableX is defined byE {− log [f(X)]}.
It is the special case of the Rényi entropy when γ ↑ 1. Direct calculation yields

E {− log [f(X)]} = − log(α)− E {log [g(X; ξ)]}+ (1− α) E
{

log
[
Ḡ(X; ξ)

]}
− E

{
log
{

1 + λ− 2λ
[
1−

(
Ḡ(X; ξ)

)α]}}
First we define and compute

A(a1, a2;λ, α) =

∫ 1

0
xa1(1− 2λ

1 + λ
(1− (1− x)α))a2dx. (39)

Using generalized binomial expansion and then after some algebraic manipulations, we obtain

A(a1, a2;λ, α) =
∞∑
i=0

i∑
j=0

(−1)i+j
(
a2
i

)(
i

j

)
(

2λ

1 + λ
)iBeta(a1 + 1, α j + 1)
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Proposition 3 Let X be a random variable with pdf (5). Then,

E {log [G(X)]} =
α

1 + λ

∂

∂t
A(α+ t− 1, 1;λ, α)

∣∣
t=0

E
{

log
{

1 + λ− 2λ
[
1− Ḡ(X; ξ)α

]}}
=

α

1 + λ

∂

∂t

1

(1 + λ)t
A(α− 1, t+ 1;λ, α)

∣∣
t=0

The simplest formula for the entropy of X is given by

E {− log[f(X)]} = − log(α)− E {log[g(X; ξ)]}

+ (1− α)
α

1 + λ

∂

∂t
A(α+ t− 1, 1;λ, α)

∣∣
t=0

− α

1 + λ

∂

∂t

1

(1 + λ)t
A(α− 1, t+ 1;λ, α)

∣∣
t=0

After some algebraic manipulations, we obtain an alternative expression for IR(γ)

IR(γ) =
γ

1− γ
log(

α

1 + λ
) +

1

1− γ
log


∞∑
i=0

i∑
j=0

w∗i,j EYj [g
γ−1[G−1(Y )]]

 (40)

where Yi ∼ Beta(γ(α− 1) + 1, γj + 1) and

w∗i,j =

(−1)i+j
(
γ

i

)(
i

j

)
Beta(γ(α− 1) + 1, γj + 1)

(
2λ

1 + λ
)i

9. Order statistics

Order statistics make their appearance in many areas of statistical theory and practice. Sup-
pose X1, . . . , Xn is a random sample from the AGT-G family of distributions. We can write
the density of the ith order statistic, say Xi:n, as

fi:n(x) = K f(x) (F (x))i−1 {1− F (x)}n−i = K
n−i∑
j=0

(−1)j
(
n− i
j

)
f(x) (F (x))j+i−1 ,

where K = n!/[(i− 1)! (n− i)!].
Following similar algebraic manipulations, we can write the density function of the ith order
statistic, Xi:n, as

fi:n(x) =
∞∑

r,k=0

mr,k hr+k+1(x), (41)

where hr+k+1(x) denotes the exp-G density function with power parameter r + k + 1,

mr,k =
n! (r + 1) (i− 1)! cr+1

(r + k + 1)

n−i∑
j=0

(−1)j fj+i−1,k
(n− i− j)! j!

,

and ck is defined in equation (29). Here, the quantities fj+i−1,k are obtained recursively by

fj+i−1,0 = cj+i−10 and (for k ≥ 1)

fj+i−1,k = (k c0)
−1

k∑
m=1

[m(j + i)− k] cm fj+i−1,k−m.
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Equation (41) is the main result of this section. It reveals that the pdf of the AGT-G
order statistic is a linear combination of exp-G density functions. So, several mathematical
quantities of the AGT-G order statistics such as ordinary, incomplete and factorial moments,
mgf, mean deviation and several others can be obtained from those quantities of the exp-G
distribution.

10. Characterization results

In designing a stochastic model for a particular modeling problem, an investigator will be
vitally interested to know if their model fits the requirements of a specific underlying prob-
ability distribution. To this end, the investigator will rely on the characterizations of the
selected distribution. Generally speaking, the problem of characterizing a distribution is
an important problem in various fields and has recently attracted the attention of many re-
searchers. Consequently, various characterization results have been reported in the literature.
These characterizations have been established in many different directions. In this Section,
we present characterizations of AGT-G distribution. These characterizations are based on:
(i) a simple relationship between two truncated moments; (ii) conditional expectations of
a function of the random variable. We like to mention that the characterization (i) which
is expressed in terms of the ratio of truncated moments is stable in the sense of weak con-
vergence. It also serves as a bridge between a first order differential equation and probability
and it does not require a closed form of the cdf.

10.1. Characterizations based on two truncated moments

In this subsection we present characterizations of ATG-G distribution in terms of a simple
relationship between two truncated moments. Our characterization results presented here
will employ an interesting result due to Glänzel (1987) (Theorem 4 below). The advantage
of the characterizations given here is that, cdf F need not have a closed form and is given
in terms of an integral whose integrand depends on the solution of a first order differential
equation, which can serve as a bridge between probability and differential equation.

Theorem 4 Let (Ω,F ,P) be a given probability space and let H = [a, b] be an interval for
some a < b (a = −∞ , b =∞ might as well be allowed) . Let X : Ω→ H be a continuous
random variable with the distribution function F and let q1 and q2 be two real functions
defined on H such that

E [q1 (X) | X ≥ x] = E [q2 (X) | X ≥ x] η (x) , x ∈ H ,

is defined with some real function η . Assume that q1, q2 ∈ C1 (H) , η ∈ C2 (H) and F
is twice continuously differentiable and strictly monotone function on the set H . Finally,
assume that the equation q2η = q1 has no real solution in the interior of H . Then F is
uniquely determined by the functions q1 , q2 and η , particularly

F (x) =

∫ x

a
C

∣∣∣∣ η′ (u)

η (u) q2 (u)− q1 (u)

∣∣∣∣ exp (−s (u)) du,

where the function s is a solution of the differential equation s′ = η′ q2
η q2 − q1

and C is a

constant, chosen to make
∫
H dF = 1.
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Remarks 5 (a) In Theorem 4, the interval H need not be closed since the condition is
only on the interior of H. (b) Clearly, Theorem 4 can be stated in terms of two functions
q1 and η by taking q2 (x) ≡ 1, which will reduce the condition given in Theorem 4 to
E [q1 (X) | X ≥ x] = η (x) . However, adding an extra function will give a lot more flexibility,
as far as its application is concerned.

Proposition 6 Let X : Ω → (0,∞) be a continuous random variable and let q2 (x) ={
1− λ+ 2λ

(
G (x)

)α}−1
and q1 (x) = q2 (x)

(
G (x)

)
for x > 0. The pdf of X is (5) if

and only if the function η defined in Theorem 4 has the form

η (x) =
α

α+ 1
G (x) , x > 0.

Proof. Let X have pdf (5), then

(1− F (x)) E [q2 (X) | X ≥ x] =
(
G (x)

)α
, x > 0,

and

(1− F (x)) E [q1 (X) | X ≥ x] =
α

α+ 1

(
G (x)

)α+1
, x > 0,

and finally

η (x) q2 (x)− q1 (x) = − 1

α+ 1
q2 (x)G (x) < 0 , x > 0.

Conversely, if η is given as above, then

s′ (x) =
η′ (x) q2 (x)

η (x) q2 (x)− q1 (x)
= αg (x)

(
G (x)

)−1
, x > 0 ,

and hence

s (x) = − log(
(
G (x)

)α
) , x > 0.

Now, in view of Theorem 4, X has pdf (5).

Corollary 7 Let X : Ω→ (0,∞) be a continuous random variable and let q2 (x) be as in
Proposition 6. The pdf of X is (5) if and only if there exist functions q1 and η defined
in Theorem 4 satisfying the differential equation

η′ (x) q2 (x)

η (x) q2 (x)− q1 (x)
= αg (x)

(
G (x)

)−1
, x > 0.

Proof. Is straightforward and hence omitted.

Remarks 8 (a) The general solution of the differential equation in Corollary ?? is

η (x) =
(
G (x)

)−α [−∫ αg (x)
(
G (x)

)α−1
(q2 (x))−1 q1 (x) dx+D

]
,
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for x > 0 , where D is a constant. One set of appropriate functions is given in Proposition
8 with D = 1

2 .

(b) Clearly there are other triplets of functions (q1, q2, η) satisfying the conditions of Theorem
4. We presented one such triplet in Proposition .

10.2. Characterizations based on conditional expectation of a function of
the variable

In this subsection we employ a single function ψ of X and state characterization results in
terms of ψ (X) .

Proposition 9 Let X : Ω→ (a, b) be a continuous random variable with cdf F . Let ψ (x)
be a differentiable function on (a, b) with limx→a+ ψ (x) = δ > 1 and limx→b− ψ (x) =∞ .
Then

E
[
(ψ (X))δ | X ≤ x

]
= δ (ψ (x))δ−1 , x ∈ (a, b) , (42)

implies

ψ (x) = δ
[
1− (F (x))

1
δ−1

]−1
, x ∈ (a, b) . (43)

Proof. From (42), we have

∫ x

a
(ψ (u))δ f (u) du = δ (ψ (x))δ−1 F (x) .

Taking derivatives from both sides of the above equation, we arrive at

(ψ (x))δ f (x) = δ
{

(δ − 1)ψ′ (x) (ψ (x))δ−2 F (x) + (ψ (x))δ−1 f (x)
}
,

from which we have

f (x)

F (x)
= (δ − 1)

{
−ψ

′ (x)

ψ (x)
+

ψ′ (x)

ψ (x)− δ

}
.

Integrating bothe sides of this equation from x to b and using the condition limx→b− ψ (x) =
∞ , we obtain (43).

It is easy to see that for δ = 2 , ”implies” in Proposition 8 will be replaced by ”if and only if”.

Proposition 10 Let X : Ω→ (a, b) be a continuous random variable with cdf F. Let ψ1 (x)
be a differentiable function on (a, b) with limx→a+ ψ1 (x) = δ/2 > 1/2 and limx→b− ψ1 (x) =
δ. Then

E
[
(ψ1 (X))δ | X ≥ x

]
= δ (ψ1 (x))δ−1 , x ∈ (a, b) , (44)

if and only if

ψ1 (x) = δ
[
1 + (1− F (x))

1
δ−1

]−1
, x ∈ (a, b) . (45)
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Proof. Is similar to that of Proposition 9.

Remarks 11 (a) Taking, e.g., (a, b) = (0,∞) and

ψ (x) = δ

[
1 +

((
1−

(
G (x)

)α) (
1 + λ

(
G (x)

)α)) 1
δ−1

]−1
,

Proposition 9 gives a characterization of ATG-G distribution.

(b) Taking, e.g., (a, b) = (0,∞) and ψ1 (x) = δ

[
1 +

((
G (x)

)α (
1 + λ− λ

(
G (x)

)α)) 1
δ−1

]−1
,

Proposition 10 gives a characterization of ATG-G distribution.

11. Bivariate extention

In this section we introduce a bivariate version of the proposed model. The joint cdf is given
by

FX,Y (x, y) = (1 + λ) {1− (1−G(x, y; ξ))α} − λ {1− (1−G(x, y; ξ))α}2 (46)

where G(x, y; ξ) is a bivariate continuous distribution with mariginal cdf’s G1(x; ξ) and
G2(y; ξ). We denote this distribution by another bivariate Generalized Transmuted G (ABGT-
G) distribution. The marginal cdf’s are given by

FX(x) = (1 + λ)
[
1−

(
Ḡ1(x; ξ)

)α]− λ [1− (Ḡ1(x; ξ)
)α]2

and

FY (y) = (1 + λ)
[
1−

(
Ḡ2(y; ξ)

)α]− λ [1− (Ḡ2(y; ξ)
)α]2

The joint pdf of (X,Y ) is easily obtained by fX,Y (x, y) =
∂2FX,Y (x, y)

∂x∂y

fX,Y (x, y) = αA(x, y;α, λξ) (1−G(x, y; ξ))α−1 {1 + λ− 2λ {1− (1−G(x, y; ξ))α}}

where

A(x, y;α, λ, ξ) = g(x, y; ξ) +
1− α

1−G(x, y; ξ)

∂G(x, y, ξ)

∂x

∂G(x, y, ξ)

∂y

− 2αλ (1−G(x, y; ξ))α−1

1 + λ− 2λ {1− (1−G(x, y; ξ))α}
∂G(x, y, ξ)

∂x

∂G(x, y, ξ)

∂y
.

The marginal pdf’s are

fX(x) = αg1(x, ξ)
(
Ḡ1(x, ξ)

)α−1 {
1 + λ− 2λ

[
1−

(
Ḡ1(x; ξ)

)α]}
and

fY (y) = αg2(y, ξ)
(
Ḡ2(y, ξ)

)α−1 {
1 + λ− 2λ

[
1−

(
Ḡ2(y; ξ)

)α]}
.

The conditional cdf’s are

FX|Y (x|y) =
(1 + λ) {1− (1−G(x, y; ξ))α} − λ {1− (1−G(x, y; ξ))α}2

(1 + λ)
[
1−

(
Ḡ2(y; ξ)

)α]− λ [1− (Ḡ2(y; ξ)
)α]2

and

FY |X(y|x) =
(1 + λ) {1− (1−G(x, y; ξ))α} − λ {1− (1−G(x, y; ξ))α}2

(1 + λ)
[
1−

(
Ḡ1(x; ξ)

)α]− λ [1− (Ḡ1(x; ξ)
)α]2 .
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The conditional density functions are

fX|Y (x|y) =
A(x, y;α, λξ) (1−G(x, y; ξ))α−1 {1 + λ− 2λ {1− (1−G(x, y; ξ))α}}

g2(y, ξ)
(
Ḡ2(y, ξ)

)α−1 {
1 + λ− 2λ

[
1−

(
Ḡ2(y; ξ)

)α]}
and

fY |X(y|x) =
A(x, y;α, λξ) (1−G(x, y; ξ))α−1 {1 + λ− 2λ {1− (1−G(x, y; ξ))α}}

g1(x, ξ)
(
Ḡ1(x, ξ)

)α−1 {
1 + λ− 2λ

[
1−

(
Ḡ1(x; ξ)

)α]}

12. Estimation

Here, we determine the maximum likelihood estimates (MLEs) of the model parameters of
AGT-G from complete samples only. Let x1, . . . , xn be observed values from the AGT-G
distribution with parameters α, λ and ξ. Let Θ = (α, λ, ξ)> be the r × 1 parameter vector.
The total log-likelihood function for Θ is given by

`n = `n(Θ) = n log(α) +
n∑
i=1

log [g(xi; ξ)] + (α− 1)
n∑
i=1

log
[
Ḡ(xi; ξ)

]
+

n∑
i=1

log
{

1 + λ− 2λ
[
1−

(
Ḡ(xi; ξ)

)α]}
(47)

The log-likelihood function can be maximized either directly by using the SAS (PROC
NLMIXED) or the Ox program (sub-routine MaxBFGS) (see Doornik, 2007) or by solv-
ing the nonlinear likelihood equations obtained by differentiating (47). The components of

the score function Un(Θ) = (∂`n/∂α, ∂`n/∂λ, ∂`n/∂ξ)> are

∂`n
∂α

=
n

α
+

n∑
i=1

log
[
Ḡ(xi; ξ)

]
+ 2λ

n∑
i=1

(
Ḡ(xi; ξ)

)α
log
[
Ḡ(xi; ξ)

]
1 + λ− 2λ

[
1−

(
Ḡ(xi; ξ)

)α] ,
∂`n
∂λ

=

n∑
i=1

1− 2
[
1−

(
Ḡ(xi; ξ)

)α]
1 + λ− 2λ

[
1−

(
Ḡ(xi; ξ)

)α] ,
∂`n
∂ξ

=

n∑
i=1

g(ξ)(xi, ξ)

g(xi, ξ)
+ (1− α)

n∑
i=1

G(ξ)(xi, ξ)

Ḡ(xi, ξ)

+ 2αλ

n∑
i=1

G(ξ)(xi, ξ)
(
Ḡ(xi; ξ)

)α−1

1 + λ− 2λ
[
1−

(
Ḡ(xi; ξ)

)α]
where h(ξ)(·) denotes the derivative of the function h with respect to ξ.

12.1. Maximum product spacing estimates

The maximum product spacing (MPS) method has been proposed by Cheng and Amin (1983). This
method is based on an idea that the differences (spacings) of the consecutive points should be identically
distributed. The geometric mean of the differences is given as

GM = n+1

√√√√n+1∏
i=1

Di (48)

where the difference Di is defined by

Di =

x(i)∫
x(i−1)

f (x, λ, α, ξ) dx; i = 1, 2, . . . , n+ 1. (49)
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Here, F (x(0), λ, α, ξ) = 0 and F (x(n+1), λ, α, ξ) = 1. The MPS estimators λ̂PS , α̂PS and ξ̂PS of λ, α
and ξ are obtained by maximizing the geometric mean (GM) of the differences. Substituting pdf of
AGT-G in (49) and taking logarithm of the above expression, we will have

LogGM =
1

n+ 1

n+1∑
i=1

log
[
F (x(i), λ, α, ξ)− F (x(i−1), λ, α, ξ)

]
. (50)

The MPS estimators λ̂PS , α̂PS and ξ̂PS of λ, α and ξ can be obtained as the simultaneous solution of
the following non-linear equations:

∂LogGM

∂λ
=

1

n+ 1

n+1∑
i=1

[
F
′

λ(x(i), λ, α, ξ)− F ′λ(x(i−1), λ, α, ξ)

F (x(i), λ, α, ξ)− F (x(i−1), λ, α, ξ)

]
= 0

∂LogGM

∂α
=

1

n+ 1

n+1∑
i=1

[
F
′

α(x(i), λ, α, ξ)− F ′α(x(i−1), λ, α, ξ)

F (x(i), λ, α, ξ)− F (x(i−1), λ, α, ξ)

]
= 0

∂LogGM

∂ξ
=

1

n+ 1

n+1∑
i=1

[
F
′

ξ(x(i), λ, α, ξ)− F ′ξ(x(i−1), λ, α, ξ)

F (x(i), λ, α, ξ)− F (x(i−1), λ, α, ξ)

]
= 0

12.2. Least square estimates

Let x1:n, x2:n, . . . , xn:n be the ordered sample of size n drawn the AGT-G population pdf. Then, the
expectation of the empirical cumulative distribution function is defined as

E [F (Xi:n)] =
i

n+ 1
; i = 1, 2, . . . , n (51)

The least square estimates (LSEs) λ̂LS , α̂LS and ξ̂LS of λ, α and ξ are obtained by minimizing

Z (λ, α, ξ) =

n∑
i=1

(
F (xi:n, λ, α, ξ)− i

n+ 1

)2

Therefore, λ̂LS , α̂LS and ξ̂LS of λ, α and ξ can be obtained as the solution of the following system of
equations:

∂Z (λ, α, ξ)

∂λ
=

n∑
i=1

F
′

λ(xi:n, λ, α, ξ)

(
F (xi:n, λ, α, ξ)− i

n+ 1

)
= 0

∂Z (λ, α, ξ)

∂α
=

n∑
i=1

F
′

α(xi:n, λ, α, ξ)

(
F (xi:n, λ, α, ξ)− i

n+ 1

)
= 0

∂Z (λ, α, ξ)

∂ξ
=

n∑
i=1

F
′

ξ(xi:n, λ, α, ξ)

(
F (xi:n, α, θ)−

i

n+ 1

)
= 0

13. Applications

Now we use a real data set to show that the AGT-E can be a better model than the beta-exponential
(Nadarajah and Kotz (2006a)), Kumaraswamy-exponential distribution and exponential distribtuion.

We consider a data set of the life of fatigue fracture of Kevlar 373/epoxy that are subject to constant
pressure at the 90% stress level until all had failed, so we have complete data with the exact times of
failure. For previous studies with the data sets see Andrews & Herzberg (1985) and Barlow, Toland
& Freeman (1984).
These data are:

0.0251, 0.0886, 0.0891, 0.2501, 0.3113, 0.3451, 0.4763, 0.5650, 0.5671, 0.6566, 0.6748, 0.6751, 0.6753,
0.7696, 0.8375, 0.8391, 0.8425, 0.8645, 0.8851, 0.9113, 0.9120, 0.9836, 1.0483, 1.0596, 1.0773, 1.1733,
1.2570, 1.2766, 1.2985, 1.3211, 1.3503, 1.3551, 1.4595, 1.4880, 1.5728, 1.5733, 1.7083, 1.7263, 1.7460,
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Table 2: Estimated parameters of the AGT-E, BE and KwE distribution for data set.

Model ML Estimate Standard Error −`(·;x) LSE PS Estimator

AGTE λ̂ = 0.733 0.274 121.3219 -0.636 -0.760
α̂ = 1.197 0.344 1.631 1.038
γ̂ = 0.769 0.101 0.907 0.704

Exponential λ̂ = 0.510 0.058 127.114 0.981 0.926
Beta â = 1.679 0.374 122.227 2.235 1.520

Exponential b̂ = 1.508 6.760 1.558 1.082

λ̂ = 0.484 1.981 0.586 0.598
Kumaraswamy â = 1.556 0.401 122.0942 1.987 1.426

Exponential b̂ = 2.448 6.065 2.228 2.243

λ̂ = 0.328 0.691 0.453 0.316

1.7630, 1.7746, 1.8275, 1.8375, 1.8503, 1.8808, 1.8878, 1.8881, 1.9316, 1.9558, 2.0048, 2.0408, 2.0903,
2.1093, 2.1330, 2.2100, 2.2460, 2.2878, 2.3203, 2.3470, 2.3513, 2.4951, 2.5260, 2.9911, 3.0256, 3.2678,
3.4045, 3.4846, 3.7433, 3.7455, 3.9143, 4.8073, 5.4005, 5.4435, 5.5295, 6.5541, 9.0960

The variance covariance matrix I(θ̂)−1 of the MLEs under the AGT-E distribution is computed as 0.075308090 −0.07199734 −0.005229209
−0.071997344 0.11877571 0.021537278
−0.005229209 0.02153728 0.010247905

 .

Thus, the variances of the MLE of λ, α and γ is var(λ̂) = 0.075472979, var(α̂) = 0.11889578 and
var(γ̂) = 0.010248121.

The LR test statistic to test the hypotheses H0 : λ = 0 &α = 1 versus H1 : λ 6= 0 &α 6= 1 for data set
is ω = 11.584 > 5.991 = χ2

2;0.05, so we reject the null hypothesis.

Table 3: Criteria for comparison.

Model K-S −2` AIC AICC BIC
AGTE 0.0954 242.643 248.643 249.143 255.636
Beta-E 0.0962 244.455 250.455 250.621 257.447
Kw-E 0.0988 244.188 250.188 250.521 257.180
Expoential 0.512 254.228 256.228 256.282 258.559

In order to compare the two distribution models, we consider criteria like Kolmogorov-Smirnov (K-S)
statistics, −2`, AIC (Akaike information criterion), and AICC (corrected Akaike information criterion)
for the data set. The better distribution corresponds to smaller KS, −2`, AIC,AICC and BIC values:

• K-S distance Dn = sup
x
|F (x)− Fn(x)|, where, Fn(x) is the empirical distribution function,

• AIC = −2 log `
(
x
∼
, α, λ, ξ

)
+ 2p,

• AICC = AIC + 2p(p+1)
n−p−1 ,

• BIC = −2 log `
(
x
∼
, α, λ, ξ

)
+ p log (n) ,

where, p is the number of parameters are to be estimated from the data and n the sample size.

Also, here for calculating the values of KS we use the sample estimates of α, λ and γ. Table 3 shows
the MLEs under both distributions, Table 3 shows the values of KS, −2`, AIC, AICC, and BIC values.
The values in Table 3 indicate that the AGT-E leads to a better fit than the exponential distribution.

The P-P plots, fitted distribution function and density functions of the considered models are plotted
in Figures 3 and 4, respectively, for the data set.
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Figure 3: The P-P plots for the real data set
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Figure 4: Fitted pdfs plots of the considered distributions for the real data set
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