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Abstract

In this paper, we consider the two-sample problem for univariate and multivariate
functional data. To solve this problem, we use tool of characteristic function and a basis
function representation of functional data. We construct test statistics for conformity of
distributions based on a weighted distance between characteristic functions of random
vectors obtained in basis representation. Different weight functions result in different
test statistics, whose distributions are approximated by permutation method. Testing
procedures are implemented in the R program and the code is available. Simulation
study shows good finite sample properties of proposed methods, while real data example
illustrates the application of them.

Keywords: characteristic function, energy statistic, univariate and multivariate functional
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1. Introduction

Over the last three decades, real-time measurement instruments and data storage computer
resources have significantly developed. This gives possibility to observe and save large amount
of data as results of random experiments. In particular, very dense continuous-time monitor-
ing clinical diagnostics or stock market information or meteorological information are com-
mon nowadays. Such data can be seen as functions of time or space. In Functional Data
Analysis (FDA), they are in fact treated in such a way, i.e., as samples of random func-
tions. Functional data can be univariate, when we observe one process (e.g., temperature),
or multivariate, when we consider multiple processes simultaneously (e.g., temperature and
precipitation). They can also be dense or sparse. FDA deals with the statistical description
and modelization of samples of this type. Most of statistical methods of standard statistic
have their counterparts for functional data. For details, we refer to the following monographs
and the references given therein: Ferraty and Vieu (2006); Horváth and Kokoszka (2012);
Ramsay and Silverman (2002, 2005); Zhang (2013). Many FDA methods are implemented in
the R program (R Core Team 2019). Perhaps the most well known and the biggest packages
for FDA are the fda (Ramsay, Wickham, Graves, and Hooker 2018) and fda.usc (Febrero-
Bande and Oviedo de la Fuente 2012) packages. For review of R packages for FDA, see the
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supplementary materials to the paper Górecki and Smaga (2019).

The two-sample test for conformity of distributions is one of the statistical methods that have
been generalized for functional data. However, it is rarely considered in the literature, and
it is not so popular as the analysis of variance problem for functional data (see, for example,
Górecki and Smaga 2017, 2019; Zhang 2013). The main two papers considering the two-sample
problem for functional data are Hall and Van Keilegom (2007) and Pomann, Staicu, and Ghosh
(2016). Nevertheless, we propose other approach to solve the problem than those in these
papers, so we do not consider them in details. The present paper considers methods based
on characteristic functions of random processes and their basis function representation. This
representation can be seen as dimension reduction method, which represents functional data as
random vectors of much less dimension than discrete functional data. The two-sample tests for
multivariate data using characteristic functions have been already considered in the literature.
Perhaps the most famous one is based on the so-called energy statistic proposed by Székely
and Rizzo (2013). This test statistic is in fact an estimator of weighted distance between
characteristic functions of two random vectors with certain weight function. Other weight
functions can be also considered. Recently, Chen, Meintanis, and Zhu (2019) investigated this
problem and proposed to use a density of some random distribution as the weight function.
Their method has similar theoretical properties to the energy statistic. Moreover, it gives the
opportunity to use different weight functions, i.e., different densities. For instance, Chen et al.
(2019) used densities of spherical stable distributions, which greatly simplified test statistic. In
this paper, we extend these methods for univariate and multivariate functional data. First, we
express the two-sample problem for these data in terms of characteristic functions of random
processes. Then using the basis function representation, we reduce this problem to the two-
sample problem for random vectors. Finally, we propose permutation tests constructed based
on results of Székely and Rizzo (2013) and Chen et al. (2019). Simulation study and real
data example show that the new tests maintain the type I error level very well and have
satisfactory power. However, there is not one test, which performs best. Nevertheless, the
tests using density weight function are usually more powerful than test using energy statistic.

The remainder of this paper is as follows. In Section 2, we formulate the two-sample problem
for univariate and multivariate functional data and present its solution using characteristic
functions, basis function representation and methods for two-sample problem for random
vectors. Implementation of the new tests is also discussed there. Section 3 includes the
Monte Carlo study on the finite sample behavior of proposed methods in terms of size control
and power. In Section 4, a real data illustration is given. Finally, the conclusions are presented
in Section 5. The supplementary materials to this paper contain the code of R programming
language (R Core Team 2019) for numerical experiments.

2. Two-sample problem for functional data

In this section, we present the two-sample problem for functional data and its alternative
form in the framework of characteristic functions. Next using a basis function representation
of functional data, we consider a weighted distance between characteristic functions being a
base to construct test statistics. Different weight functions are also discussed. The permuta-
tion tests for two-sample problem for functional data are constructed based on estimators of
weighted distances. Finally, we discuss the implementation of proposed testing procedures.

2.1. Hypotheses and base for test statistic

Let Lp2[a, b], where a, b ∈ R and a < b, be the Hilbert space of p-dimensional vectors of
square integrable functions defined on the interval [a, b] and endowed with the following inner
product:

〈f ,g〉p =

∫ b

a
f>(t)g(t)dt



Austrian Journal of Statistics 55

for f ,g ∈ Lp2[a, b]. We assume that X1 and X2 are two independent random processes belong-
ing to the Hilbert space Lp2[a, b], and we wish to test the following null hypothesis:

H0 : X1
d
= X2,

where
d
= stands for equality in distribution. To solve this problem, we would like to use

the fact that the null hypothesis H0 holds if and only if the characteristic functions of the
distributions of processes X1 and X2 are equal. By (Bosq 2000, p. 37), the characteristic
functions of X1 and X2 are as follows

ϕXj (u) = E(exp(i〈u,Xj〉p))

for j = 1, 2, u ∈ Lp2[a, b] and i2 = −1. Note that we suppose that for all u ∈ Lp2[a, b] the
integrals 〈u,Xj〉p converge for almost all realizations of Xj , j = 1, 2.

To effectively deal in practice with the characteristic function given above, we use the basis
function representation of random processes X1 and X2. Let {φkl}∞l=1 be basis in L1

2[a, b],
k = 1, . . . , p, and Xj = (Xj1, . . . , Xjp)

> for j = 1, 2. Then

Xjk(t) =
∞∑
l=1

αjklφkl(t), t ∈ [a, b],

where αjkl are random variables with finite variance, j = 1, 2, k = 1, . . . , p. However, it
is not possible to use such representation in practice. Fortunately, Ramsay and Silverman
(2005) noticed that only a number of the first coefficients in this representation is usually the
largest and the most practically important. For this reason, we use the finite representation
as follows:

Xjk(t) =

Bk∑
l=1

αjklφkl(t), t ∈ [a, b] (1)

assuming that the processes Xjk can be represented by a finite (appropriately large) number
Bk of basis functions. This representation will be called the basis function representation of
random process. In the following, we will use the matrix notation of basis function represen-
tation given in Equation (1). Namely

Xj(t) = Φ(t)αj , t ∈ [a, b],

where αj = (αj11, . . . , αj1B1 , . . . , αjp1, . . . , αjpBp)
> ∈ RB are random vectors j = 1, 2, B =

B1 + · · ·+Bp, Φ(t) = diag
(
φ>1 (t), . . . ,φ>p (t)

)
and φ>k (t) = (φk1(t), . . . , φkBk(t)), k = 1, . . . , p.

Some practical remarks about the basis function representation are as follows (see, for ex-
ample, Krzyśko and Waszak 2013). The coefficients αjkl are estimated for each coordinate
separately using the least squares method or the regularized maximum likelihood method
(Matsui, Araki, and Konishi 2008) or the roughness penalty approach (Ramsay and Silver-
man 2005). The values of Bk may be selected depending on the aim of the research, for
instance, for the best fit, the Bayesian information criterion should perhaps be used (Shmueli
2010). Note that these values determine the degree of smoothness. Namely, small value of Bk
causes more smoothness. In practice, it is usually not crucial, which basis is used. However,
the Fourier basis is usually suggested for periodic or nearly periodic data, while the B-spline
basis is typically used for non-periodic locally smooth data (Horváth and Kokoszka 2012).

Let us return to the characteristic functions of random processes X1 and X2. Assuming that
the function u(t) = Φ(t)β, where β ∈ RB is a constant vector, we have

〈u,Xj〉p =

∫ b

a
u>(t)Xj(t)dt = β>

∫ b

a
Φ>(t)Φ(t)dtαj = β>JΦαj ,



56 Two-sample Tests for Functional Data Using Characteristic Functions

where JΦ = diag(Jφ1
, . . . ,Jφp

) and Jφk
=
∫ b
a φk(t)φ

>
k (t)dt is the Bk × Bk cross product

matrix, j = 1, 2, k = 1, . . . , p. Then, we obtain

ϕXj (u) = E(exp(iβ>JΦαj) = ϕαj (γ), j = 1, 2,

where γ = JΦβ, which means that the characteristic functions of the random processes X1

and X2 are the characteristic functions of the random vectors α1 and α2 respectively.

Thus, to test the null hypothesis H0, we propose to use methods based on the following
distance between characteristic functions for random vectors:

Dw =

∫
RB
|ϕα1(γ)− ϕα2(γ)|2w(γ)dγ, (2)

where |z| is the modulus of z ∈ C, and w > 0 (almost everywhere) is a weight function. The
weight function can be chosen in many ways. In the next section, we discuss two approaches
considered in the literature.

2.2. Weight functions

Well known statistic of the form given in Equation (2) is the two-sample energy statistic of
Székely and Rizzo (2013), which uses the weight function w = e, where

e(γ) =
1

CB‖γ‖B+1
, CB =

π(B+1)/2

Γ((B + 1)/2)

and ‖ · ‖ is the standard Euclidean norm in the space RB. Then

De = E (2‖α1 −α2‖ − ‖α1 −α1•‖ − ‖α2 −α2•‖) ,

where αj•
d
= αj , j = 1, 2. Székely and Rizzo (2013) proved that De = 0 if and only if

α1
d
= α2, and it is otherwise strictly positive. This implies that testing the null hypothesis

H0 is equivalent to testing HDe0 : De = 0. The test for this hypothesis is constructed in the
next section.

On the other hand, Chen et al. (2019) proposed to use a density of some random variable
as the weight function. Let f be a density (positive with probability 1) and let ϕ be a
corresponding characteristic function of a B × 1 random vector. Then for w = f , we have

Df = E (Re{ϕ(α1 −α1•) + ϕ(α2 −α2•)− 2ϕ(α1 −α2)}) ,

where Re(z) denotes the real part of z ∈ C. Furthermore, Chen et al. (2019) showed that

Df = 0 if and only if α1
d
= α2, and it is otherwise strictly positive. Thus, similarly to the

energy statistic, we can test H0 by testing H
Df
0 : Df = 0.

We can use different choices of the density f . Chen et al. (2019) considered the densities fα
of spherical stable distributions with exponents α ∈ (0, 2], which greatly simplify Df . The
characteristic functions of these distributions are as follows:

ϕα(γ) = e−‖γ‖
α
, γ ∈ RB.

For α = 1 and α = 2, we have the multivariate standard Cauchy and normal distributions
respectively. Taking f = fα, we obtain

Dfα = E
(
e−‖α1−α1•‖α + e−‖α2−α2•‖α − 2e−‖α1−α2‖α

)
,

which we will use.
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2.3. Estimation and permutation test

In practice, we first have to estimate De and Dfα based on the data. Let X11, . . . ,X1n1 and
X21, . . . ,X2n2 be independent samples for random processes X1 and X2 respectively. We
represent these observations in basis as presented in Section 2.1, i.e., Xji(t) = Φ(t)αji for
j = 1, 2, i = 1, . . . , nj . Then, the natural estimators of De and Dfα are as follows

D̂e =
2

n1n2

n1∑
i=1

n2∑
l=1

‖α1i −α2l‖ −
1

n21

n1∑
i=1

n1∑
l=1

‖α1i −α1l‖ −
1

n22

n2∑
i=1

n2∑
l=1

‖α2i −α2l‖,

D̂fα =
1

n21

n1∑
i=1

n1∑
l=1

e−‖α1i−α1l‖α +
1

n22

n2∑
i=1

n2∑
l=1

e−‖α2i−α2l‖α − 2

n1n2

n1∑
i=1

n2∑
l=1

e−‖α1i−α2l‖α

respectively.

For testing HDe0 : De = 0 and H
Dfα
0 : Dfα = 0, we propose permutation tests based on test

statistics D̂e and D̂fα respectively. We reject the null hypotheses for large values of these test

statistics. The permutation test based on test statistic D̂ ∈ {D̂e, D̂fα} has the following steps:

1. Compute D̂ for original data αji, j = 1, 2, i = 1, . . . , nj .

2. Create a permutation sample from the given data in the following way: From all obser-
vations αji, j = 1, 2, i = 1, . . . , nj , select randomly without replacement n1 observations
for the first new sample, and the remainder of the observations creates the second sam-
ple.

3. Repeat step 2 a large number of times, e.g., P = 1,000, and obtain P independent
permutation samples αmji , j = 1, 2, i = 1, . . . , nj , m = 1, . . . , P .

4. For each permutation sample, compute the value of the test statistic D̂. Denote them
by D̂m, m = 1, . . . , P .

5. The final p-value of the permutation test is defined by P−1
∑P

m=1 I(D̂m > D̂), where
I(A) denotes the indicator function on the set A (takes value 1 if A is true and 0
otherwise).

2.4. Implementation

The permutation two-sample tests for functional data proposed above, the simulation experi-
ments of Section 3 as well as real data example of Section 4 were implemented in the R program
(R Core Team 2019). The code is available in the supplementary materials. To obtain a ba-
sis function representation of functional data, the following functions from the fda package
(Ramsay et al. 2018) were used: create.fourier.basis(), create.bspline.basis() and
smooth.basis(). The implementation of permutation test based on two-sample energy statis-
tic D̂e in the function eqdist.etest() available in the energy package (Rizzo and Székely
2019) was applied. The permutation tests based on test statistics D̂fα were implemented
by the authors using the Rcpp package (Eddelbuettel and François 2011; Eddelbuettel 2013;
Eddelbuettel and Balamuta 2017), which significantly improves the execution time.

3. Simulation studies

In this section, we describe the simulation experiments and their results, in which we study the
finite sample properties of the tests proposed in Section 2. Namely, we consider the empirical
size and power of the permutation tests based on test statistics D̂e, D̂f0.1 , D̂f0.5 , D̂f1 , D̂f1.5
and D̂f2 .



58 Two-sample Tests for Functional Data Using Characteristic Functions

3.1. Experimental setup

To calculate the values of test statistics, we used the Fourier and B-spline bases with Bk = 5
for k = 1, . . . , p. The coefficients of basis function representation were estimated by the
least squares method. We used 1, 000 simulation and permutation samples to estimate the
empirical sizes and powers and p-values respectively. For simplicity, the significance level was
set to 5%.

Let us now describe the generation of the simulation data. We considered both univariate
(p = 1) and multivariate (p = 3) cases. In the case p = 1, we set (n1, n2) ∈ {(15, 15), (15, 20)},
so the balanced and unbalanced designs were taken into account. For p = 3, n1 = n2 = 25
were considered.

For p = 1, we set X1 = Y1 and X2 = (1 + δ)Y2, where Y1 and Y2 were independent realization
of process Z and δ = 0, 0.4, 0.8, 1.2, 1.6, 2. We considered separately the Wiener, Ornstein-
Uhlenbeck processes and Brownian bridge as Z. For δ = 0 (resp. δ > 0), the null (resp.
alternative) hypothesis is true, and hence we studied the empirical size (resp. power) in this
case. On the other hand, in the case p = 3, X1k = Y1k for k = 1, 2, 3, and X21 = Y21 and
X2k = (1 + δ)Y2k for k = 2, 3, where Yjk, j = 1, 2, k = 1, 2, 3 are independent realization of
process Z and δ was the same as above.

We set [a, b] = [0, 1]. The discrete functional data for the above processes were generated
in an equally spaced grid of m design time points in the interval [0, 1]. Namely, the Wiener
and Ornstein-Uhlenbeck processes were observed in points t1 = 0, . . . , tm+1 = 1. However,
the finale observations used were those for m points t2, . . . , tm+1, since we removed the first
zero value of these processes for t1. On the other hand, the Brownian bridge was observed
in points t1 = 0, . . . , tm+2 = 1, while the finale observations used were those for m points
t2, . . . , tm+1, i.e., we removed the first and the last zero value of Brownian bridge for t1 and
tm+2. We set m = 25, 50 for p = 1 and m = 25 for p = 3.

For p = 3, additionally to the above independent case (the coordinates of both processes X1

and X2 are generated independently), we consider the dependent case described as follows. To
all generated observations of processes X1 and X2, we add a kind of random errors eji, j = 1, 2,
i = 1, . . . , nj , whose coordinates are dependent random processes. Let Nji ∼ N9(09,Σ) be
independent random vectors, where 0a is the a×1 vector of zeros, Σ = σ

(
(1− ρ)I9 + ρ191

>
9

)
with σ = 0.2, ρ = 0.1, Ia is the a × a identity matrix, and 1a is the a × 1 vector of ones.
Then eji(t) = Φ(t)Nji, where t ∈ [0, 1], the 3 × 9 matrix Φ is as in Section 2 and contains
the Fourier basis functions with Bk = 3 for k = 1, 2, 3.

3.2. Simulation results

Let us discuss the simulation results, which are presented in Tables 1-2 and Table 3 for
univariate and multivariate cases respectively.

First of all, we can observe that the empirical sizes (δ = 0) of all permutation tests are very
close to the nominal level of significance 5% in all scenarios considered. Thus all tests maintain
the type I error level very well. This follows from that the distributions of both processes X1

and X2 under the null hypothesis are the same, and hence the permutation tests (using all
permutations) should be exact, i.e., the type I error level is equal to the significance level.

Now we consider the power (δ > 0). The empirical powers of all tests increase with the
increase of the number of observations (compare, for example, the results in Tables 1 and 2).
They also increase, when δ increases, i.e., “we are moving away from the null hypothesis”.
The empirical power of all tests seems to not depend on the number of design time points,
at which the functional data are observed (Tables 1-2, m = 25, 50). We also note that under
dependent scenario, the empirical power of all tests is less than this for independent one, but
this is not surprising as in dependent case the observations of original processes (Wiener, etc.)
were contaminated by random noise.

In univariate case (Tables 1-2), the D̂fα tests are much more powerful than the D̂e test. We
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Table 1: Empirical sizes (δ = 0) and powers (δ > 0) (as percentages) of all tests obtained
for p = 1 and n1 = n2 = 15. Column B denotes basis used (F – Fourier, B – B-spline).

m = 25 m = 50

B δ D̂e D̂f0.1 D̂f0.5 D̂f1 D̂f1.5 D̂f2 D̂e D̂f0.1 D̂f0.5 D̂f1 D̂f1.5 D̂f2

Wiener
F 0.0 4.8 5.2 4.6 4.6 5.3 5.3 4.7 5.5 4.7 4.8 5.1 5.0

0.4 7.0 14.2 14.1 13.2 12.6 12.8 7.4 14.6 14.1 13.8 14.3 14.9
0.8 17.1 43.8 42.7 43.7 44.2 43.1 17.9 44.2 44.6 44.1 43.1 42.6
1.2 36.3 74.2 75.2 76.2 76.0 74.9 36.2 75.3 75.8 75.2 74.5 72.8
1.6 58.1 92.8 92.6 92.6 92.6 92.4 58.8 93.8 93.8 94.4 94.1 93.7
2.0 77.6 99.1 99.2 99.5 99.4 99.4 79.6 98.1 98.5 98.5 98.2 97.8

B 0.0 5.3 5.1 4.8 4.7 4.7 5.1 4.8 4.4 4.2 4.0 4.4 4.3
0.4 8.1 18.3 20.8 24.8 24.6 21.1 9.2 18.5 21.2 23.0 22.7 21.3
0.8 24.6 60.7 66.3 71.5 66.2 59.7 26.3 60.4 65.8 72.9 67.1 58.8
1.2 56.8 90.8 93.2 94.5 90.4 83.5 57.9 91.5 93.3 94.0 90.9 84.8
1.6 84.1 99.1 99.7 99.8 97.7 94.0 84.5 99.0 99.3 99.2 96.9 93.9
2.0 96.2 100.0 100.0 100.0 99.5 97.5 95.5 99.7 99.8 99.9 99.2 97.0

Ornstein-Uhlenbeck
F 0.0 4.7 5.0 4.2 4.7 5.0 4.8 4.6 5.1 4.7 4.9 4.8 4.7

0.4 7.3 15.1 15.0 13.9 13.0 12.4 7.5 15.8 15.0 14.4 13.8 14.6
0.8 18.7 47.2 46.9 46.4 45.4 45.5 19.3 48.4 47.3 46.8 45.1 42.9
1.2 39.5 79.5 80.0 79.6 79.5 78.9 40.0 80.7 80.8 79.8 79.1 76.7
1.6 65.1 95.1 95.4 95.5 95.2 94.1 64.9 95.6 95.2 95.4 95.1 95.4
2.0 83.4 99.8 99.7 99.6 99.5 99.6 85.0 98.9 99.0 98.9 99.2 98.9

B 0.0 4.9 4.9 4.9 5.1 4.4 4.4 4.7 4.8 4.7 4.4 4.6 4.8
0.4 8.6 18.8 21.8 26.8 27.1 24.1 9.3 19.2 21.2 24.7 24.7 22.8
0.8 27.4 64.2 69.2 74.7 71.2 65.0 28.2 63.4 69.3 73.7 71.6 62.6
1.2 61.3 93.3 94.8 95.7 92.8 86.8 62.5 94.2 95.6 96.0 93.1 87.9
1.6 87.7 99.5 99.9 99.8 98.8 96.1 89.1 99.5 99.4 99.6 98.5 96.1
2.0 98.2 100.0 100.0 100.0 99.7 98.4 97.8 99.9 99.9 99.9 99.6 98.2

Brownian bridge
F 0.0 4.0 4.5 4.4 4.7 4.0 4.1 3.9 5.2 5.1 4.3 4.5 3.9

0.4 7.9 17.1 16.0 14.9 12.4 9.7 8.9 18.9 17.8 15.5 12.7 10.6
0.8 22.1 55.3 53.4 48.6 40.7 34.8 24.5 55.0 53.8 49.6 42.7 37.6
1.2 48.5 87.2 86.5 84.9 81.8 76.6 51.7 88.5 86.7 85.1 81.1 75.0
1.6 77.8 98.4 97.7 97.0 95.7 94.1 78.5 98.3 98.3 97.5 96.7 94.6
2.0 92.1 99.9 99.8 99.7 99.7 99.6 92.7 99.9 99.9 99.9 99.8 99.8

B 0.0 5.1 5.5 5.6 5.6 5.5 5.0 4.6 4.7 5.1 4.7 4.9 5.3
0.4 10.0 18.6 20.9 24.9 26.8 25.4 9.5 20.8 22.2 25.6 27.2 27.2
0.8 25.0 61.4 65.6 71.0 70.1 67.6 28.6 61.0 64.2 72.2 71.3 68.1
1.2 58.7 90.5 92.9 95.1 94.1 91.6 58.6 92.2 94.3 95.2 94.3 92.2
1.6 83.6 99.2 99.5 99.5 99.3 98.2 85.5 99.3 99.4 99.7 99.3 98.6
2.0 95.6 99.9 99.9 99.9 99.8 99.6 96.6 99.9 100.0 100.0 99.9 99.7

observe very similar behavior in the multivariate case (Table 3), but for some cases with
B-spline basis in independent scenario, the empirical power of the D̂e test is greater than this
of the worst (in term of power) of the D̂fα tests. The power comparison for the D̂fα tests

with respect to α is not easy. There is not one D̂fα test, which has the greatest power in all

cases. In one-dimensional case with Fourier basis, the empirical powers of the D̂fα tests are
usually similar (under Wiener and Ornstein-Uhlenbeck processes) or decrease with increase of
α (under Brownian bridge). On the other hand, in multi-dimensional and independent case
with Fourier basis, the empirical powers of the D̂fα tests increase with increase of α. When
using B-spline basis or in dependent multivariate case, the situation changes. In these cases,
the D̂fα tests with α = 1, 1.5, 0.5 usually overcome the remaining tests.
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Table 2: Empirical sizes (δ = 0) and powers (δ > 0) (as percentages) of all tests obtained
for p = 1, n1 = 15 and n2 = 20. Column B denotes basis used (F – Fourier, B – B-spline).

m = 25 m = 50

B δ D̂e D̂f0.1 D̂f0.5 D̂f1 D̂f1.5 D̂f2 D̂e D̂f0.1 D̂f0.5 D̂f1 D̂f1.5 D̂f2

Wiener
F 0.0 5.4 6.0 5.6 6.2 6.1 5.4 5.7 5.5 5.7 5.5 5.5 5.5

0.4 7.3 15.5 15.8 15.6 16.0 15.8 6.9 14.5 13.9 14.4 14.3 13.5
0.8 16.2 47.3 47.6 47.5 48.2 47.7 14.6 47.5 47.9 48.6 48.4 47.3
1.2 35.9 81.9 82.0 83.1 82.4 80.9 36.0 81.3 81.8 81.1 81.6 80.7
1.6 60.8 96.0 95.7 96.8 96.7 96.3 60.0 95.5 95.8 96.7 96.5 96.3
2.0 79.9 99.6 99.6 99.8 99.8 99.6 79.9 99.2 99.2 99.2 99.3 99.2

B 0.0 5.1 5.5 4.9 5.4 5.9 6.0 4.9 5.3 5.1 5.3 5.5 5.4
0.4 8.9 20.2 23.4 29.4 29.4 27.3 8.0 19.1 21.9 26.8 26.5 24.7
0.8 25.4 68.5 75.6 80.8 75.6 70.1 25.9 65.9 73.1 78.9 73.9 66.9
1.2 59.7 94.4 96.7 97.4 95.0 90.3 57.2 93.4 95.7 97.1 95.1 89.7
1.6 86.7 99.8 99.8 99.8 98.9 97.5 85.8 99.6 100.0 100.0 99.3 97.9
2.0 97.8 99.9 99.9 99.9 99.7 99.0 96.8 100.0 100.0 100.0 100.0 99.3

Ornstein-Uhlenbeck
F 0.0 5.3 5.5 5.4 5.8 5.6 4.8 5.7 5.5 5.5 5.6 5.4 5.6

0.4 8.0 16.4 16.8 15.9 15.0 14.6 7.3 15.3 14.4 14.6 13.9 13.2
0.8 17.9 52.0 51.8 50.8 50.4 49.8 15.9 52.3 50.8 51.0 50.5 48.9
1.2 41.2 86.3 86.7 86.3 85.2 84.9 39.9 85.7 85.7 85.3 85.1 83.4
1.6 66.3 97.8 97.9 97.7 97.9 97.7 66.6 97.1 97.1 97.4 97.5 97.2
2.0 85.0 99.9 99.9 99.9 99.9 99.9 85.7 99.5 99.7 99.6 99.5 99.5

B 0.0 4.9 5.0 5.1 5.5 5.7 5.5 5.2 4.3 4.7 4.2 5.1 5.6
0.4 8.5 21.4 24.3 31.1 32.4 29.4 8.4 19.5 22.0 26.1 27.3 25.9
0.8 28.1 72.4 79.0 83.3 79.6 73.5 27.5 69.0 73.7 80.0 77.2 69.8
1.2 66.5 96.0 97.1 97.8 96.9 93.2 63.2 95.1 96.3 97.8 96.1 92.5
1.6 89.8 99.9 99.9 99.9 99.3 98.5 89.2 99.8 99.8 99.8 99.1 98.1
2.0 98.6 99.9 99.9 100.0 99.9 99.6 98.3 100.0 100.0 100.0 100.0 99.4

Brownian bridge
F 0.0 5.9 6.2 5.5 5.5 5.4 5.6 4.4 4.5 4.5 4.4 4.6 4.0

0.4 7.6 18.0 17.1 14.5 11.2 8.7 6.7 16.8 15.9 12.9 10.0 7.6
0.8 20.3 59.3 56.0 49.0 42.2 34.2 19.1 58.5 56.0 50.9 43.5 34.9
1.2 46.3 92.4 91.7 87.6 84.0 78.5 47.2 92.9 91.0 87.5 84.1 78.3
1.6 78.2 99.3 99.3 98.8 98.5 97.4 77.7 99.1 98.9 98.8 98.4 97.4
2.0 94.5 100.0 100.0 100.0 100.0 100.0 93.9 99.8 99.9 99.9 99.7 99.6

B 0.0 5.6 5.6 5.7 6.1 6.5 6.6 5.5 4.8 5.0 5.0 4.7 4.4
0.4 9.4 20.7 22.0 25.9 29.1 27.7 8.2 17.6 20.0 25.1 27.2 26.1
0.8 23.5 63.9 69.0 77.0 76.6 74.6 23.7 65.7 70.6 77.6 78.1 75.2
1.2 57.1 94.0 95.7 97.2 97.1 95.7 58.0 94.9 96.1 97.5 96.5 95.4
1.6 86.6 99.5 99.8 100.0 99.8 99.3 85.5 99.5 99.5 99.8 99.5 99.0
2.0 97.4 100.0 100.0 100.0 100.0 99.9 97.5 100.0 100.0 100.0 100.0 99.8

4. Real data example

In this section, we illustrate the practical use of the permutation tests proposed in Section 2.
For this purpose, we consider the Berkeley Growth Study data (Ramsay and Silverman 2002,
2005; Tuddenham and Snyder 1954). The data are available in the data set growth contained
in the R package fda (Ramsay et al. 2018). This data set contains the heights in centimeters
of 39 boys and 54 girls measured at a set of 31 ages from age 1 to 18. The ages are not equally
spaced; there are four measurements while the child is one year old, annual measurements
from two to eight years, followed by heights measured biannually. Thus the heights can be
treated as values of some random function of age and the data set as sample of 93 univariate
(p = 1) functional observations measured at 31 design time points. The trajectories of the
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Table 3: Empirical sizes (δ = 0) and powers (δ > 0) (as percentages) of all tests obtained for
p = 3, m = 25 and n1 = n2 = 25. Column B denotes basis used (F – Fourier, B – B-spline).

Independent case Dependent case

B δ D̂e D̂f0.1 D̂f0.5 D̂f1 D̂f1.5 D̂f2 D̂e D̂f0.1 D̂f0.5 D̂f1 D̂f1.5 D̂f2

Wiener
F 0.0 5.0 5.1 4.9 5.1 4.6 4.7 5.7 5.5 5.5 6.4 5.8 5.6

0.4 11.6 23.8 26.1 30.9 33.7 33.9 6.8 9.3 10.3 13.9 14.7 13.5
0.8 41.6 78.0 81.0 86.7 89.8 89.9 15.1 32.4 36.8 46.6 46.7 39.1
1.2 82.9 98.9 99.5 99.8 99.8 99.9 35.1 72.8 79.4 86.7 84.7 71.3
1.6 98.6 100.0 100.0 100.0 100.0 100.0 65.0 96.1 97.6 99.1 97.5 92.1
2.0 99.9 100.0 100.0 100.0 100.0 100.0 91.0 99.9 99.9 100.0 99.9 98.3

B 0.0 5.9 5.2 5.3 5.3 4.4 4.5 5.4 5.4 5.0 6.1 4.9 4.7
0.4 15.1 35.0 43.4 57.7 40.3 23.7 6.8 8.6 9.2 13.1 7.5 6.1
0.8 63.3 97.2 98.8 99.6 90.6 66.9 11.4 23.6 35.0 41.7 20.4 15.6
1.2 98.6 99.9 99.9 100.0 98.8 89.3 26.6 63.3 79.1 78.6 41.3 33.4
1.6 99.9 100.0 100.0 100.0 99.8 95.8 55.6 92.3 98.0 94.7 63.5 53.1
2.0 100.0 100.0 100.0 100.0 99.9 98.7 82.9 99.6 99.9 98.9 78.7 70.8

Ornstein-Uhlenbeck
F 0.0 4.9 5.0 4.6 4.9 5.0 5.0 5.7 5.7 5.8 6.2 6.0 5.3

0.4 12.0 25.7 26.7 31.2 35.5 37.8 6.7 8.8 9.3 11.5 11.8 10.7
0.8 45.0 82.6 84.1 89.7 92.7 94.0 12.9 26.1 29.9 37.6 40.7 35.8
1.2 87.5 99.7 99.8 99.9 100.0 100.0 28.4 60.2 67.2 79.5 78.8 69.6
1.6 99.2 100.0 100.0 100.0 100.0 100.0 53.2 91.8 94.2 97.3 97.1 91.9
2.0 99.9 100.0 100.0 100.0 100.0 100.0 83.7 99.3 99.7 99.8 99.7 98.3

B 0.0 6.1 5.3 5.4 5.7 4.7 4.5 5.0 5.1 5.1 6.0 5.2 4.6
0.4 16.3 36.7 47.6 62.8 47.1 27.7 6.0 7.5 8.4 10.6 7.2 6.1
0.8 70.7 97.8 99.3 99.7 95.0 73.5 9.6 18.5 26.5 35.6 19.0 15.1
1.2 99.4 99.9 100.0 100.0 99.6 92.9 19.0 49.6 67.7 73.0 40.3 31.8
1.6 99.9 100.0 100.0 100.0 100.0 97.5 43.2 84.4 94.0 93.1 63.2 51.1
2.0 100.0 100.0 100.0 100.0 100.0 99.3 72.1 98.5 99.8 98.7 79.1 68.5

Brownian bridge
F 0.0 4.7 4.4 4.6 4.5 4.8 4.6 5.2 4.8 5.4 5.0 4.7 5.0

0.4 11.1 27.9 28.8 29.1 30.0 31.3 5.7 5.9 6.0 6.0 6.8 7.1
0.8 54.8 93.8 93.8 95.0 95.8 96.5 7.7 10.9 12.0 14.4 19.0 19.7
1.2 95.9 100.0 100.0 100.0 100.0 100.0 11.8 22.8 26.4 35.6 41.8 42.0
1.6 100.0 100.0 100.0 100.0 100.0 100.0 19.2 49.6 55.0 69.9 76.1 70.8
2.0 100.0 100.0 100.0 100.0 100.0 100.0 35.0 79.2 84.0 92.2 93.5 90.1

B 0.0 5.6 6.0 5.8 5.4 5.2 5.0 5.3 5.5 5.8 6.6 6.4 6.1
0.4 14.3 36.7 45.7 61.1 54.4 37.6 5.9 6.6 8.2 9.8 8.5 7.6
0.8 66.4 95.6 98.3 99.5 96.9 83.3 8.1 12.9 17.5 23.7 15.5 12.3
1.2 98.1 100.0 100.0 100.0 99.9 97.3 12.6 28.6 41.9 53.6 28.8 21.7
1.6 99.9 100.0 100.0 100.0 100.0 99.3 23.2 59.1 73.7 80.7 49.7 39.5
2.0 100.0 100.0 100.0 100.0 100.0 99.6 42.6 85.1 94.9 95.7 67.2 54.8

growth curves for boys and girls separately are presented in Figure 1.

The growth data are naturally divided into two groups, namely boys and girls. Thus we have
two samples of functional data of sizes n1 = 39 and n2 = 54 respectively. For illustrative
purposes, we would like to test the equality of distributions of growth of boys and girls, which
seems to be false, since the height of boys is usually greater than the height of girls. For
this problem, we applied the permutation tests based on test statistics D̂e, D̂f0.1 , D̂f0.5 , D̂f1 ,

D̂f1.5 and D̂f2 using 1, 000 permutation samples. Since these data seem to be non-periodic,
we use the B-spline basis only with B1 = 5, 6, . . . , 15. The p-values of all testing procedures
are presented in Table 4.

We observe that the D̂e, D̂f0.1 , D̂f0.5 and D̂f1 tests have p-values equal to zero or close to zero,
and hence they reject the null hypothesis. For the remaining tests, the situation changes.
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Their p-values are usually much larger. For small (B1 = 5, 6) and larger (B1 = 15) numbers
of basis functions used in basis representation, these testing procedures do not reject the
null hypothesis, while for the other values of B1 (i.e., B1 = 7, . . . , 14), they reject the null
hypothesis. To indicate which decision for these tests should be made, we note that optimal
value of B1 according to the procedure in Krzyśko and Waszak (2013) using the Bayesian
information criterion (BIC) is equal to 11. Thus perhaps we should use B1 around 11, which
means that the tests reject the null hypothesis. Therefore the new tests confirm the fact that
the boys are usually higher than girls.
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Figure 1: Growth curve data set.

Table 4: P-values of all tests using B-spline basis for testing equality of distributions of
heights of boys and girls contained in the data set growth. The bold row concerns B1 = 11,
which is optimal number of basis functions according to BIC.

B1 D̂e D̂f0.1 D̂f0.5 D̂f1 D̂f1.5 D̂f2

5 0.001 0.000 0.000 0.000 0.081 0.232
6 0.001 0.000 0.000 0.000 0.176 0.160
7 0.001 0.000 0.000 0.000 0.001 0.001
8 0.001 0.000 0.000 0.000 0.007 0.023
9 0.001 0.000 0.000 0.000 0.015 0.035
10 0.001 0.000 0.000 0.000 0.009 0.039
11 0.001 0.000 0.000 0.000 0.016 0.034
12 0.001 0.000 0.000 0.000 0.024 0.039
13 0.001 0.000 0.000 0.000 0.024 0.021
14 0.001 0.000 0.000 0.000 0.024 0.021
15 0.001 0.000 0.000 0.000 0.143 0.196

5. Conclusions

We have proposed the new permutation tests for the two-sample problem for functional data.
Our approach covers both univariate and multivariate cases. Using characteristic function
representation of this two-sample problem and basis function representation of functional data,
we have reduced this problem to the multivariate two-sample problem. Then we have applied
the tests for the last problem, which are based on weighted distances between characteristic
functions as test statistics. Simulation study and real data application have been conducted for
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determining the finite sample properties of new tests. They have showed that the permutation
tests control the type I error level very well and have satisfactory power. Moreover, in term
of power, the tests using density weight function are better than test using energy statistic
in most cases. The proposed method may be extended, for instance, by using other weight
functions to construct the test statistic.
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