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Abstract

We consider regression analysis of longitudinal data when the temporal correlation
is modeled by an autoregressive process. Robust R estimators of regression and autore-
gressive parameters are obtained. Our estimators are valid under censoring caused by
detection limits. Efficient computation of the estimators is discussed. Theoretical and
simulation studies of the estimators are presented. We analyze a real data set on air
pollution using our methodology.

Keywords: rank estimators, left-censoring, censored rank, reweighting.

1. Introduction

We consider a time series {Xt : t ≥ 1} and an associated series of covariate vectors {Zt : t ≥ 1},
in <q, for some q ≥ 1. We postulate a linear model of the form Xt = β0 + β′Zt + αt,
where the model errors αt, is a stationary autoregressive time series of order p, for some
p ≥ 1 : αt = φ1αt−1 + · · · + φpαt−p + εt, where {εt} are i.i.d. from a symmetric continuous
distribution, and αs = 0, for s ≤ 0. We assume that the coefficients φ satisfy the usual
invertibility condition.

In some situations, the exact values of Xt may be unavailable due to censoring. In this paper,
we develop our methodology for the situation when the censoring is to the left which may
occur when the values of the time series Xt fall below a detection limit Dt. Thus, the observed
data consists of Xc

t = Xt ∨ Dt and the censoring indicators δt = I(Dt ≤ Xt). Our method
can easily be adopted to the case of right censored data by simple changes in various formulas
leading to our estimators. They can also be extended to the case when an observation is
doubly censored but it requires more work.

The number of papers dealing with some form of censored time series data is limited (Vasu-
daven et al., 1996) although Zeger and Brookmeyer (1986) argue that censoring may occur
naturally in longitudinal studies when there are detection limits on the observation that are
being collected in time. They took a fully parametric approach to the above problem and
fitted a Gaussian error model using the maximum likelihood approach via an EM type algo-
rithm. In this paper, we take an estimating equation approach that is a robustified form of
the least squares estimating function.
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There is a sizable literature on R-estimators in the regression context (Hettmansperger and
McKean, 2011) with i.i.d. errors but not for auto-regressive errors. Furthermore, an added
complication arises due to censoring. As use the “approximate unbiasedness” principle of re-
weighting data to construct our R-type estimating equation for the set of regression and the
error autoregression parameters. Since this estimating equation involve ranks of quantities
that are not computable due to censoring, the re-weighting principle is used again to compute
the approximate ranks to be used in the estimating equation.

The rest of the paper is organized as follows. Section 2 describes our estimation method and
discusses an efficient method of computing the estimator. We also present a model based
resampling procedure for making inference using our estimators. Section 3 presents results
from a number of simulation studies demonstrating the performance of our estimators. We
illustrate our methodology on a real dataset dealing with air pollution in Section 4. The
paper ends with a discussion section (Section 5).

2. The estimators

We develop two different estimators of the regression and the error autoregression parameters.
In the first approach, we ignore the fact that the models errors are dependent and estimate
the regression parameters first which are then used to estimate the autoregressive parameters.
In the second approach, a joint objective function of both sets of parameters is formed.

2.1. The complete data case

First we consider the situation when there is no censoring so that we have fully observed the
time series Xt, 1 ≤ t ≤ n. We form an estimating equation that is partly based on ranks of
certain model residuals and is therefore yields more robust estimators than the corresponding
least squares estimators. Define, for any vector b ∈ <q, the residuals for the linear model
part at(b) := Xt − bTZt, for 1 ≤ t ≤ n, and at(b) := 0, for t ≤ 0. Note that even though the
true errors αt are not independent, they are still ergodic and thus we could use the same
estimating equation of a traditional R-estimation in this context. Thus, we could obtain a
“quick and dirty” consistent estimator of β by minimizing the objective function

D1,M (b) =

n∑
t=1

{
φ1

(
R(at(b))

n+ 1

)
− φ1

}
at(b), (1)

where R(at(b) ) is the rank of at(b) amongst a1(b), · · · , an(b). Here φ1 is defined on (0, 1) such
that φ1 is monotonic and

∫
φ21 <∞, and φ1 = n−1

∑n
i=1 φ1 (i/(n+ 1)) . After obtaining an es-

timate β̂, the intercept parameter can be (robustly) estimated as β̂0 = med(a1(β̂), · · · , an(β̂)).

Having estimated the regression parameters, a similar objective function can now be formed
to estimate the autoregressive part of the error time series:

D2,M (h) =

n∑
t=1

φ2

(
R(et(h))

n+ 1

){
et(h)− e(h)

}
, (2)

where et(h) := {at(β̂)− β̂0} −
∑p

j=1 hj{at−j(β̂)− β̂0}, 1 ≤ t ≤ n, R(et(h)) is the rank of et(h)

amongst e1(h), · · · , en(h), e(h) = n−1
∑n

i=1 ei(h); φ2 is defined on (0, 1) such that φ2 is
monotonic and

∫
φ22 <∞. In the rest of the paper, we refer to these estimators as “partial R

estimators”.

Finally, we consider a second approach where estimators are obtained by minimizing a joint
objective function. For b0 ∈ <, b ∈ <q and h ∈ <p,define the model residuals (as a function of
b0, b and h), by et(b0, b, h) := at(b0, b)−

∑p
j=1 hjat−j(b0, b),where at(b0, b) = Xt−b0 +b′Zt, t ≥

1, and et(b0, b, h) := 0, for t ≤ 0.We then form a joint objective function
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DJ(b0, b, h) =
n∑
t=1

φ3

(
R(et(b0, b, h))

n+ 1

){
et(b0, b, h)− e(b0, b, h)

}
, (3)

where R and φ3 are as before. In accordance with the earlier name, the resulting estimators
obtained by minimizing DJ will be called the “full R-estimators”.

2.2. Modification for censored data

Next, we will describe how to modify this estimating function in presence of left-censoring.
Both the estimating function and the ranks have to be computed on the basis of observed
data. However, in order to avoid any selection bias, the contribution of such a term has to be
re-weighted by the corresponding inverse selection probability. These probabilities will have
to be estimated from appropriate models fitted to the censoring distribution.

The censored data version of the objective function corresponding to (1) is of the form

D1,M (b) =
n∑
t=1

δt
Wt

{
φ1

(
Rc(at(b))

n+ 1

)
− φ1,c

}
at(b), (4)

with φ1,c =
{∑n

t=1
δt
Wt
φ1

(
Rc(at(b))
n+1

)
/
∑n

t=1
δt
Wt

}
,where the presence of δt indicates that the

corresponding at(b) is computable from the available data and Wt is the corresponding selec-
tion weight that is described later. The quantity Rc denotes a modified “rank” that accounts
for censoring. To motivate the definition of rank for censored data, it will be useful to first
consider the following sum representation for R(at(b)) in the full (uncensored) data situation:

R(at(b)) =
n∑
j=1

I[aj(b) ≤ at(b)].

Using the same re-weighting principle as before, we can define an “estimated rank” that is
computable from left censored data by

Rc(at(b)) =

∑n
j=1

δj
Wj
I[aj(b) ≤ at(b)]

1
n

∑n
j=1

δj
Wj

,

for any t with δt = 1.

In the censored data case, a robust estimator of the intercept term can be obtained as

β̂0 = F̂−1a

(
1

2

)
, (5)

where Fα is an estimator of the distribution function of the stationary distribution of the
at based on the same re-weighting principle

F̂α(t) =

(
n∑
t=1

δt
Wt

I[ at( b̂ ) ≤ t]

)/(
n∑
t=1

δt
Wt

)
.

Next note that, in order to calculate the residual function et(h) corresponding to time t,we
need to have complete (i.e., uncensored) observations on Xj , t−p ≤ j ≤ t.Thus, the modified
objective function for estimating φ will be of the form

Dc
2,M (h) =

n∑
t=1

 t∏
j=t−p

δj
Wj

 φ2

(
Rc(et(h))

n+ 1

){
et(h)− e(h)

}
, (6)
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where the W s are as before,

e(h) =

{
n∑
t=1

 t∏
j=t−p

δj
Wj

 et(h)

}/{ n∑
t=1

 t∏
j=t−p

δj
Wj

}

and

Rc(et(h)) =

∑n
j=1

(∏j
k=j−p

δk
Wk

)
I[ej(h) ≤ et(h)]

1
n

∑n
j=1

(∏j
k=j−p

δk
Wk

) , (7)

for any t with
∏t
j=t−p δj = 1.

In the same way, the joint objective function can be modified to account for censored data as

Dc
J(b0, b, h) =

n∑
t=1

 t∏
j=t−p

δj
Wj

φ3

(
Rc(et(b0, b, h))

n+ 1

){
et(b0, b, h)− e(b0, b, h)

}
, (8)

where Wj are the same as before and Rc is similarly defined as in (7).

2.3. Computation of the estimator

The estimating function can be optimized using a general purpose optimizer such as “optim”
or “optimize” in R. For the p = q = 1 case, we can perform a grid search algorithm which we
describe below.

Note that D1,M (b) is a linear function in b in regions where the ranks Rc(at(b)) do not
change for t’s with δt = 1.For b to be such a change point, there will exist pairs of integers
t and i such that δt = δi = 1 and at(b) = ai(b). Thus Xt − bZt = Xi − bZi implying b =
(Xi −Xt)/(Zi − Zt), provided Zi 6= Zt . Let B = {bj : j = 1, · · · , M} be the sorted values of
{(Xi − Xt)/(Zi − Zt) : 1 ≤ i 6= t ≤ n, δiδt = 1, Zi 6= Zt}. Then D1,M (b) is piecewise linear

and continuous on B. Hence β̂ can be obtained by maximizing D1,M on the grid of points

B. If D1,M (b) is constant on [bj , bj+1],we will take β̂ to be the midpoint (bj + bj+1)/2.

In the same way, Dc
2,M can be maximized over the grid of points

H =
{(
at(β̂)− ai(β̂)

)
/
(
at−1(β̂)− ai−1(β̂)

)
: 1 ≤ i 6= t ≤ n, δiδi−1δtδt−1 = 1, at−1(β̂) 6= ai−1(β̂)

}
.

2.4. Computation of the weights

The weights Wj are estimates of the conditional (given Xj and Zj) cumulative distribution

function of the Dj , i.e., Wj = P̂ r{Dj ≤ Xj |Xj , Zj}. The simplest way to estimate these will
be to consider the corresponding (forward in time) hazard of Cj = −Dj , given Xj , Zj ,

limdc↓0
λc(c ≤ Cj < c+ dc|Cj ∧ (−Xj) ≥ c,Xj , Zj)

dc

= limdc↓0
λc(c ≤ Cj < c+ dc|Cj ∧ (−Xj) ≥ c, Zj)

dc
=: λc(c|Zj),

where the equality is an independent censoring assumption that we impose throughout this
paper. We now need a regression model on these hazard rates on the C. A flexible model is
given by Aalen’s linear hazards model that admits a closed form estimates of these quanti-
ties; see, e.g., Aalen (1989) or Datta and Satten (2002). A special case of these models,
where we assume that λc(c|Zj) is free of the covariate Zj , also yields the simplest choice of
Wj obtained by the Kaplan-Meier estimator of the survival function based on the (right
censored) Cj evaluated at (−Xj)

−.
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2.5. Bootstrap inference

While it is possible to develop a large sample theory for our estimators by combining elements
from Hettmansperger and McKean (2011), Datta and Satten (2002), and Datta and Beck
(2014), we prefer to use model based resampling to perform statistical inference since it
avoids the use of tuning parameter that is necessary for smoothing based asymptotic variance
estimation.

Having fitted the regression model to the original data, we compute the model residuals
ε̂t = α̂t − φ̂1α̂t−1 − · · · − φ̂pα̂t−p,with α̂t = Xt − β̂0 − β̂′Zt. Next, we resample the centered

residuals to obtain ε∗t which are used to compute α∗t = φ̂1α
∗
t−1 + · · · + φ̂pα

∗
t−p+ ε∗t , and finally

the bootstrapped complete data X∗t = β̂0+ β̂′Z∗t +α∗t . The corresponding censoring times are
independently generated from the fitted censoring hazard rate function based on the original
data D∗t ∼ λ̂C . Finally, we let X∗tc = X∗t ∨D∗t and δ∗t = I(D∗t ≤ X∗t ).

The rest of the bootstrap procedure is standard leading to either a percentile based confidence
interval or a large sample normality based confidence interval where the asymptotic variance
is replaced by the empirical variance of independent replicates of bootstrapped estimates of
the parameter of interest.

3. Simulation studies

We consider a single continuous covariate Z that is generated from a N(0, .64) distribution;
we simulate the errors from an AR(1) model αt = 0.5αt−1 + εt. A number of distributions for
the ε were investigated. The regression parameters used for the simulation were β0 = 2 and
β1 = 1. The censoring times were generated as D = 1/(E + 3) +m,where E has a standard
exponential distribution and m ∈ < is chosen to control the censoring rate. Three choices
of the censoring rates were used. The bias and variance of the estimators were empirically
estimated based on M = 1000 Monte Carlo samples each.

Table 1 reports the results of the simulation. Some general trends are observed from this table.
The joint estimators of the slope and autoregressive parameters have better performance that
the corresponding partial estimators. The joint estimator of intercept parameter, on the
other hand, exhibits substantial bias which worsens with the amount of censoring; however it
is corrected by the modified estimator in all cases. The standard deviation, of the estimators
of slope and autoregression parameters increases, albeit slightly, with the censoring level.

Next we compute the empirical coverage of the bootstrap based confidence intervals using
the percentile methods, as well as the standardized statistic using bootstrap based variance
estimate. The coverage appears to be very good when there is no censoring and is adequate
even with 30% censoring (Table 2). Overall, confidence intervals using standardized statistics
have better coverage as expected.

4. An application

We illustrate our methodology using monthly data on the chemical composition of atmospheric
deposition of dry NH4 collected by the Environmental Measurements Laboratory between
1977 and early 1980 at a number of sites in the United States (Toonkel 1981); the same data
set was used by Zeger and Brookmeyer (1986) to illustrate their method. Since there are
lower detection limits of the assays, the data is left-censored. Altogether, there were 43 data
points out of which 6 were left-censored. In addition, there were three observations that were
missing; in order to accommodate them into our framework, we treat them as left censored
by an artificially set high value (larger than all the observed values in the data set). The data
were log-transformed as in Zeger and Brookmeyer (1986). A plot of the log-transformed data
is shown in Figure 1; where the incomplete observations are denoted by the symbol “+”.

One of the main research question was to determine if the amount of deposit is increasing
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with time. To that end we fit a regression model taking time as a covariate of the form
Xt = β0 + β1t + αt, where αtwas modeled by an AR(1) process. The resulting parameter
estimates are given in Table 1; we include the parametric estimates by Zeger and Brookmeyer
(ZB) for comparison.

While the two sets of parametric estimates are similar, the robust estimate of the intercept
term is slightly smaller. More importantly, all confidence intervals for the slope term include
0 indicating that there is no significant change of the deposit levels with time. In a sense, the
fact that the different analyses yielded the same scientific conclusion is reassuring.

5. Discussion

We introduce a robust and relatively model free technique of analyzing temporally correlated
data that are subject to left-censoring. Although, our formulas are given here for left censored
data, it is a mater of triviality to change them for right censored. With additional effort, it
may be possible to extend the basic regression technique to other form of incomplete data.
Another technical extension will be to consider other form of temporal correlation structures
for the longitudinal responses.

This paper presents a number of novel components which may be useful for other incomplete
data problems. In particular, the concept of an approximate or estimated “rank” may be
applied to extend other rank based inference for censored data settings.
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Table 1: Performance of various estimators as measured by empirical bias and standard
deviation in a simulation experiment.

Partial R-estimators Joint R-estimators Modified
Sample size Censoring % Parameter β0 β1 φ1 β0 β1 φ1 β0
50 40% Bias 0.002 -0.050 -0.086 -0.289 -0.032 -0.067 0.002

SD 0.154 0.111 0.146 5.654 0.094 0.148 0.153
30% Bias -0.015 -0.004 -0.070 -0.012 -0.001 -0.053 -0.015

SD 0.157 0.107 0.138 1.429 0.087 0.139 0.157
0% Bias -0.015 0.003 -0.067 -0.016 0.004 -0.051 -0.015

SD 0.158 0.107 0.136 1.411 0.086 0.138 0.157
200 40% Bias 0.009 -0.057 -0.040 0.042 -0.036 -0.034 0.009

SD 0.072 0.057 0.069 1.084 0.048 0.069 0.072
30% Bias -0.009 -0.011 -0.022 0.052 -0.007 -0.018 -0.009

SD 0.073 0.053 0.063 1.075 0.043 0.064 0.073
0% Bias -0.010 -0.004 -0.019 0.055 -0.002 -0.015 -0.010

SD 0.073 0.053 0.063 1.072 0.043 0.063 0.073
500 40% Bias 0.020 -0.050 -0.027 0.035 -0.031 -0.023 0.020

SD 0.049 0.036 0.045 1.042 0.028 0.045 0.048
30% Bias 0.002 -0.005 -0.010 0.043 -0.003 -0.008 0.001

SD 0.049 0.033 0.040 1.046 0.025 0.039 0.049
0% Bias 0.001 0.001 -0.008 0.044 0.001 -0.006 0.000

SD 0.049 0.033 0.040 1.042 0.025 0.039 0.049

Table 2: Empirical coverages of bootstrap confidence intervals in simulated data

Censoring Parameter
Rate Percentile Normal

Method Approximation
Nominal β0 β1 φ1 β0 β1 φ1
Coverage

80% 0.772 0.766 0.794 0.800 0.772 0.802
0% 85% 0.826 0.810 0.826 0.850 0.814 0.852

90% 0.880 0.882 0.888 0.896 0.880 0.902
95% 0.926 0.940 0.938 0.940 0.952 0.950
99% 0.964 0.990 0.984 0.974 0.988 0.984

80% 0.732 0.730 0.800 0.742 0.732 0.818
30% 85% 0.776 0.778 0.848 0.802 0.792 0.870

90% 0.836 0.832 0.898 0.846 0.840 0.904
95% 0.882 0.924 0.938 0.912 0.922 0.942
99% 0.964 0.978 0.984 0.980 0.984 0.988

80% 0.714 0.426 0.662 0.756 0.644 0.748
40% 85% 0.766 0.472 0.720 0.806 0.702 0.808

90% 0.828 0.560 0.780 0.854 0.760 0.874
95% 0.892 0.678 0.860 0.928 0.842 0.936
99% 0.954 0.846 0.958 0.974 0.946 0.974
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Table 3: Parameter estimates for the Dry Deposition data

Parameter β0 β1 φ1 CI for φ1

Our method 4.646 0.017 0.315 (−0.018, 0.042) BS percentile method
(−0.011, 0.045) Using normal approximation

ZB 5.020 0.015 0.380 (−0.042, 0.066)

Figure 1: Log-transformed data of monthly deposition of dry NH4; the incomplete data values
are indicated by “+”.
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