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Abstract

We study a problem of an unknown drift parameter estimation in a stochastic differen-
tial equation driven by fractional Brownian motion. We represent the likelihood ratio as
a function of the observable process. The form of this representation is in general rather
complicated. However, in the simplest case it can be simplified and we can discretize it to
establish the a. s. convergence of the discretized version of maximum likelihood estimator
to the true value of parameter. We also investigate a non-standard estimator of the drift
parameter showing further its strong consistency.
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1. Introduction

The models with long-range dependence are very popular now because they correspond to
various processes in economy, finances and tele-traffic. From the mathematical point of view,
long-range dependence can be modeled with the help of fractional Brownian motion with Hurst
parameter H ∈

(
1
2 , 1
)
. More promising are so called mixed models involving both the standard

Wiener process and the fractional Brownian motion. Similarly to the standard semimartingale
models, the problem of parameter estimation arises immediately when we want to adapt the
model with long-range dependence to the specific situation. In particular, the problem of the
drift parameter estimation in the diffusion model with fractional Brownian motion is rather
important. The standard maximum likelihood estimator was considered by many authors, see,
e.g., Mishura (2008) and Prakasa Rao (2010). It is constructed by continuous observations on
the whole interval. Asymptotic properties when the interval of observations increases to the
whole half-axis, were established. However, in practical considerations the observations are
never continuous. So, the problem of the discretization of the estimate appears. Some papers
are devoted to the parameter estimation for the models with fBm and discrete observations,
see, e.g., Hu and Nualart (2010), Xiao, Zhang, and Xu (2011a), Xiao, Zhang, and Zhang
(2011b), Bishwal (2011), Tanaka (2013), Hu and Song (2013), Zhang, Xiao, Zhang, and
Niu (2014) but only restricted classes of models, basically linear models were considered.
The situation is such that in the general case the maximum-likelihood estimator has a very
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complicated representation via the observed process and the dicretized version does not allow
reasonable form for calculations. Therefore, we have to propose some non-standard approach
to construct strongly consistent drift parameter estimators for the discrete observations of the
models with long-range dependence. One of such approaches was demonstrated in Mishura,
Ral’chenko, Seleznev, and Shevchenko (2014), where some specific discretized estimators were
proposed. In the present paper we propose two approaches. One of them consists in direct
discretization of maximum-likelihood parameter estimator, however, only for the case when
drift and diffusion coefficients coincide. It is one of the cases when the discretization leads to
the reasonable form of the estimator. Another approach is to discretize the non-standard drift
parameter estimator that was introduced in Kozachenko, Melnikov, and Mishura (2013). This
also leads to the consistent estimator. Strong consistency is established for both estimators
and illustrated with some simulations.

2. Maximum-likelihood estimation

2.1. Model description

Let BH =
{
BH
t , t ≥ 0

}
be a fractional Brownian motion with Hurst index H ∈ (1/2, 1),

defined on the probability space (Ω,F ,P). Denote by (Ft)t≥0 the filtration generated by BH .
Consider the stochastic differential equation driven by fractional Brownian motion BH :

dXt = θa(t,Xt)dt+ b(t,Xt)dB
H
t , 0 ≤ t ≤ T, T > 0,

X
∣∣
t=0

= X0 ∈ R.
(1)

Here θ ∈ R is unknown parameter to be estimated.

Suppose that the following assumptions hold:

(I) there exist positive constants C1, C2 such that for all t ∈ [0, T ], x, y ∈ R

|a(t, x)− a(t, y)|+ |b(t, x)− b(t, y)| ≤ C1 |x− y| ,
|a(t, x)|+ |b(t, x)| ≤ C2(1 + |x|);

(II) there exist constants C3 > 0 and ρ ∈
(

1
H − 1, 1

)
such that for all t ∈ [0, T ], x, y ∈ R∣∣b′x(t, x)− b′y(t, y)

∣∣ ≤ C3 |x− y|ρ ;

(III) there exist constants C4 > 0 and µ ∈ (1−H, 1) such that for all t, s ∈ [0, T ], x ∈ R

|b(t, x)− b(s, x)|+
∣∣b′x(t, x)− b′x(s, x)

∣∣ ≤ C4 |t− s|µ .

According to (Nualart and Rascanu 2001, Theorem 2.1), under the conditions (I)–(III) there
exists a unique solution X of the stochastic equation (1).

In addition, suppose that the following conditions hold:

(IV) b(t, x) 6= 0;

(V) a, b ∈ C([0,∞)× R).

Denote α = H − 1
2 , α̃ = (1 − 2α)−1, CH =

(
Γ(2−2α)

2HΓ(1−α)3Γ(α+1)

) 1
2
, lH(t, s) = CHs

−α(t −

s)−αI{0<s<t}, ψ(t, x) = a(t,x)
b(t,x) , ϕ(t) = ψ(t,Xt), I(t) =

∫ t
0 lH(t, s)ϕ(s)ds. Under the conditions

(I), (III)–(V) ϕ(t), t ∈ [0, T ] is a continuous process with probability 1. Hence, it is Lebesgue
integrable and for each t ∈ [0, T ] there exists an integral

∫ t
0 lH(t, s)ϕ(s)ds.

Consider the new process B̂H
t := BH

t + θ
∫ t

0 ϕ(s)ds. Suppose that the following assumptions
hold.
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(VI) There exists such function δ that belongs to L1[0, t] for all t ∈ [0, T ] a. s. and satisfies
the equation

θ

∫ t

0
lH(t, s)ϕ(s)ds = (α̃)−1/2

∫ t

0
δsds;

(VII) E
∫ t

0 s
2αδ2

sds <∞, t ∈ [0, T ];

(VIII) E exp
{
Lt − 1

2〈L〉t
}

= 1, where Lt =
∫ t

0 s
αδsdB̂s, and B̂ is Wiener process with respect

to probability measure P0(t) corresponding to the zero drift such that∫ t

0
lH(t, s) dB̂H

s = α̃−1/2

∫ t

0
s−α dB̂s.

(The existence of this Wiener process follows from the representation of fractional
Brownian motion via Wiener process on a finite interval introduced in Norros, Valkeila,
and Virtamo (1999).)

Then the likelihood ratio dPθ(t)
dP0(t) for the probability measure Pθ(t) corresponding to our model

and probability measure P0(t) corresponding to the model with zero drift is equal to

dPθ(t)

dP0(t)
= exp

{
Lt −

1

2
〈L〉t

}
.

Note that Lt is a square-integrable martingale. Now we present likelihood ratio as a function
of the observed process Xt.

2.2. The explicit form for the likelihood ratio and a discretized version of
MLE

We can present likelihood ratio as a function of the observed process Xt.

Lt =

∫ t

0
sαδsdB̂s =

∫ t

0
s2αδsdYs, (2)

where

Ys =

∫ s

0
u−αdB̂u = α̃1/2

∫ s

0
lH(s, u)b−1(u,Xu)dXu, (3)

δs = θα̃1/2

(∫ s

0
lH(s, u)ϕ(u)du

)′
= CHθα̃

1/2

(∫ s

0
(s− u)−αu−αϕ(u)du

)′
(4)

or

δs = CHθα̃
1/2

(
ϕ(s)

s2α
+ α

∫ s

0

s−αϕ(s)− u−αϕ(u)

(s− u)α+1
du

)
. (5)

According to (Mishura 2008, formula (6.3.13)), the maximum-likelihood estimator has the
form

θ̂
(1)
t =

α̃−1/2
∫ t

0 s
αI ′(s)dB̂s∫ t

0 s
2α(I ′(s))2ds

.

Since I ′(s) = δsθ
−1α̃−1/2, we obtain

θ̂
(1)
t =

θLt∫ t
0 s

2αδ2
sds

. (6)
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Using (2), (3), (5) and the definition of the kernel lH(t, s) we can write

θ̂
(1)
t =

θ
∫ t

0 s
2αδsdYs∫ t

0 s
2αδ2

sds

=

∫ t
0

(
ϕ(s) + αs2α

∫ s
0
s−αϕ(s)−u−αϕ(u)

(s−u)α+1 du
)
d
(∫ s

0 v
−α(s− v)−αb−1(v,Xv)dXv

)
∫ t

0 s
2α
(
ϕ(s)
s2α

+ α
∫ s

0
s−αϕ(s)−u−αϕ(u)

(s−u)α+1 du
)2
ds

.

Remark 1. According to (Mishura 2008, Theorem 6.3.3), under assumptions (I)–(VIII) and∫ ∞
0

s2α(I ′(s))2ds =∞ a. s.

θ̂
(1)
T

P1−→ θ, T →∞.

Let tnk = k
2n , k = 0, 1, 2, . . . , 22n. We can define a discretized version of the maximum-

likelihood estimator

θ̂(2)
n :=

∑22n−1
k=0

(
ϕ(tnk) + α(tnk)2α

∑k−1
i=1

(tnk )−αϕ(tnk )−(tni )−αϕ(tni )

(tnk−t
n
i )α+1

1
2n

)(
Ỹtnk+1

− Ỹtnk
)

∑22n−1
k=0 (tnk)2α

(
ϕ(tnk )

(tnk )2α
+ α

∑k−1
i=1

(tnk )−αϕ(tnk )−t−αi ϕ(tni )

(tnk−t
n
i )α+1

1
2n

)2
1

2n

(7)

where

Ỹtk =

k−1∑
i=1

(tni )−α(tnk − tni )−αb−1(tni , Xtni
)
(
Xtni+1

−Xtni

)
.

In the general case formula (7) is not suitable for applications because it involves a lot of
weakly singular kernels and it is quite impossible to get its convergence to the true value of
the parameter. But even if we get the convergence, the simulation error will be so great that
annihilate our efforts in discretization. In order to avoid this technical difficulties, we start
with the simplest case.

2.3. Estimation in the case a = b

Consider an equation
dXt = θb(Xt)dt+ b(Xt)dB

H
t . (8)

In this case ϕ ≡ 1. So we get from (4) that

δs = CHθα̃
1/2
(
B(1− α, 1− α)s1−2α

)′
= CHθα̃

−1/2B(1− α, 1− α)s−2α.

Then (2) and (3) imply

Lt = CHθα̃
−1/2B(1− α, 1− α)Yt = CHθB(1− α, 1− α)

∫ t

0
lH(t, s)b−1(Xs)dXs.

Therefore the maximum-likelihood estimator (6) can be written as follows:

θ̂
(1)
t =

∫ t
0 lH(t, s)b−1(Xs)dXs

CHB(1− α, 1− α)t1−2α
. (9)

It follows from (8) that

θ̂
(1)
t =

θ
∫ t

0 lH(t, s)ds+
∫ t

0 lH(t, s)dBH
s

CHB(1− α, 1− α)t1−2α
= θ +

∫ t
0 lH(t, s)dBH

s

CHB(1− α, 1− α)t1−2α
.

Since
∫ t

0 lH(t, s)dBH
s is a square integrable martingale with angle bracket t1−2α → ∞ we see

that
∫ t
0 lH(t,s)dBHs

t1−2α

P1−−−→
n→∞

0. Hence the estimator θ̂
(1)
t is strongly consistent.
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Now we consider an estimator

θ̂(3)
n =

∑22n−1
k=1 (tnk)−α(2n − tnk)−αb−1

(
Xtnk−1

)(
Xtnk
−Xtnk−1

)
B(1− α, 1− α)2n(1−2α)

,

where tnk = k
2n , k = 0, 1, . . . , 22n. This estimator is a discretized version of the estimator (9).

Theorem 1. Suppose that there exist positive constants C1, C2, C3, C5 and ρ ∈ (1/H−1, 1],
such that

(a) |b(x)− b(y)| ≤ C1 |x− y| for all x, y ∈ R,

(b) C5 ≤ |b(x)| ≤ C2(1 + |x|) for all x ∈ R,

(c) |b′(x)− b′(y)| ≤ C3 |x− y|ρ for all x, y ∈ R

Then θ̂
(3)
n

P1−→ θ, n→∞. Moreover, for any β ∈ (1/2, H) and γ > 1/2 there exists a random

variable η = ηβ,γ with all finite moments such that
∣∣∣θ̂(3)
n − θ

∣∣∣ ≤ ηnκ+γ2−τn, where κ = γ/β,

τ = (1−H) ∧ (2β − 1).

Proof. It follows from (8) that

Xtnk
−Xtnk−1

= θ

∫ tnk

tnk−1

b(Xv)dv +

∫ tnk

tnk−1

b(Xv)dB
H
v

= θ

∫ tnk

tnk−1

b
(
Xtnk−1

)
dv + θ

∫ tnk

tnk−1

(
b(Xv)− b

(
Xtnk−1

))
dv

+

∫ tnk

tnk−1

(
b(Xv)− b

(
Xtnk−1

))
dBH

v +

∫ tnk

tnk−1

b
(
Xtnk−1

)
dBH

v .

(10)

Then

θ̂(3)
n =

θAn + θBn +Dn + En
B(1− α, 1− α)

, (11)

where

An = 2n(2α−2)
22n−1∑
k=1

(tnk)−α(2n − tnk)−α,

Bn = 2n(2α−1)
22n−1∑
k=1

(tnk)−α(2n − tnk)−αb−1
(
Xtnk−1

)∫ tnk

tnk−1

(
b(Xv)− b

(
Xtnk−1

))
dv,

Dn = 2n(2α−1)
22n−1∑
k=1

(tnk)−α(2n − tnk)−αb−1
(
Xtnk−1

)∫ tnk

tnk−1

(
b(Xv)− b

(
Xtnk−1

))
dBH

v ,

En = 2n(2α−1)
22n−1∑
k=1

(tnk)−α(2n − tnk)−α
(
BH
tnk
−BH

tnk−1

)
.

It is not hard to show that the sequence

An =
22n−1∑
k=1

(
k

22n

)−α(
1− k

22n

)−α 1

22n

converges to
∫ 1

0 x
−α(1− x)−αdx = B(1− α, 1− α), moreover,

|An − B(1− α, 1− α)| ≤ c12−2n(1−α) (12)
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where c1 is a constant. Indeed, h(x) = x−α(1−x)−α is a decreasing function when x ∈
(
0, 1

2

]
,

then ∫ 1
2

0
h(x)dx =

22n−1−1∑
k=0

∫ k+1

22n

k
22n

h(x)dx <

∫ 1
22n

0
h(x)dx+

22n−1∑
k=1

h

(
k

22n

)
1

22n
.

On the other hand,∫ 1
2

0
h(x)dx =

22n−1∑
k=1

∫ k
22n

k−1

22n

h(x)dx >

22n−1∑
k=1

h

(
k

22n

)
1

22n
.

So

0 <

∫ 1
2

0
h(x)dx−

22n−1∑
k=1

h

(
k

22n

)
1

22n
<

∫ 1
22n

0
h(x)dx ≤

(
1− 1

22n

)−α 2−2n(1−α)

1− α
. (13)

Similarly one can show that

0 <

∫ 1

1
2

h(x)dx−
22n−1∑

k=22n−1+1

h

(
k

22n

)
1

22n
<

(
1− 1

22n

)−α 2−2n(1−α)

1− α
. (14)

Combining (13) and (14), we obtain (12).

By (Mishura et al. 2014, Lemma 2), there exist random variables ξ1 and ξ2 with all finite
moments such that for all n ≥ 1 and k = 1, 2, . . . , 22n∣∣∣∣∣

∫ tnk

tnk−1

(
b(Xu)− b(Xtnk−1

)
)
du

∣∣∣∣∣ ≤ ξ1n
κ2−n(β+1)

and ∣∣∣∣∣
∫ tnk

tnk−1

(
b(Xu)− b(Xtnk−1

)
)
dBH

u

∣∣∣∣∣ ≤ ξ2n
γ+κ2−2nβ,

Then

|Bn| ≤ C−1
5 ξ1n

κ2n(2α−β−2)
22n−1∑
k=1

(tnk)−α(2n − tnk)−α = C−1
5 ξ1n

κ2−nβAn ≤ c2ξ1n
κ2−nβ; (15)

|Dn| ≤ C−1
5 ξ2n

γ+κ2n(2α−1−2β)
22n−1∑
k=1

(tnk)−α(2n − tnk)−α ≤ c2ξ2n
γ+κ2−n(2β−1). (16)

Finally we estimate En. Start by writing

E
[
E2
n

]
= 22n(2α−1)E

22n−1∑
k=1

∫ tnk

tnk−1

(tnk)−α (2n − tnk)−α dBH
s

2  .
According to (Mishura 2008, Corollary 1.9.4), for f ∈ L1/H [0, t] there exist a constant CH > 0
such that

E

[(∫ t

0
f(s)dBH

s

)2
]
≤ CH

(∫ t

0
|f(s)|1/H ds

)2H

.

Hence,

E
[
E2
n

]
≤ c322n(2α−1)

22n−1∑
k=1

∫ tnk

tnk−1

(tnk)−α/H (2n − tnk)−α/H ds

2H

= c322n(H−1)

22n−1∑
k=1

(
k

22n

)−α/H (
1− k

22n

)−α/H 1

22n

2H

.
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As above,

22n−1∑
k=1

(
k

22n

)−α/H (
1− k

22n

)−α/H 1

22n
→ B (1− α/H, 1− α/H) , n→∞,

which implies that E
[
E2
n

]
≤ c422n(H−1). SinceEn is Gaussian, we have E [ |En|p ] ≤ c5(p)2pn(H−1)

for any p ≥ 1. Therefore, for any ν > 1

E

[ ∞∑
n=1

|En|p

nν2pn(H−1)

]
=
∞∑
n=1

E [ |En|p ]

nν2pn(H−1)
≤ c5(p)

∞∑
n=1

n−ν <∞.

Consequently,

ξ3 := sup
n≥1

|En|
nν/p2n(H−1)

<∞

almost surely, moreover, by Fernique’s theorem, all moments of ξ3 are finite. Therefore,

|En| ≤ ξ3n
δ2−n(1−H), (17)

where δ > 0 can be taken arbitrarily small.

Combining (11), (12) and (15)–(17) we obtain

∣∣∣θ̂(3)
n − θ

∣∣∣ ≤ θ |An − B(1− α, 1− α)|+ θ |Bn|+ |Dn|+ |En|
B(1− α, 1− α)

≤ θc12−2n(1−α) + θc2ξ1n
κ2−nβ + c2ξ2n

γ+κ2−n(2β−1) + ξ3n
δ2−n(1−H)

B(1− α, 1− α)
.

Note that 2(1− α) = 3− 2H > 1−H ≥ τ and β > 1/2 > 1−H ≥ τ . Then,∣∣∣θ̂(3)
n − θ

∣∣∣ ≤ ηnκ+γ2−τn,

where η ≤ c6(θ)(1 + ξ1 + ξ2 + ξ3).

3. Non-standard estimators

In the paper Kozachenko et al. (2013) the following non-standard estimator for θ in the
equation (1) was considered:

θ̂
(4)
t =

∫ t
0 a(s,Xs)b

−2(s,Xs)dXs∫ t
0 a

2(s,Xs)b−2(s,Xs)ds
.

According to (Kozachenko et al. 2013, Theorem 4), if the assumptions (I)–(IV), (VI)–(VII)
hold and there exist such β > 1−H and p > 1 that

TH+β−1(log T )p
∫ T

0

∣∣∣(Dβ
0+ϕ)(s)

∣∣∣ ds∫ T
0 ϕ2

sds
→ 0 a. s. as T →∞,

then the estimator θ̂
(4)
T is well-defined and strongly consistent as T →∞.

We define a discretized version of θ̂
(4)
T for the equation

Xt = X0 + θ

∫ t

0
a(Xs)ds+

∫ t

0
b(Xs)dB

H
s . (18)
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Put

θ̂(5)
n :=

∑22n

k=1 a
(
Xtnk−1

)
b−2

(
Xtnk−1

)(
Xtnk
−Xtnk−1

)
∑22n

k=1 a
2
(
Xtnk−1

)
b−2

(
Xtnk−1

)
1

2n

,

ϕ̂n(t) :=

22n−1∑
k=0

ϕ(tnk)I[tnk ,t
n
k+1)(t).

Theorem 2. Suppose that there exist positive constants C1, C3, C5, C6 ρ ∈ (1/H − 1, 1],
β > 1−H, p > 1 such that

(a) |a(x)− a(y)|+ |b(x)− b(y)| ≤ C1 |x− y| for all x, y ∈ R,

(b) C5 ≤ |a(x)| ≤ C6, C5 ≤ |b(x)| ≤ C6 for all x ∈ R,

(c) |b′(x)− b′(y)| ≤ C3 |x− y|ρ for all x, y ∈ R,

(d)
2n(H+β)np

∫ 2n

0

∣∣∣(Dβ0+ϕ̂n)(s)
∣∣∣ds∑22n

k=1 ϕ
2(tnk−1)

→ 0 a. s. as n→∞.

Then with probability one, θ̂
(5)
n → θ, n→∞.

Proof. It follows from (18) that

Xtnk
−Xtnk−1

= θ

∫ tnk

tnk−1

a(Xv)dv +

∫ tnk

tnk−1

b(Xv)dB
H
v

= θ

∫ tnk

tnk−1

a
(
Xtnk−1

)
dv + θ

∫ tnk

tnk−1

(
a(Xv)− a

(
Xtnk−1

))
dv

+

∫ tnk

tnk−1

(
b(Xv)− b

(
Xtnk−1

))
dBH

v +

∫ tnk

tnk−1

b
(
Xtnk−1

)
dBH

v .

(19)

Then

θ̂(5)
n = θ +

θBn + En +Dn

An
,

where

An = 2−n
22n∑
k=1

ϕ2(tnk−1),

Bn =
22n∑
k=1

a
(
Xtnk−1

)
b−2

(
Xtnk−1

)∫ tnk

tnk−1

(
a(Xv)− a

(
Xtnk−1

))
dv,

En =

22n∑
k=1

a
(
Xtnk−1

)
b−2

(
Xtnk−1

)∫ tnk

tnk−1

(
b(Xv)− b

(
Xtnk−1

))
dBH

v ,

Dn =

22n∑
k=1

ϕ(tnk−1)
(
BH
tnk
−BH

tnk−1

)
.

Dn can be represented in the form

Dn =

∫ 2n

0
ϕ̂n(s)dBH

s .

Applying (Kozachenko et al. 2013, Theorem 3) we can estimate

sup
0≤t≤2n

∣∣∣(D1−β
2n−B

H
2n−

)
(t)
∣∣∣ ≤ ξ(p)2n(H+β−1)np(log 2)p.
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Therefore

|Dn| ≤ sup
0≤t≤2n

∣∣∣(D1−β
2n−B

H
2n−

)
(s)
∣∣∣ · ∫ 2n

0

∣∣∣(Dβ
0+ϕ̂n

)
(s)
∣∣∣ ds

≤ ξ(p)(log 2)p2n(H+β−1)np
∫ 2n

0

∣∣∣(Dβ
0+ϕ̂n

)
(s)
∣∣∣ ds.

Then ∣∣∣∣Dn

An

∣∣∣∣ ≤ ξ(p)(log 2)p
2n(H+β)np

∫ 2n

0

∣∣∣(Dβ
0+ϕ̂n

)
(s)
∣∣∣ ds∑22n

k=1 ϕ
2(tnk−1)

→ 0 a. s. as n→∞.

Using the condition (b) we can write

∣∣∣∣BnAn
∣∣∣∣ ≤ C−1

6 2−n
22n∑
k=1

∫ tnk

tnk−1

∣∣∣a(Xv)− a
(
Xtnk−1

)∣∣∣ dv,
∣∣∣∣EnAn

∣∣∣∣ ≤ C−1
6 2−n

22n∑
k=1

∫ tnk

tnk−1

∣∣∣b(Xv)− b
(
Xtnk−1

)∣∣∣ dBH
v .

It now follows from (Mishura et al. 2014, Lemma 2) that
∣∣∣BnAn ∣∣∣→ 0,

∣∣∣EnAn ∣∣∣→ 0 as n→∞.

Example 1. Consider the model (8):

dXt = θb(Xt)dt+ b(Xt)dB
H
t .

Suppose that there exist positive constants C1, C3, C5, C6 ρ ∈ (1/H − 1, 1], β > 1−H, p > 1
such that

(a) |b(x)− b(y)| ≤ C1 |x− y| for all x, y ∈ R,

(b) C5 ≤ |b(x)| ≤ C6 for all x ∈ R,

(c) |b′(x)− b′(y)| ≤ C3 |x− y|ρ for all x, y ∈ R.

In this case the non-standard estimator θ̂
(5)
n has the form

θ̂(6)
n = 2−n

22n∑
k=1

b−1
(
Xtnk−1

)(
Xtnk
−Xtnk−1

)
, (20)

ϕ̂n(t) = 1. Then
(
Dβ

0+ϕ̂n

)
(s) = 1

Γ(1−β) · s
−β and

2n(H+β)np
∫ 2n

0

∣∣∣(Dβ
0+ϕ̂n

)
(s)
∣∣∣ ds∑22n

k=1 ϕ
2(tnk−1)

=
np

Γ(2− β) · 2n(1−H)
→ 0, n→∞.

Consequently the conditions of Theorem 2 are satisfied and the estimator (20) is strongly
consistent.

4. Simulations

In this section we illustrate quality of the estimators with the help of simulation experiments.
We consider the equation (18) with X0 = 1, θ = 1. For each set of parameters, we simulate
100 trajectories of the solution. In the case a = b we compute the average relative error
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Table 1: a(x) = b(x) = sinx+ 2.

n
H = 0.6 H = 0.7 H = 0.8 H = 0.9

δ
(3)
n δ

(5)
n δ

(3)
n δ

(5)
n δ

(3)
n δ

(5)
n δ

(3)
n δ

(5)
n

3 0.0929 0.0967 0.0935 0.1015 0.0926 0.0956 0.1144 0.0935

4 0.0512 0.0512 0.0510 0.0509 0.0497 0.0471 0.0522 0.0495

5 0.0262 0.0258 0.0264 0.0258 0.0251 0.0244 0.0287 0.0261

6 0.0122 0.0121 0.0120 0.0120 0.0123 0.0127 0.0125 0.0107

Table 2: a(x) = b(x) = cosx+ 2.

n
H = 0.6 H = 0.7 H = 0.8 H = 0.9

δ
(3)
n δ

(5)
n δ

(3)
n δ

(5)
n δ

(3)
n δ

(5)
n δ

(3)
n δ

(5)
n

3 0.0898 0.0891 0.1006 0.0964 0.1021 0.0971 0.1088 0.0935

4 0.0567 0.0568 0.0501 0.0474 0.0544 0.0517 0.0611 0.0521

5 0.0228 0.0227 0.0276 0.0277 0.0255 0.0245 0.0280 0.0244

6 0.0139 0.0138 0.0122 0.0123 0.0130 0.0133 0.0140 0.0137

Table 3: a(x) = b(x) = 1
1+x2

.

n
H = 0.6 H = 0.7 H = 0.8 H = 0.9

δ
(3)
n δ

(5)
n δ

(3)
n δ

(5)
n δ

(3)
n δ

(5)
n δ

(3)
n δ

(5)
n

3 0.0969 0.0950 0.1027 0.1003 0.1079 0.0963 0.1198 0.0922

4 0.0467 0.0457 0.0473 0.0477 0.0485 0.0444 0.0489 0.0437

5 0.0257 0.0259 0.0289 0.0282 0.0235 0.0245 0.0307 0.0263

6 0.0123 0.0123 0.0129 0.0128 0.0120 0.0116 0.0130 0.0114

Table 4: a(x) = b(x) = 1.

n
H = 0.6 H = 0.7 H = 0.8 H = 0.9

δ
(3)
n δ

(5)
n δ

(3)
n δ

(5)
n δ

(3)
n δ

(5)
n δ

(3)
n δ

(5)
n

3 0.0947 0.0925 0.1037 0.0998 0.1129 0.1106 0.1177 0.1052

4 0.0498 0.0513 0.0510 0.0504 0.0556 0.0522 0.0578 0.0504

5 0.0275 0.0271 0.0248 0.0255 0.0262 0.0260 0.0248 0.0236

6 0.0124 0.0125 0.0116 0.0118 0.0137 0.0138 0.0125 0.0120

δ
(i)
n =

∣∣∣θ̂(i)
n − θ

∣∣∣ /θ for each of estimators θ̂
(i)
n , i = 3, 5 (Tables 1–4). In the case a 6= b we

compute the average relative error only for the estimator θ̂
(5)
n (Table 5).

In the case of equal coefficients we see that the estimators θ̂
(3)
n and θ̂

(5)
n have similar per-

formance. The advantage of θ̂
(5)
n is its independence of the parameter H (which might be

unknown). But in the case of known H the estimator θ̂
(3)
n is preferable because it is com-
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Table 5: a(x) = sinx+ 2, b(x) = cosx+ 2.

n
H = 0.6 H = 0.7 H = 0.8 H = 0.9

δ
(5)
n δ

(5)
n δ

(5)
n δ

(5)
n

3 0.0756 0.0792 0.0757 0.0751

4 0.0411 0.0361 0.0453 0.0459

5 0.0200 0.0199 0.0159 0.0200

6 0.0099 0.0113 0.0094 0.0100

putable faster.

Also the simulation results show that the rate on convergence probably does not depend on
H. Moreover, it seems that it is around 2−n, so the bound in Theorem 1 is not optimal.
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